Browse Source

suite

keep-around/1c0477f86720f04ed23f9715f9fdcc1efb7e8645
Claude Meny 6 years ago
parent
commit
1c0477f867
  1. 4
      01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md

4
01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md

@ -143,8 +143,8 @@ which defines $`\overline{SC}`$ : algebraic distance between vertex S and center
**$`\dfrac{n_{eme}}{\overline{SA_{ima}}}-\dfrac{n_{inc}}{\overline{SA_{obj}}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}`$**   (equ.1)
* **Transverse magnification expression**<br><br>
**$`\overline{M_T}=\dfrac{n_{inc}\cdot\overline{SA_{ima}}}{n_{eme}\cdot\overline{SA_{obj}}}`$**&nbsp;&nbsp; (equ.2)
**$`\overline{M_T}=\dfrac{n_{inc}\cdot\overline{SA_{ima}}}{n_{eme}\cdot\overline{SA_{obj}}}`$**
&nbsp;&nbsp; (equ.2)<br><br>
You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previously calculated $`\overline{SA_{ima}}`$, so you can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$.

Loading…
Cancel
Save