From 1fa23f5ddf8301d517ea33c77dde1de4bcfe1ccf Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 31 Oct 2019 20:02:48 +0100 Subject: [PATCH] Deleted 04.lens/01.lens-main/textbook.en.md, 04.lens/01.lens-main/textbook.es.md, 04.lens/01.lens-main/textbook.fr.md, 04.lens/02.lens-overview/2-centered-refracting-surfaces-1-all.gif, 04.lens/02.lens-overview/2-centered-refracting-surfaces-direction-axis.gif, 04.lens/02.lens-overview/2-refracting-surface-physical-system.jpeg, 04.lens/02.lens-overview/Const_lens_conv_point_AapresO.gif, 04.lens/02.lens-overview/Const_lens_conv_point_AavantF2.gif, 04.lens/02.lens-overview/Lentille_epaisse_Gauss_incl_v1.gif, 04.lens/02.lens-overview/Lentille_epaisse_principe_ok.gif, 04.lens/02.lens-overview/cheatsheet.en.md, 04.lens/02.lens-overview/cheatsheet.es.md, 04.lens/02.lens-overview/cheatsheet.fr.md, 04.lens/02.lens-overview/lens-convergent-N3-en.jpeg, 04.lens/02.lens-overview/lens-convergent-N3-es.jpeg, 04.lens/02.lens-overview/lens-convergent-N3-fr.jpeg, 04.lens/02.lens-overview/lens-divergent-N3-en.jpeg, 04.lens/02.lens-overview/lens-divergent-N3-es.jpeg, 04.lens/02.lens-overview/lens-divergent-N3-fr.jpeg, 04.lens/02.lens-overview/lentille_relle_representation_v1.gif, 04.lens/02.lens-overview/thick-lens-water-air.gif, 04.lens/03.lens-beyond/Einstein-ring-free.jpg, 04.lens/03.lens-beyond/annex.en.md, 04.lens/03.lens-beyond/annex.es.md, 04.lens/03.lens-beyond/annex.fr.md, 04.lens/03.lens-beyond/lensball-brut-820-760.jpg, 04.lens/03.lens-beyond/lentille-boule-orleans-1bis.jpg, 04.lens/04.lens-parallel-1/default.en.md, 04.lens/04.lens-parallel-1/default.es.md, 04.lens/04.lens-parallel-1/default.fr.md, 04.lens/05.lens-parallel-2/form.en.md, 04.lens/05.lens-parallel-2/form.es.md, 04.lens/05.lens-parallel-2/form.fr.md, 04.lens/06.lens-level-down/page.en.md, 04.lens/06.lens-level-down/page.es.md, 04.lens/06.lens-level-down/page.fr.md, 04.lens/07.lens-level-up/portal.en.md, 04.lens/07.lens-level-up/portal.es.md, 04.lens/07.lens-level-up/portal.fr.md, 04.lens/topic.en.md, 04.lens/topic.es.md, 04.lens/topic.fr.md files --- 04.lens/01.lens-main/textbook.en.md | 322 ------------------ 04.lens/01.lens-main/textbook.es.md | 305 ----------------- 04.lens/01.lens-main/textbook.fr.md | 304 ----------------- .../2-centered-refracting-surfaces-1-all.gif | Bin 876169 -> 0 bytes ...red-refracting-surfaces-direction-axis.gif | Bin 371114 -> 0 bytes .../2-refracting-surface-physical-system.jpeg | Bin 287632 -> 0 bytes .../Const_lens_conv_point_AapresO.gif | Bin 412471 -> 0 bytes .../Const_lens_conv_point_AavantF2.gif | Bin 250831 -> 0 bytes .../Lentille_epaisse_Gauss_incl_v1.gif | Bin 561241 -> 0 bytes .../Lentille_epaisse_principe_ok.gif | Bin 217073 -> 0 bytes 04.lens/02.lens-overview/cheatsheet.en.md | 150 -------- 04.lens/02.lens-overview/cheatsheet.es.md | 5 - 04.lens/02.lens-overview/cheatsheet.fr.md | 35 -- .../lens-convergent-N3-en.jpeg | Bin 100894 -> 0 bytes .../lens-convergent-N3-es.jpeg | Bin 105508 -> 0 bytes .../lens-convergent-N3-fr.jpeg | Bin 107397 -> 0 bytes .../lens-divergent-N3-en.jpeg | Bin 110508 -> 0 bytes .../lens-divergent-N3-es.jpeg | Bin 112428 -> 0 bytes .../lens-divergent-N3-fr.jpeg | Bin 118935 -> 0 bytes .../lentille_relle_representation_v1.gif | Bin 171643 -> 0 bytes .../02.lens-overview/thick-lens-water-air.gif | Bin 245197 -> 0 bytes 04.lens/03.lens-beyond/Einstein-ring-free.jpg | Bin 111457 -> 0 bytes 04.lens/03.lens-beyond/annex.en.md | 193 ----------- 04.lens/03.lens-beyond/annex.es.md | 58 ---- 04.lens/03.lens-beyond/annex.fr.md | 59 ---- .../03.lens-beyond/lensball-brut-820-760.jpg | Bin 43753 -> 0 bytes .../lentille-boule-orleans-1bis.jpg | Bin 125426 -> 0 bytes 04.lens/04.lens-parallel-1/default.en.md | 52 --- 04.lens/04.lens-parallel-1/default.es.md | 23 -- 04.lens/04.lens-parallel-1/default.fr.md | 22 -- 04.lens/05.lens-parallel-2/form.en.md | 12 - 04.lens/05.lens-parallel-2/form.es.md | 12 - 04.lens/05.lens-parallel-2/form.fr.md | 12 - 04.lens/06.lens-level-down/page.en.md | 14 - 04.lens/06.lens-level-down/page.es.md | 14 - 04.lens/06.lens-level-down/page.fr.md | 14 - 04.lens/07.lens-level-up/portal.en.md | 18 - 04.lens/07.lens-level-up/portal.es.md | 14 - 04.lens/07.lens-level-up/portal.fr.md | 14 - 04.lens/topic.en.md | 9 - 04.lens/topic.es.md | 9 - 04.lens/topic.fr.md | 9 - 42 files changed, 1679 deletions(-) delete mode 100644 04.lens/01.lens-main/textbook.en.md delete mode 100644 04.lens/01.lens-main/textbook.es.md delete mode 100644 04.lens/01.lens-main/textbook.fr.md delete mode 100644 04.lens/02.lens-overview/2-centered-refracting-surfaces-1-all.gif delete mode 100644 04.lens/02.lens-overview/2-centered-refracting-surfaces-direction-axis.gif delete mode 100644 04.lens/02.lens-overview/2-refracting-surface-physical-system.jpeg delete mode 100644 04.lens/02.lens-overview/Const_lens_conv_point_AapresO.gif delete mode 100644 04.lens/02.lens-overview/Const_lens_conv_point_AavantF2.gif delete mode 100644 04.lens/02.lens-overview/Lentille_epaisse_Gauss_incl_v1.gif delete mode 100644 04.lens/02.lens-overview/Lentille_epaisse_principe_ok.gif delete mode 100644 04.lens/02.lens-overview/cheatsheet.en.md delete mode 100644 04.lens/02.lens-overview/cheatsheet.es.md delete mode 100644 04.lens/02.lens-overview/cheatsheet.fr.md delete mode 100644 04.lens/02.lens-overview/lens-convergent-N3-en.jpeg delete mode 100644 04.lens/02.lens-overview/lens-convergent-N3-es.jpeg delete mode 100644 04.lens/02.lens-overview/lens-convergent-N3-fr.jpeg delete mode 100644 04.lens/02.lens-overview/lens-divergent-N3-en.jpeg delete mode 100644 04.lens/02.lens-overview/lens-divergent-N3-es.jpeg delete mode 100644 04.lens/02.lens-overview/lens-divergent-N3-fr.jpeg delete mode 100644 04.lens/02.lens-overview/lentille_relle_representation_v1.gif delete mode 100644 04.lens/02.lens-overview/thick-lens-water-air.gif delete mode 100644 