🇨🇴 Una base de datos de cursos en diferentes lenguajes. 🇫🇷 Une base de données de cours dans différents langages. 🇳🇴 En database med kurs på forskjellige språk. 🇺🇸 A flat-file database of courses in multiple languages.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

80 lines
5.1 KiB

5 years ago
  1. ---
  2. title: 'Refracting surface '
  3. published: false
  4. routable: false
  5. visible: false
  6. ---
  7. !!!! *LESSON UNDER CONSTRUCTION :* <br>
  8. !!!! Published but invisible: does not appear in the tree structure of the m3p2.com site. This course is *under construction*, it is *not approved by the pedagogical team* at this stage. <br>
  9. !!!! Working document intended only for the pedagogical team.
  10. <!--MetaData : ... -->
  11. -------------
  12. ### Spherical refracting surface in paraxial approximation.
  13. #### Refracting surface.
  14. A **refracting surface** is a *polished surface between two media with different refractive indexes*.
  15. !!!! *BE CAREFUL* :<br>
  16. !!!! In the same way as we use in English the single word "mirror" to qualify a "reflecting surface", in French is use the single word "dioptre" to qualify a "refracting surface".
  17. !!!! The term "dioptre" in English is a unit of mesure of the vergence of an optical system. In French, the same unit of mesaure is named "dioptrie".
  18. !!!! So keep in mind the following scheme :
  19. !!!!
  20. !!!! refracting surface : *EN : refracting surface* , *ES : superficie refractiva* , *FR : dioptre*.<br>
  21. !!!! _A crystal ball forms a spherical refracting surface : un "dioptre sphérique" in French._
  22. !!!!
  23. !!!! unit of measure : *EN : dioptre* , *ES : dioptría* , *FR : dioptrie*.<br>
  24. !!!! _My corrective lens for both eyes are 4 dioptres : "4 dioptries" in French._
  25. #### Spherical refracting surface.
  26. #### Analytical study of the position and shape of an image.
  27. A **spherical refracting surface** in analytical paraxial optics is defined by *three quantities* :
  28. * **$`n_{ini}`$** : *refractive index of the initial medium* (the medium on the side on the incident light).
  29. * **$`n_{fin}`$** : *refractive index of the final medium* (the medium on the side on the emerging light, after crossing the refracting surface).
  30. * **$`\overline{SC}`$** : the *algebraic distance between the __vertex S__* (sometimes called "pole", is the centre of the aperture) *and the __center of curvature C__* of the refracting surface.
  31. ! *USEFUL* : The whole analytic study below also applies to a plane refracting surface. We just need to remark that a plane surface is a spherical surface whose radius of curvature tends towards infinity.
  32. <!--à finir !!!! BE CAREFUL : For a same physical situations, a spherical surface between two transparent media, for optics, ... -->
  33. Consider a *point object* **$`B_{obj}`$** whose orthogonal projection on the optical axis gives the *point object* **$`A_{obj}`$**. If the point object is located on the optical axis, then $`B_{obj}=A_{obj}`$ and we will use to named it point object $`A_{obj}`$. The point object $`B_{obj}`$ can be **real** *as well as* **virtual**.
  34. The **calculation of the position** of the *point image* **$`B_{ima}`$**, *conjugated point of the point object $`B_{obj}`$* by the refracting surface, is carried out in **two steps** :
  35. 1. I use the **spherical refracting surface equation** (known too as the **"conjuction equation" for a spherical refracting surface**) to calculate the *position of the point* **$`A_{ima}`$**, $`A_{ima}`$ being the *orthogonal projection on the optical axis of the point image* $`B_{ima}`$.
  36. **$`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$**
  37. To perform this I *need to know the __algebraic distance__* **$`\overline{SA_{obj}}`$**, and the *calculation of the __algebraic distance__* **$`\overline{SA_{ima}}`$** along the optical axis *gives me the position of $`A_{ima}`$*.
  38. <!--conjugación-->
  39. 2. I use the **"transverse magnification equation" for a spherical refracting surface**, to calculate the *__algebraic value__ of the transverse magnification* **$`\overline{M_T}`$**, then to derive the *__algebraic length__* **$`\overline{A_{ima}B_{ima}}`$** of the segment $`[A_{ima}B_{ima}]`$, that is the algebraic distance of the point image $`B_{ima}`$ from its orthogonal projection $`A_{ima}`$ on the optical axis.
  40. By *definition :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**.
  41. Its *expression for spherical refracting surface :* **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**.
  42. I know $`\overline{SA_{obj}}$, $n_{ini}$ and $n_{fin}$, I have previously calculated $`\overline{SA_{ima}}$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$
  43. ! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :*
  44. !
  45. ! * *conjuction equation :*&nbsp;&nbsp; $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$.
  46. !
  47. ! * *transverse magnification equation :*&nbsp;&nbsp; $`\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ &nbsp;&nbsp; (unchanged).
  48. !
  49. ! This generalizes and completes the knowledge you get about plane refracting surfaces seen in your pedagogical paths in plain and hills.
  50. #### Graphical study of the position and shape of an image.