From 1a6afde624b8468d1772d8a8b2bbc652ee5a324c Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Sun, 30 Aug 2020 18:15:23 +0200 Subject: [PATCH] Update textbook.fr.md --- .../textbook.fr.md | 17 +++++++++-------- 1 file changed, 9 insertions(+), 8 deletions(-) diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md index 70645a097..78dfb8b85 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/04.reference-frames-coordinate-systems/textbook.fr.md @@ -254,15 +254,16 @@ $`=dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z}`$< [EN] y its norm (or length) is thescalar line element :

$`||\overrightarrow{dl}||=\sqrt{dl_x^2+dl_y^2+dl_z^2}=\sqrt{dx^2+dy^2+dz^2}`$

$`||\overrightarrow{dl}||=\sqrt{\overrightarrow{dl}\cdot\overrightarrow{dl}}`$ -$`=\sqrt{(dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z})\cdot -(dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z})}`$ -$`=\sqrt{dx^2\;(\overrightarrow{e_x}\cdot\overrightarrow{e_x}) -+dy^2\;(\overrightarrow{e_y}\cdot\overrightarrow{e_y}) -+dz^2\;(\overrightarrow{e_z}\cdot\overrightarrow{e_z})`$ -$`+2\,dx\,dy\,x(\overrightarrow{e_x}\cdot\overrightarrow{e_y})`$ -$`+2\,dx\,dz\,x(\overrightarrow{e_x}\cdot\overrightarrow{e_z})`$ -$`+2\,dy\,dz\,x(\overrightarrow{e_y}\cdot\overrightarrow{e_z})}`$ +$`=\sqrt{(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\cdot +(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})}`$ +$`=\sqrt{dl_x^2\;(\overrightarrow{e_x}\cdot\overrightarrow{e_x}) ++dl_y^2\;(\overrightarrow{e_y}\cdot\overrightarrow{e_y}) ++dl_z^2\;(\overrightarrow{e_z}\cdot\overrightarrow{e_z})`$ +$`+2\,dl_x\,dl_y\,x(\overrightarrow{e_x}\cdot\overrightarrow{e_y})`$ +$`+2\,dl_x\,dl_z\,x(\overrightarrow{e_x}\cdot\overrightarrow{e_z})`$ +$`+2\,dl_y\,dl_z\,x(\overrightarrow{e_y}\cdot\overrightarrow{e_z})}`$ $`=\sqrt{dl_x^2+dl_y^2+dl_z^2}`$ +$`=\sqrt{dx^2+dy^2+dz^2}`$ * **N3 ($`\rightarrow`$ N4)**