04.lens/03.lens-beyond/Einstein-ring-free.jpg delete mode 100644 04.lens/03.lens-beyond/annex.en.md delete mode 100644 04.lens/03.lens-beyond/annex.es.md delete mode 100644 04.lens/03.lens-beyond/annex.fr.md delete mode 100644 04.lens/03.lens-beyond/lensball-brut-820-760.jpg delete mode 100644 04.lens/03.lens-beyond/lentille-boule-orleans-1bis.jpg delete mode 100644 04.lens/04.lens-parallel-1/default.en.md delete mode 100644 04.lens/04.lens-parallel-1/default.es.md delete mode 100644 04.lens/04.lens-parallel-1/default.fr.md delete mode 100644 04.lens/05.lens-parallel-2/form.en.md delete mode 100644 04.lens/05.lens-parallel-2/form.es.md delete mode 100644 04.lens/05.lens-parallel-2/form.fr.md delete mode 100644 04.lens/06.lens-level-down/page.en.md delete mode 100644 04.lens/06.lens-level-down/page.es.md delete mode 100644 04.lens/06.lens-level-down/page.fr.md delete mode 100644 04.lens/07.lens-level-up/portal.en.md delete mode 100644 04.lens/07.lens-level-up/portal.es.md delete mode 100644 04.lens/07.lens-level-up/portal.fr.md delete mode 100644 04.lens/topic.en.md delete mode 100644 04.lens/topic.es.md delete mode 100644 04.lens/topic.fr.md diff --git a/04.lens/01.lens-main/textbook.en.md b/04.lens/01.lens-main/textbook.en.md deleted file mode 100644 index c13391e76..000000000 --- a/04.lens/01.lens-main/textbook.en.md +++ /dev/null @@ -1,322 +0,0 @@ ---- -title: 'Towards thin lenses' -published: true -visible: false ---- - - - -### Towards thin lenses - -! *As part of M3P2*, (UNAL-Manizales?, UdG?,) *INSA-Toulouse*, the results of this chapter "Thick lens" are not to be memorized or known. On the other hand, *understanding the reasoning* is important. - -This chapter is a **necessary step** at level foothills, for me *to deeply understand and better master thin lenses*. It will allow me to : -* understand that the thin lens equation and the expression of transverse magnification for the thin lens result from a *second level of approximation* after the paraxial approximation. -* know *in what situations* are these two equations *correct and can be used*, or *wrong and must be modified*. For example are they still correct when :
-\- the thin lens is surrounded by a medium of spectral index value different than 1?
-\- both media in each side of the lens have different spectral index values? -* have a good introduction to the next main chapter *centered optical systems* because it is my first description of such a system. In particular I will understand the *necesity and requirement for the new concepts* of "principal planes and points, and nodal points" in the next chapter to characterize simply such optical centered system and calculate easily the images they realized. - -##### Physical description of a "thick lens". - -A **thick lens** is a *centered physical system* consisting of *two spherical refracting surface that separate the lens glass of refractive index $n$* from the external mdium in each side. - -I study the **general case** where the *media on both sides of the lens have different values of spectral index*. -!!! *EXAMPLE* : The lens can be used as a *magnifying porthole of a bathyscaphe*. - -##### The centered optical system "thick lens" - -Im must remind the plane refracting surface viewed at level "plains". Even if the - -To define an optical system, I have to define a scenario : where is the objet to be imaged or viewed ? And where is the real image of the object to be registered by a matrix sensor or where is located the eye of the observator ? This gives me the direction of propagation of the light (from object to real image or eye) through the optical system. This direction of propagation is part of the description of an optical system. In the figure above the optical systems are each time two ordered spherical refracting surfaces._ - -A **thick lens** is a *centered optical system* consisting of *two spherical refracting surface that separate the lens glass of refractive index $n$* from the external mdium in each side. - -I study the **general case** where the *media on both sides of the lens have different values of spectral index*. -!!! *EXAMPLE* : The lens can be used as a *magnifying porthole of a bathyscaphe*, through which *a human in the air observes a fish in the water*. - -Le premier dioptre $DS_1$ traversé par la lumière a pour sommet $S_1$ et pour centre de courbure $C_1$, et sépare le milieu (_où se propage la lumière incidente_) d'indice de réfraction $n1$ du milieu situé entre les deux dioptres d'indice de réfraction $n$. Le deuxième dioptre $DS_2$ traversé par la lumière à la suite du premier sépare donc le milieu intermédiaire d'indice de réfraction $n$ du milieu final d'indice de réfraction $n_2$, et a pour sommet $S_2$ et pour centre de courbure $C_2$. L'espacement entre les deux dioptres est caractérisé par la distance algébrique $\overline{S_1S_2}$. L'orientation de l'axe optique étant choisie positive selon le sens de propagation de la lumière, la distance algébrique $\overline{S_1S_2}$ est positive ($\overline{S_1S_2}>0$. - -Le **système centré $SO$** que constitue la lentille épaisse dans son environnement (_ses deux milieux de part et d'autre_) et ses conditions d'utilisation (_le sens considéré de propagation de la lumière à travers la lentille_) est donc **caractérisé par** : -* l'*ordre de traversée* de ces deux dioptres par la lumière, de $DS_1$ vers $DS_2$. -* les *trois indices de réfraction $n_1$, $n$ et $n_2$* caractérisant respectivement le milieu de propagation de la lumière incidente sur le premier dioptre du système, le milieu intermédiaire commun aux deux dioptres et le milieu de propagation de la lumière transmise par le système. -* les *rayons algébriques $\overline{S_1C_1}$ et $\overline{S_2C_2}$* des deux dioptres sphériques $DS_1$ et $DS_2$. -* la *distance $\overline{S_1S_2}$* qui spécifie