From 1e06b978b891e098e731c6aaf98b8faedc599c61 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Sun, 6 Oct 2019 09:25:57 +0200 Subject: [PATCH] suite --- .../02.plane-refracting-surface-overview/cheatsheet.en.md | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md index a52c22782..b0927a932 100644 --- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md +++ b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md @@ -150,7 +150,9 @@ You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previous ! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting !surface are obtained by rewriting these equations for a spherical refracting surface in the limit when -! $`|\overline{SC}|\longrightarrow\infty`$.
Then we get *for a plane refracting surface :* +! +! $`|\overline{SC}|\longrightarrow\infty`$.
+! Then we get *for a plane refracting surface :* ! ! * *conjuction equation :*   $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$    (equ.3) !