diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md index c622b725b..a52c22782 100644 --- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md +++ b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md @@ -132,7 +132,7 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center \- **$`n_{eme}`$ : refractive index of the medium of the emergent light**. * 1 arrow : indicates the *direction of light propagation* -* + ![](dioptre-1.gif) @@ -148,14 +148,16 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previously calculated $`\overline{SA_{ima}}`$, so you can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$. -! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.
Then we get *for a plane refracting surface :* +! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting +!surface are obtained by rewriting these equations for a spherical refracting surface in the limit when +! $`|\overline{SC}|\longrightarrow\infty`$.
Then we get *for a plane refracting surface :* ! ! * *conjuction equation :*   $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$    (equ.3) ! ! * *transverse magnification equation :*   $`\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$    (equ.2, unchanged)

-but (equ.3) gives $`\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}=\dfrac{n_{inc}}{n_{eme}}`$.
-Copy this result into (equ.2) leads to $`\overline{M_T}=+1`$. +! but (equ.3) gives $`\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}=\dfrac{n_{inc}}{n_{eme}}`$.
+! Copy this result into (equ.2) leads to $`\overline{M_T}=+1`$. #### Graphical study \ No newline at end of file