l'espacement entre les deux dioptres. - -! *IMPORTANT* : si la *lentille* est *plan-convexe ou plan concave*, il suffira de reprendre les diverses expressions mathématiques trouvées et *faire tendre le rayon de courbure concerné (_faire attention au sens de propagation de la lumière_) vers l'infini* ($\overline{SC}\rightarrow\infty$). Nous retrouverions (_certes d'une façon bien compliquée_) les résultats pour une paroi transparente regardée sous incidence normale et dans les conditions de Gauss, en faisant tendre les rayons de deux dioptres vers l'infini ($\overline{S_1C_1}\rightarrow\infty$ et $\overline{S_2C_2}\rightarrow\infty$). - -Dans le cadre de l'optique paraxiale (_optique Gaussienne_), ce système optique est quasi-stigmatique et il donne les rayons de lumière issus du point objet $B$ un point image unique $B'$. La **position du point objet $B$ par rapport au système optique** est *déterminée par* : -* la *distance algébrique* **$\overline{AS_1}$** entre la projection $A$ du point objet $B$ sur l'axe optique et le sommet $S_1$ du premier dioptre $DS_1$. -* l'*élévation algébrique* **$\overline{AB}$** du point B par rapport à l'axe optique (_en choisissant préalablement un sens positif d'orientation commun à toute droite perpendiculaire à l'axe optique_). - -##### Calcul de l'image finale d'un objet initial de position connue - -La position du point $B$ est connue, grâce aux valeurs numériques de $\overline{AS_1}$ et $\overline{AB}$. - -!!! *EXEMPLE* : je reprends l'exemple du scientifique qui observe un poisson des abymes à travers le hublot grossissant d'un bathyscaphe. Cela donne : -!!! * milieux extrêmes : $n_1$=$n_{eau}=4/3$ et $n_2$=$n_{air}=1$ -!!! * hublot lenticulaire : $n$=$n_{verre}=3/2$, $\overline{S_1C_1}=1 m$, $\overline{S_2C_2}= -1 m$ et $\overline{S_1S_2}=5 cm$, - -Pour calculer la position de l'image finale $B'$, je décompose l'action du système optique en considérant les actions successives des deux dioptres qui le constituent : - -Le premier dioptre $DS_1$ forme de l'objet ponctuel initial $B$ une image ponctuelle $B_{int}$. Cette image intermédiaire $B_{int}$ devient objet pour le second dioptre $DS_2$ qui en forme une image ponctuelle finale $B'$. Le point $B'$ est donc l'image ponctuelle de l'objet ponctuel $B'$ par le système optique centré $SO$ formé par les deux dioptres successifs $DS_1$ et $DS_2$. - -La **relation de conjugaison** genérale $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$ et l'**expression du grandissement transversal** générale $`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ des dioptres sphériques, *appliquées au* **dioptre sphérique particulier $DS_1$** donnent : - -* **$`\dfrac{n}{\overline{S_1A_{int}}}-\dfrac{n_1}{\overline{S_1A}}=\dfrac{n-n_1}{\overline{S_1C_1}}`$** (équ. 1a) - -* **$`\overline{M_T}=\dfrac{n_1\cdot\overline{S_1A_{int}}}{n\cdot\overline{S_1A}}`$** (équ. 1b) - -Je peux maintenant calculer la position du point image intermédiaire $B_{int}$. De l'équation 1a je peux calculer la valeur numérique de $\overline{S_1A_{int}}$ du point image intermédiaire $A_{int}$ (_projection orthogonale de_ $B_{int}$ _sur l'axe optique_), et de l'équation 1b la valeur numérique de l'élévation $\overline{A_{int}B_{int}}$ : - -$\overline{S_1A_{int}}=\dfrac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}} -{(n-n_1)\cdot\overline{S_1A}\;+\;n_1\cdot\overline{S_1C_1}}$ (équ. 1c) - -par définition $\overline{M_T}=\dfrac{\overline{A_{int}B_{int}}}{\overline{AB}}$$\Longrightarrow\overline{A_{int}B_{int}}=\dfrac{n_1\cdot\overline{S_1A_{int}}}{n\cdot\overline{S_1A}}\cdot\overline{AB}$ (équ. 1d) - -!!! *EXEMPLE* :   (_suite_)
-!!! poisson : $\overline{S_1A}= - 1 m$ et $\overline{AB}= 7 cm$.
-!!! $\Longrightarrow\overline{S_1A_{int}}=-\dfrac{9}{7} m$ et $\overline{A_{int}B_{int}}= +8 cm$. - -Maintenant que la lumière à traversée le premier dioptre $DS_1$, est s'apprête à, franchir le second dioptre $DS_2$. Du point de vue du $DS_2$, les rayons incidents initiés par le point objet $B$ semblent parvenir du point intermédiaire $B_{int}$. Ce point $B_{int}$, point image pour le dioptre $DS_1$ devient point objet pour le dioptre $DS_2$. - -La **relation de conjugaison** et l'**expression du grandissement transversal** générales des dioptres sphériques, *appliquées au* **dioptre sphérique particulier $DS_2$** donnent : - -* **$`\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n}{\overline{S_2A_{int}}}=\dfrac{n_2-n}{\overline{S_2C_2}}`$** (équ. 2a) - -* **$`\overline{M_T}=\dfrac{n\cdot\overline{S_2A'}}{n_2\cdot\overline{S_2A_{int}}}`$** (équ. 2b) - -Je peux calculer la valeur numérique $\overline{S_2A_{int}}$ en remarquant que - -$\overline{S_2A_{int}}=\overline{S_1S_2}+\overline{S_1A_{int}}=\overline{S_1A_{int}}-\overline{S_1S_2}$. - -En injectant enfin $\overline{S_2A_{int}}$ et $\overline{A_{int}B_{int}}$ dans les équations 2a et 2b, je détermine les valeurs numériques $\overline{S_2A'}$ et $\overline{A'B'}$ donnant la position de l'image finale $B'$. - -!!! *EXEMPLE* :   (_suite_)
-!!! $\overline{S_2A_{int}}=-\frac{9}{7}-0.005=-1.334\:m$
-!!! $\overline{S_2A'}=-1.605\:m$
-!!! $\overline{A'B'}=+14.4\:cm$ -!!! -!!! Attention, je dois donner une réponse pertinente au problème ! L'image finale n'est pas destinée à se former sur un capteur pour son enregistrement. Ce n'est pas la position de l'image par rapport au hublot ni sa taille qui sont déterminantes, mais la distance $\overline{A'O}$de l'image à l'oeil $O$ du scientifique, et l'angle apparent $\alpha$ sous lequel il voit le poisson. -!!! -!!! Donnée supplémentaire : l'oeil O du scientifique est situé à 10cm de la surface du hublot : $\overline{OA'}=-1.615\:m$ : donc l'image est situé devant l'oeil, le scientifique pourra la voir. De plus cette image est située plus loin que le puctum proximum, donc le scientifique pourra la voir nette.
