|
|
|
@ -1393,7 +1393,8 @@ $`(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{e_z})`$ |
|
|
|
|
|
|
|
--------------------------------- |
|
|
|
|
|
|
|
* *CS620* : **N3 ($`\rightarrow`$ N4)**<br> |
|
|
|
* *CS620* : **N3 ($`\rightarrow`$ N4)** |
|
|
|
|
|
|
|
Méthode 2 pour le calcul de |
|
|
|
$`\dfrac{d e_r}{dt}`$ , $`\dfrac{d e_{\theta}}{dt}`$ , $`\dfrac{d e_{\varphi}}{dt}`$ |
|
|
|
|
|
|
|
@ -1520,7 +1521,8 @@ $`=\dfrac{d\theta}{dt}\cdot\overrightarrow{0}\,-\,\dfrac{d\varphi}{dt}\cdot\over |
|
|
|
|
|
|
|
------------------ |
|
|
|
|
|
|
|
* *CS630* : |
|
|
|
* *CS630* |
|
|
|
|
|
|
|
$`\overrightarrow{v}(t)=\dfrac{d\overrightarrow{OM}}{dt}=\dfrac{d\overrightarrow{OM}(t)}{dt}=\dfrac{d}{dt}\left[\,r(t)\cdot\overrightarrow{e_r}(t)\,\right]`$$`=\dfrac{dr(t)}{dt}\cdot\overrightarrow{e_r(t)}\;+\;r(t)\cdot\dfrac{d\overrightarrow{e_r}(t)}{dt}`$ |
|
|
|
$`=\dfrac{dr}{dt}\cdot\overrightarrow{e_r}\;+\;r\cdot\dfrac{d\overrightarrow{e_r}}{dt}`$ |
|
|
|
|
|
|
|
|