-!!! Je sais que l'image est droite, je vais travailler maintenant pour simplifier en valeurs non algébriques :
-!!! $\alpha=arctg\left(\frac{A'B'}{A'O}\right)$$=arctg\left(\frac{0.144}{1.610}\right)$$=arctan(0.089)=0.089\:rad=5°$
-!!! Je vois bien ici que la valeur de l'angle apparent __exprimée en radian__ est quasi identique à la valeur de sa tangente, ce qui est une condition pour considérer l'angle petit. Cela valide les conditions de Gauss considérées pour cette observation, et donc justifie l'étude de ce problème dans le cadre de l'optique paraxiale. - - -##### Calcul général de l'image finale - -Si je devais chercher les deux équations qui donnent directement la position $B'$ en fonction de la position de $B$, le calcul (qui n'est pas à faire) serait fastidieux et le résultat complexe. Il donnerait : - -$\overline{S_2A'}=\frac{ n_2 \cdot\overline{S_2C_2} \cdot\left(\frac{ n \cdot \overline{S_1C_1} \cdot\overline{S_1A}}{(n-n_1) \cdot\overline{S_1A}+n_1 \cdot \overline{S_1C_1}}- \overline{S_1S_2}\right)}{(n_2n)\cdot\left(\frac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}}{(n-n_1)\cdot\overline{S_1A}\;+\;n_1\cdot\overline{S_1C_1}}-\overline{S_1S_2}\right)+n\cdot \overline{S_2C_2}}$ (équ.3a) - -$\overline{A'B'}=\overline{AB}\times\overline{M_{T-SO}}$, avec - -$\overline{M_{T-SO}}=\frac{n\cdot n_1\cdot \overline{S_1C_1}}{(n-n_1)\cdot\overline{S_1A}+n_1\cdot\overline{S_1C_1}}\:\times\:$ -$\frac{\overline{S_2C_2}}{(n2-n)\cdot\left(\frac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}}{(n-n_1)\cdot\overline{S_1A}+n_1\cdot\overline{S_1C_1}}-\overline{S_1S_2}\right)-n\cdot\overline{S_2C_2}}$ (équ.3b) - -Ces équations sont difficiles à établir et à retenir. Essayons au moins d'établir la relation de conjugaison de type $\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n_1}{\overline{S_1A}}=\cdot\cdot\cdot$ - -##### A la recherche d'une équation de conjugaison simple pour la lentille épaisse - -Les équations complexes 3a et 3b sont difficiles à manipuler. le plus simples est de repartir des équations (équ.1a) et (équ.2a) où les grandeurs $\dfrac{n_1}{\overline{S_1A}}$ et $\dfrac{n_2}{\overline{S_2A'}}$ apparaissent déjà. L'addition de chaque membre des équations (équ.1a) et (équ.2a) donne : - -$`\dfrac{n}{\overline{S_1A_{int}}}-\dfrac{n_1}{\overline{S_1A}}+\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n}{\overline{S_2A_{int}}}$$=\dfrac{n-n_1}{\overline{S_1C_1}}+\dfrac{n_2-n}{\overline{S_2C_2}}`$ - -En ne gardant au premier membre que les termes $\dfrac{n_1}{\overline{S_1A}}$ et $\dfrac{n_2}{\overline{S_2A'}}$ j'obtiens l'équation : - -$\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n_1}{\overline{S_1A}}$$ -\:=\:\dfrac{n-n_1}{\overline{S_1C_1}}+\dfrac{n_2-n}{\overline{S_2C_2}}+\dfrac{n}{\overline{S_2A_{int}}}-\dfrac{n}{\overline{S_1A_{int}}}$ - -Cette équation relativement simple semble convenir, mais c'est une *équation inutile*. Certes le membre de gauche ne contient que les informations sur les conditions d'utilisation de la lentille épaisse (_les indices_ $n_1$ _et_ $n_2$ _des milieux de part et d'autre de la lentille_) et de la position de l'objet $B$ (_la distance algébrique_ $\overline{S_1A_{int}}$_, position du point_ $A$ _par rapport au sommet_ $S_1$ _du premier dioptre rencontré par la lumière_). Mais pour être utile, le membre de droite ne devrait contenir que des grandeurs caractérisant la lentille épaisse elle-même : -* $n-n_1$ et $n-n_2$ : indices de réfraction différentiels entre matériau constituant la lentille et les milieux extérieurs. -* $\overline{S_1C_1}$ et $\overline{S_2C_2}$ : rayons de courbures algébriques des faces d'entrée et de sortie de la lentille. -* $\overline{S_1S_2}$ épaisseur de la lentille. -Or ce terme de droite contient aussi les distances algébriques $\overline{S_1A_{int}}$ et $\overline{S_2A_{int}}$ qui concernent la position de l'image intermédiaire $A_{int}$, or cette position dépend elle-même de la position du point objet initial $A$. - -Lorsque les **positions des points objets et images** sont **précisées par leur distances par rapport aux sommets $S_1$ et $S_2$**, frontières physiques de la lentille épaisse avec son axe optique, il n'existe **pas d'équation simple** séparant dans un terme de gauche les conditions d'utilisation de la lentille et de positions de l'objet et de l'image, et dans un terme de droite les seules caractéristiques des deux dioptres formant la lentille épaisse. Une formule de conjugaison générale pour tout système centré sera établie au chapitre "Etude des systèmes centrés". - -!! *POUR ALLER PLUS LOIN* :
-!! -!! Tout système centré, qu'ils soit composé de deux ou de plusieurs éléments simples centrés sur un même axe optique, pourra être caractérisé par deux plans virtuels, appelés : -!! * plan principal objet (P) de point d'intersection avec l'axe optique $H$ -!! * plan principal image (P') de point d'intersection avec l'axe optique $H'$ -!! qui remplaceront respectivement la face d'entrée de la première lentille ou miroir du système par la lumière, et la face de sortie de la dernière lentille ou du dernier miroir). -!! -!! Ces plans permettront de définir une relation de conjugaison simple de forme connue : -!! -!! $\frac{n'}{\overline{H'A'}}-\frac{n}{\overline{HA}}=V$ (avec V, vergence du système dans son environnement) -!! -!! et serviront de référence au positionnement des points focaux objet F et image F' du système dans son environnement : -!! -!! $V=-\frac{n}{\overline{HF}}=\frac{n'}{\overline{H'F'}}$ -!! -!! Contrairement à $\overline{S_1S_2}$ toujours positive qu'elle remplacera, la distance algébrique $\overline{H_1H_2}$ pourra être positive ou négative. - - -### Lentille mince - -Une lentille est dite **lentille mince** lorsque la *distance entre les deux sommets $S_1$ et $S_2$* de la lentille est *petite devant chacun des rayons de courbures* des deux faces. - -Cette condition, $\overline{S_1S_2} \ll \overline{S_1C_1}$ et $\overline{S_1S_2} \ll \overline{S_2C_2}$ me permet de faire l'approximation $\overline{S_1S_2}\rightarrow 0$ dans les diverses équations de la lentille épaisse, considérant ainsi que les sommets $S_1$ et $S_2$ se confondent en un même point O. - -$\overline{S_1S_2}\rightarrow 0 \:\longrightarrow\:S_1=S_2=O$$\:\longrightarrow\:\overline{S_1C_1}\rightarrow\overline{OC_1}$ et $\overline{S_2C_2}\rightarrow \overline{OC_2}$ - -##### Lentille mince en milieux extrêmes différents - -Je peux toujours considérer la lentille mince comme un système optique composé de deux dioptres sphériques centrés, et donc reprendre l'étude initiale de la lentille épaisse, mais avec l' approximation suivante : $S_1=S_2=O$ - - -##### Lentille mince plongé dans un même milieu - -Je peux toujours considérer la lentille mince comme un système optique composé de deux dioptres sphériques centrés, et donc reprendre l'étude initiale de la lentille épaisse, mais avec les approximations suivantes : $S_1=S_2=O$ et $n_1=n_2=n_{ext}$ - - -##### Lentille mince utilisés dans l'air ou dans le vide - -Ce sont les conditions d'utilisation des lentilles minces dans la très grande majorité des cas. Je reprendre l'étude initiale de la lentille épaisse avec les approximations suivantes : - -$S_1=S_2=O$ et $n_1=n_2=1$ - -###### Pour le **premier dioptre** : - -La relation de conjugaison genérale $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$ et l'expression du grandissement transversal générale $`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ des dioptres sphériques, donnent : - -* **$`\dfrac{n}{\overline{OA_{int}}}-\dfrac{1}{\overline{OA}}=\dfrac{n-1}{\overline{S_1C_1}}`$** (équ. 4a) - -* **$`\overline{M_{T-DS1}}=\dfrac{1\cdot\overline{OA_{int}}}{n\cdot\overline{OA}}`$** (équ. 4b) - -###### Pour le **second dioptre** : - -Ces mêmes expressions générales donnent : - -* **$`\dfrac{1}{\overline{OA'}}-\dfrac{n}{\overline{OA_{int}}}=\dfrac{1-n}{\overline{S_2C_2}}`$** (équ. 5a) - -* **$`\overline{M_{T-DS2}}=\dfrac{n\cdot\overline{OA'}}{1\cdot\overline{OA_{int}}}`$** (équ. 5b) - -Additionner entre elles les équations 1a et 2a donne: - - -$\dfrac{n}{\overline{OA_{int}}}-\dfrac{1}{\overline{OA}}+\dfrac{1}{\overline{OA'}}-\dfrac{n}{\overline{OA_{int}}}=\dfrac{n-1}{\overline{S_1C_1}}+\dfrac{1-n}{\overline{S_2C_2}}$ - -soit - -**$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=(n-1)\cdot\left(\dfrac{1}{\overline{S_1C_1}}-\dfrac{1}{\overline{S_2C_2}}\right)$** (équ. 6) - -**Cette équation est vraiment utile** : -* au premier membre ne se situent que les positions des points objet et image conjugués $A$ et $A'$ sur l'axe optique relativement au point O qui positionne la lentille mince sur cet axe. -* au second membre n'intervient que ce qui caractérise la lentille mince (_ses deux rayons algébriques de courbure_ $\overline{S_1C_1}$, $\overline{S_2C_2}$ et l'indice de réfraction $n$ du matériau qui la compose (_la position du point image intermédiaire_ $A_{int}$ _de_ $A$ _par le premier dioptre n'intervient pas_) donc ce second membre est indépendant de la position du point-objet $A$ initial. Dans ces conditions, le premier membre de cette équation définit la vergence de la lentille mince. - -Connaissant les caractéristiques physiques ($\overline{S_1C_1}$, $\overline{S_2C_2}$, $n$) de la lentille, cette équation xxx *peut servir à calculer la position de tout point objet $A$ ou image $A'$ connaissant la position de son point conjugué* , c'est l'**équation de conjugaison avec origine au centre O de la lentille mince** lorsque les milieux de chaque côté de la lentille ont un même indice de réfraction $n=1$. On l'appelle *relation de conjugaison de Descartes*. - -Les expressions des distances focales objet et image de la lentille en fonction de ses caractéristiques physiques s'obtiennent facilement. - -* distance focale image $\overline{OF'}$ : $\left(|\overline{OA}|\rightarrow\infty\Rightarrow A'=F'\right)$ - -$(équ. 7)\Longrightarrow\overline{OF'}=\dfrac{\overline{S_1C_1}\cdot\overline{S_2C_2}}{(n-1)\cdot(\overline{S_2C_2}-\overline{S1_C1})}$. - -* distance focale objet $\overline{OF}$ : $\left(|\overline{OA'}|\rightarrow\infty\Rightarrow A=F\right)$ - -$(équ. 8)\Longrightarrow\overline{OF}=\dfrac{\overline{S_1C_1}\cdot\overline{S_2C_2}}{(n-1)\cdot(\overline{S_1C_1}-\overline{S_2C_2})}$. - -Je peux réécrire la vergence (premier membre de l'équation de conjugaison) en fonction des distances focales objet et image, et je reconnais bien l'**équation de conjugaison de la lentille mince plongée un milieu d'indice de réfraction 1** apprise au niveau "collines" : - -**$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$** (équ. 9a) - -! *REMARQUE * :
-! Du point de vue de l'optique paraxiale, les plans focaux objet et image sont situés à même distance de part et d'autre de la lentille mince ($\overline(OF)=-\overline(OF')$). La lentille mince est donc optiquement symétrique. Elle est caractérisée par sa distance focale image $\overline(OF')$. Cette distance focale $\overline(OF')$ est algébrique, une distance focale négative indique une lentille mince divergente, ne distance focale positive indique une lentille mince convergente, - - - - -!! *POUR ALLER PLUS LOIN* :
-!! Du point de vue de l'optique paraxiale, toutes les lentilles minces caractérisées par une même distance focale $\overline(OF')$ sont optiquement symétrique et équivalentes, qu'elles soient physiquement symétriques ou non, et quelques soient leurs matériaux constitutifs. Ainsi les lentilles sphériques suivantes : -!! 1. biconvexe symétrique en verre crown (PSK) : $n=1.63$ , $\overline{S_1C_1}=+50\;cm$ , $\overline{S_2C_2}=-50\;cm$. -!! 2. biconvexe symétrique en verre flint (BaF) : $n=1.63$ , $\overline{S_1C_1}=+50\;cm$ , $\overline{S_2C_2}=-50\;cm$. -!! 3. plan-convexe en verre flint (BaF) : $n=1.63$, $\overline{S_1C_1}=19.3\;cm$ côté convexe. -!! -!! ont une même distance focale image $\overline(OF')=+30.5\;cm$. -!! -!! Pourtant leurs comportements optiques réels seront légèrement différents. L'écart entre le comportement optique réel et le comportement décrit par l'optique paraxiale est dit lié aux aberrations. -!! -!! * Aberration chromatique : L'indice de réfraction varie légèrement avec la longueur d'onde dans le domaine visible (_selon les types de matériaux, la variation de l'indice de réfraction limité au domaine visible est modélisé par différentes fonctions de la longueur d'onde : fonctions de Cauchy, de Briot, de Sellmeier_). Ainsi, selon la loi de Snell-Descartes, un même rayon lumineux polychromatique incident sur un dioptre avec un angle non nul donnera lieu à différents rayons (_spectre de raies_) ou un faisceau de rayons (_spectre continu_) émergents monochromatiques : c'est le phénomène de dispersion chromatique. Ainsi la position des plans focaux objet et image varient continuement sur une petite plage de distance en fonction de la longueur donde. Même dans des conditions de Gauss idéalement réalisées, un point objet diffusant une lumière blanche (de spectre continu) ne donnera pas un point image blanc, mais une petite étenddue colorée aux couleurs de l'arce-en-ciel. Ce phénomène de dispersion est bien connu dans le cas d'un prisme qui décompose la lumière incidente en un faisceau coloré, mais ce phénomène est aussi présent lorsque la lumière traverse une lentille (_même si le résultat est moins accentué grâce à sa forme_). C'est le nombre d'Abbe qui caractérise ce phénomène de dispersion chromatique : plus il est petit plus le phénomène de dispersion est important.
-!! Dans l'exemple, les lentilles 1 et 2 ont mêmes rayons de courbure et un même indice de réfraction, mais le lentille en verre flint (BaF) présentera une aberration chromatique beaucoup plus importante que la lentille en verre crown (PSK). -!! -!! * L'aberration géométrique : xxx.
-!! Pour une lentille plan-convexe, l'aberration géométrique sera différente selon le sens de traversée de la lentille par la lumière. Les lentilles 2 et 3 sont réalisées dans un même verre et sont caractérisées par une même distance focale image, elles se comportent de façons identiques selon l'optique paraxiale. Cependant, éclairées par un même faisceau monochromatique (_pour éviter l'aberration chromatique_) sous incidence normale, c'est la lentille plan-convexe utilisée avec la lumière incidente - -Le grandissement transversal de la lentille mince est le produit des grandissements transversaux de chacun des deux dioptres qui composent la lentille mince. En effet : - -$M_T =\dfrac{\overline{A'B'}}{\overline{AB}}=\dfrac{\overline{A_{int}B_{int}}}{\overline{AB}}\cdot\dfrac{\overline{A'B'}}{\overline{A_{int}B_{int}}}=M_{T-DS1}\cdot M_{T-DS2}$ - -Le calcul de son expression : - -$M_{T-DS1}\cdot M_{T-DS2}$$=\dfrac{1\cdot\overline{OA_{int}}}{n\cdot\overline{OA}}\times\dfrac{n\cdot\overline{OA'}}{1\cdot\overline{OA_{int}}}$ - -se simplifie en : - -**$M_{T-thinlens}=\dfrac{\overline{OA'}}{\overline{OA}}$** (équ. 9b) - -Les équations 9a et 9b prennent le point O, centre de la lentille mince, pour référence des distances algébriques $\overline{OA}$, $\overline{OA'}$, et permettent de calculer les distances focales objet $\overline{OF}$ et image $\overline{OF'}$, et donc de postionner les points focaux $F$ et $F'$ de la lentille mince. - -Si c'est points sont déjà connus, alors je peux déduire une autre formule de conjugaison et une autre expression du grandissement transversal en prenant les points focaux $F$ et $F'$ pour références des distances algébriques : - -$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$ - -Je peux par exemple multiplier chaque membre de l'équation par $\overline{OA}$ - -$\dfrac{\overline{OA}}{\overline{OA'}}-1=\dfrac{\overline{OA}}{\overline{OF'}}$ - -Puis réduire au même dénominateur le membre de gauche - -$\dfrac{\overline{OA}-\overline{OA'}}{\overline{OA'}}=\dfrac{\overline{OA}}{\overline{OF'}}$ - -Je fais le produit en croix - -$\overline{OA'}\cdot\overline{OA}=(\overline{OA}-\overline{OA'})\cdot\overline{OF'}$ - -Je fais apparaître $\overline{FA}$ et $\overline{F'A'}$ - -$(\overline{OF'}+\overline{F'A'})\cdot(\overline{OF}+\overline{FA})$$=[(\overline{OF}+\overline{FA})-(\overline{OF'}+\overline{F'A'})]\cdot\overline{OF'}$ - -Je ne garde par exemple que la distance focale image en remplaçant $\overline{OF}$ par $-\overline{OF'}$ - -$(\overline{OF'}+\overline{F'A'})\cdot(-\overline{OF'}+\overline{FA})$$=(-\overline{OF'}+\overline{FA}-\overline{OF'}-\overline{F'A'})\cdot\overline{OF'}$ - -J'effectue les produits - -$-\overline{OF'}^2+\overline{OF'}\cdot\overline{FA}-\overline{OF'}\cdot\overline{F'A'}+\overline{FA}\cdot\overline{F'A'}$$=-\overline{OF'}^2+\overline{OF'}\cdot\overline{FA}-\overline{OF'}^2-\overline{OF'}\cdot\overline{F'A'}$ - -et je simplifie - -**$\overline{FA}\cdot\overline{F'A'}=-\overline{OF'}^2$** - -**Cette équation est vraiment utile** : -* au premier membre ne se situent que les positions des points objet et image conjugués $A$ et $A'$ sur l'axe optique relativement aux foyers objet $F$ et image $F'$ de la lentille mince avec de chaque côté un milieu d'indice de réfraction $n=1$. -* au second membre n'intervient que ce qui caractérise la lentille mince dans ces conditions d'utilisation (_ses distances algébriques _ $\overline{OF}$ et $\overline{OF'}$ , positions des points focaux objet et image par rapport au point O). - -Connaissant la distance focale image $\overline{OF' }$de la lentille (_attention, comme toute distance en optique géométrique, cette distance est algébrique_), cette équation xxx *peut servir à calculer la position de tout point objet $A$ ou image $A'$ connaissant la position de son point conjugué* , c'est l'**équation de conjugaison de la lentille mince, avec origines aux foyers**, -lorsque les milieux de chaque côté de la lentille ont un même indice de réfraction $n=1$. On l'appelle *relation de conjugaison de Newton*. - - - - - - - - - - - - - - - - - - diff --git a/04.lens/01.lens-main/textbook.es.md b/04.lens/01.lens-main/textbook.es.md deleted file mode 100644 index b03a51ca7..000000000 --- a/04.lens/01.lens-main/textbook.es.md +++ /dev/null @@ -1,305 +0,0 @@ ---- -title: 'nuevo curso: principal' ---- - -nouveau cours : principal - -### Classification des lentilles - -A simple lens is a volume made with a transparent substance of refractive index $n$, that present a symetry of revolution around an axis called the optical axis of the lens. This volume is bound by two polished surfaces that can be both curved, or one curved and the other plane. The curved surfaces which have to - -### Lentille épaisse : 2 dioptres sphériques centrés successifs. - -! Dans la *cadre de m3p2, (UNAL-Manizales?, UdG?,) INSA-Toulouse*, les résultats de ce chapitre "Lentille épaisse" ne sont pas à mémoriser ni connaître. Par contre, *comprendre le raisonnement* est important. - -##### Le système centré "lentille épaisse" - -Une **lentille épaisse** est un *système optique centré* formé de *deux dioptres sphériques séparant le verre constitutif de la lentille d'indice de réfraction $n$*. - -Nous allons mener l'**étude du cas général** où les *milieux de part et d'autres de la lentille sont différents*, et pour un sens de propagation de la lumière à travers la lentille. -!!! *EXEMPLE* : la lentille peut être utilisé comme *hublot grossissant d'un bathyscaphe*, à travers lequel *un humain dans l'air observe un poisson dans l'eau*. - -Le premier dioptre $DS_1$ traversé par la lumière a pour sommet $S_1$ et pour centre de courbure $C_1$, et sépare le milieu (_où se propage la lumière incidente_) d'indice de réfraction $n1$ du milieu situé entre les deux dioptres d'indice de réfraction $n$. Le deuxième dioptre $DS_2$ traversé par la lumière à la suite du premier sépare donc le milieu intermédiaire d'indice de réfraction $n$ du milieu final d'indice de réfraction $n_2$, et a pour sommet $S_2$ et pour centre de courbure $C_2$. L'espacement entre les deux dioptres est caractérisé par la distance algébrique $\overline{S_1S_2}$. L'orientation de l'axe optique étant choisie positive selon le sens de propagation de la lumière, la distance algébrique $\overline{S_1S_2}$ est positive ($\overline{S_1S_2}>0$. - -Le **système centré $SO$** que constitue la lentille épaisse dans son environnement (_ses deux milieux de part et d'autre_) et ses conditions d'utilisation (_le sens considéré de propagation de la lumière à travers la lentille_) est donc **caractérisé par** : -* l'*ordre de traversée* de ces deux dioptres par la lumière, de $DS_1$ vers $DS_2$. -* les *trois indices de réfraction $n_1$, $n$ et $n_2$* caractérisant respectivement le milieu de propagation de la lumière incidente sur le premier dioptre du système, le milieu intermédiaire commun aux deux dioptres et le milieu de propagation de la lumière transmise par le système. -* les *rayons algébriques $\overline{S_1C_1}$ et $\overline{S_2C_2}$* des deux dioptres sphériques $DS_1$ et $DS_2$. -* la *distance $\overline{S_1S_2}$* qui spécifie l'espacement entre les deux dioptres. - -! *IMPORTANT* : si la *lentille* est *plan-convexe ou plan concave*, il suffira de reprendre les diverses expressions mathématiques trouvées et *faire tendre le rayon de courbure concerné (_faire attention au sens de propagation de la lumière_) vers l'infini* ($\overline{SC}\rightarrow\infty$). Nous retrouverions (_certes d'une façon bien compliquée_) les résultats pour une paroi transparente regardée sous incidence normale et dans les conditions de Gauss, en faisant tendre les rayons de deux dioptres vers l'infini ($\overline{S_1C_1}\rightarrow\infty$ et $\overline{S_2C_2}\rightarrow\infty$). - -Dans le cadre de l'optique paraxiale (_optique Gaussienne_), ce système optique est quasi-stigmatique et il donne les rayons de lumière issus du point objet $B$ un point image unique $B'$. La **position du point objet $B$ par rapport au système optique** est *déterminée par* : -* la *distance algébrique* **$\overline{AS_1}$** entre la projection $A$ du point objet $B$ sur l'axe optique et le sommet $S_1$ du premier dioptre $DS_1$. -* l'*élévation algébrique* **$\overline{AB}$** du point B par rapport à l'axe optique (_en choisissant préalablement un sens positif d'orientation commun à toute droite perpendiculaire à l'axe optique_). - -##### Calcul de l'image finale d'un objet initial de position connue - -La position du point $B$ est connue, grâce aux valeurs numériques de $\overline{AS_1}$ et $\overline{AB}$. - -!!! *EXEMPLE* : je reprends l'exemple du scientifique qui observe un poisson des abymes à travers le hublot grossissant d'un bathyscaphe. Cela donne : -!!! * milieux extrêmes : $n_1$=$n_{eau}=4/3$ et $n_2$=$n_{air}=1$ -!!! * hublot lenticulaire : $n$=$n_{verre}=3/2$, $\overline{S_1C_1}=1 m$, $\overline{S_2C_2}= -1 m$ et $\overline{S_1S_2}=5 cm$, - -Pour calculer la position de l'image finale $B'$, je décompose l'action du système optique en considérant les actions successives des deux dioptres qui le constituent : - -Le premier dioptre $DS_1$ forme de l'objet ponctuel initial $B$ une image ponctuelle $B_{int}$. Cette image intermédiaire $B_{int}$ devient objet pour le second dioptre $DS_2$ qui en forme une image ponctuelle finale $B'$. Le point $B'$ est donc l'image ponctuelle de l'objet ponctuel $B'$ par le système optique centré $SO$ formé par les deux dioptres successifs $DS_1$ et $DS_2$. - -La **relation de conjugaison** genérale $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$ et l'**expression du grandissement transversal** générale $`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ des dioptres sphériques, *appliquées au* **dioptre sphérique particulier $DS_1$** donnent : - -* **$`\dfrac{n}{\overline{S_1A_{int}}}-\dfrac{n_1}{\overline{S_1A}}=\dfrac{n-n_1}{\overline{S_1C_1}}`$** (équ. 1a) - -* **$`\overline{M_T}=\dfrac{n_1\cdot\overline{S_1A_{int}}}{n\cdot\overline{S_1A}}`$** (équ. 1b) - -Je peux maintenant calculer la position du point image intermédiaire $B_{int}$. De l'équation 1a je peux calculer la valeur numérique de $\overline{S_1A_{int}}$ du point image intermédiaire $A_{int}$ (_projection orthogonale de_ $B_{int}$ _sur l'axe optique_), et de l'équation 1b la valeur numérique de l'élévation $\overline{A_{int}B_{int}}$ : - -$\overline{S_1A_{int}}=\dfrac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}} -{(n-n_1)\cdot\overline{S_1A}\;+\;n_1\cdot\overline{S_1C_1}}$ (équ. 1c) - -par définition $\overline{M_T}=\dfrac{\overline{A_{int}B_{int}}}{\overline{AB}}$$\Longrightarrow\overline{A_{int}B_{int}}=\dfrac{n_1\cdot\overline{S_1A_{int}}}{n\cdot\overline{S_1A}}\cdot\overline{AB}$ (équ. 1d) - -!!! *EXEMPLE* :   (_suite_)
-!!! poisson : $\overline{S_1A}= - 1 m$ et $\overline{AB}= 7 cm$.
-!!! $\Longrightarrow\overline{S_1A_{int}}=-\dfrac{9}{7} m$ et $\overline{A_{int}B_{int}}= +8 cm$. - -Maintenant que la lumière à traversée le premier dioptre $DS_1$, est s'apprête à, franchir le second dioptre $DS_2$. Du point de vue du $DS_2$, les rayons incidents initiés par le point objet $B$ semblent parvenir du point intermédiaire $B_{int}$. Ce point $B_{int}$, point image pour le dioptre $DS_1$ devient point objet pour le dioptre $DS_2$. - -La **relation de conjugaison** et l'**expression du grandissement transversal** générales des dioptres sphériques, *appliquées au* **dioptre sphérique particulier $DS_2$** donnent : - -* **$`\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n}{\overline{S_2A_{int}}}=\dfrac{n_2-n}{\overline{S_2C_2}}`$** (équ. 2a) - -* **$`\overline{M_T}=\dfrac{n\cdot\overline{S_2A'}}{n_2\cdot\overline{S_2A_{int}}}`$** (équ. 2b) - -Je peux calculer la valeur numérique $\overline{S_2A_{int}}$ en remarquant que - -$\overline{S_2A_{int}}=\overline{S_1S_2}+\overline{S_1A_{int}}=\overline{S_1A_{int}}-\overline{S_1S_2}$. - -En injectant enfin $\overline{S_2A_{int}}$ et $\overline{A_{int}B_{int}}$ dans les équations 2a et 2b, je détermine les valeurs numériques $\overline{S_2A'}$ et $\overline{A'B'}$ donnant la position de l'image finale $B'$. - -!!! *EXEMPLE* :   (_suite_)
-!!! $\overline{S_2A_{int}}=-\frac{9}{7}-0.005=-1.334\:m$
-!!! $\overline{S_2A'}=-1.605\:m$
-!!! $\overline{A'B'}=+14.4\:cm$ -!!! -!!! Attention, je dois donner une réponse pertinente au problème ! L'image finale n'est pas destinée à se former sur un capteur pour son enregistrement. Ce n'est pas la position de l'image par rapport au hublot ni sa taille qui sont déterminantes, mais la distance $\overline{A'O}$de l'image à l'oeil $O$ du scientifique, et l'angle apparent $\alpha$ sous lequel il voit le poisson. -!!! -!!! Donnée supplémentaire : l'oeil O du scientifique est situé à 10cm de la surface du hublot : $\overline{OA'}=-1.615\:m$ : donc l'image est situé devant l'oeil, le scientifique pourra la voir. De plus cette image est située plus loin que le puctum proximum, donc le scientifique pourra la voir nette.
-!!! Je sais que l'image est droite, je vais travailler maintenant pour simplifier en valeurs non algébriques :
-!!! $\alpha=arctg\left(\frac{A'B'}{A'O}\right)$$=arctg\left(\frac{0.144}{1.610}\right)$$=arctan(0.089)=0.089\:rad=5°$
-!!! Je vois bien ici que la valeur de l'angle apparent __exprimée en radian__ est quasi identique à la valeur de sa tangente, ce qui est une condition pour considérer l'angle petit. Cela valide les conditions de Gauss considérées pour cette observation, et donc justifie l'étude de ce problème dans le cadre de l'optique paraxiale. - - -##### Calcul général de l'image finale - -Si je devais chercher les deux équations qui donnent directement la position $B'$ en fonction de la position de $B$, le calcul (qui n'est pas à faire) serait fastidieux et le résultat complexe. Il donnerait : - -$\overline{S_2A'}=\frac{ n_2 \cdot\overline{S_2C_2} \cdot\left(\frac{ n \cdot \overline{S_1C_1} \cdot\overline{S_1A}}{(n-n_1) \cdot\overline{S_1A}+n_1 \cdot \overline{S_1C_1}}- \overline{S_1S_2}\right)}{(n_2n)\cdot\left(\frac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}}{(n-n_1)\cdot\overline{S_1A}\;+\;n_1\cdot\overline{S_1C_1}}-\overline{S_1S_2}\right)+n\cdot \overline{S_2C_2}}$ (équ.3a) - -$\overline{A'B'}=\overline{AB}\times\overline{M_{T-SO}}$, avec - -$\overline{M_{T-SO}}=\frac{n\cdot n_1\cdot \overline{S_1C_1}}{(n-n_1)\cdot\overline{S_1A}+n_1\cdot\overline{S_1C_1}}\:\times\:$ -$\frac{\overline{S_2C_2}}{(n2-n)\cdot\left(\frac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}}{(n-n_1)\cdot\overline{S_1A}+n_1\cdot\overline{S_1C_1}}-\overline{S_1S_2}\right)-n\cdot\overline{S_2C_2}}$ (équ.3b) - -Ces équations sont difficiles à établir et à retenir. Essayons au moins d'établir la relation de conjugaison de type $\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n_1}{\overline{S_1A}}=\cdot\cdot\cdot$ - -##### A la recherche d'une équation de conjugaison simple pour la lentille épaisse - -Les équations complexes 3a et 3b sont difficiles à manipuler. le plus simples est de repartir des équations (équ.1a) et (équ.2a) où les grandeurs $\dfrac{n_1}{\overline{S_1A}}$ et $\dfrac{n_2}{\overline{S_2A'}}$ apparaissent déjà. L'addition de chaque membre des équations (équ.1a) et (équ.2a) donne : - -$`\dfrac{n}{\overline{S_1A_{int}}}-\dfrac{n_1}{\overline{S_1A}}+\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n}{\overline{S_2A_{int}}}$$=\dfrac{n-n_1}{\overline{S_1C_1}}+\dfrac{n_2-n}{\overline{S_2C_2}}`$ - -En ne gardant au premier membre que les termes $\dfrac{n_1}{\overline{S_1A}}$ et $\dfrac{n_2}{\overline{S_2A'}}$ j'obtiens l'équation : - -$\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n_1}{\overline{S_1A}}$$ -\:=\:\dfrac{n-n_1}{\overline{S_1C_1}}+\dfrac{n_2-n}{\overline{S_2C_2}}+\dfrac{n}{\overline{S_2A_{int}}}-\dfrac{n}{\overline{S_1A_{int}}}$ - -Cette équation relativement simple semble convenir, mais c'est une *équation inutile*. Certes le membre de gauche ne contient que les informations sur les conditions d'utilisation de la lentille épaisse (_les indices_ $n_1$ _et_ $n_2$ _des milieux de part et d'autre de la lentille_) et de la position de l'objet $B$ (_la distance algébrique_ $\overline{S_1A_{int}}$_, position du point_ $A$ _par rapport au sommet_ $S_1$ _du premier dioptre rencontré par la lumière_). Mais pour être utile, le membre de droite ne devrait contenir que des grandeurs caractérisant la lentille épaisse elle-même : -* $n-n_1$ et $n-n_2$ : indices de réfraction différentiels entre matériau constituant la lentille et les milieux extérieurs. -* $\overline{S_1C_1}$ et $\overline{S_2C_2}$ : rayons de courbures algébriques des faces d'entrée et de sortie de la lentille. -* $\overline{S_1S_2}$ épaisseur de la lentille. -Or ce terme de droite contient aussi les distances algébriques $\overline{S_1A_{int}}$ et $\overline{S_2A_{int}}$ qui concernent la position de l'image intermédiaire $A_{int}$, or cette position dépend elle-même de la position du point objet initial $A$. - -Lorsque les **positions des points objets et images** sont **précisées par leur distances par rapport aux sommets $S_1$ et $S_2$**, frontières physiques de la lentille épaisse avec son axe optique, il n'existe **pas d'équation simple** séparant dans un terme de gauche les conditions d'utilisation de la lentille et de positions de l'objet et de l'image, et dans un terme de droite les seules caractéristiques des deux dioptres formant la lentille épaisse. Une formule de conjugaison générale pour tout système centré sera établie au chapitre "Etude des systèmes centrés". - -!! *POUR ALLER PLUS LOIN* :
-!! -!! Tout système centré, qu'ils soit composé de deux ou de plusieurs éléments simples centrés sur un même axe optique, pourra être caractérisé par deux plans virtuels, appelés : -!! * plan principal objet (P) de point d'intersection avec l'axe optique $H$ -!! * plan principal image (P') de point d'intersection avec l'axe optique $H'$ -!! qui remplaceront respectivement la face d'entrée de la première lentille ou miroir du système par la lumière, et la face de sortie de la dernière lentille ou du dernier miroir). -!! -!! Ces plans permettront de définir une relation de conjugaison simple de forme connue : -!! -!! $\frac{n'}{\overline{H'A'}}-\frac{n}{\overline{HA}}=V$ (avec V, vergence du système dans son environnement) -!! -!! et serviront de référence au positionnement des points focaux objet F et image F' du système dans son environnement : -!! -!! $V=-\frac{n}{\overline{HF}}=\frac{n'}{\overline{H'F'}}$ -!! -!! Contrairement à $\overline{S_1S_2}$ toujours positive qu'elle remplacera, la distance algébrique $\overline{H_1H_2}$ pourra être positive ou négative. - - -### Lentille mince - -Une lentille est dite **lentille mince** lorsque la *distance entre les deux sommets $S_1$ et $S_2$* de la lentille est *petite devant chacun des rayons de courbures* des deux faces. - -Cette condition, $\overline{S_1S_2} \ll \overline{S_1C_1}$ et $\overline{S_1S_2} \ll \overline{S_2C_2}$ me permet de faire l'approximation $\overline{S_1S_2}\rightarrow 0$ dans les diverses équations de la lentille épaisse, considérant ainsi que les sommets $S_1$ et $S_2$ se confondent en un même point O. - -$\overline{S_1S_2}\rightarrow 0 \:\longrightarrow\:S_1=S_2=O$$\:\longrightarrow\:\overline{S_1C_1}\rightarrow\overline{OC_1}$ et $\overline{S_2C_2}\rightarrow \overline{OC_2}$ - -##### Lentille mince en milieux extrêmes différents - -Je peux toujours considérer la lentille mince comme un système optique composé de deux dioptres sphériques centrés, et donc reprendre l'étude initiale de la lentille épaisse, mais avec l' approximation suivante : $S_1=S_2=O$ - - -##### Lentille mince plongé dans un même milieu - -Je peux toujours considérer la lentille mince comme un système optique composé de deux dioptres sphériques centrés, et donc reprendre l'étude initiale de la lentille épaisse, mais avec les approximations suivantes : $S_1=S_2=O$ et $n_1=n_2=n_{ext}$ - - -##### Lentille mince utilisés dans l'air ou dans le vide - -Ce sont les conditions d'utilisation des lentilles minces dans la très grande majorité des cas. Je reprendre l'étude initiale de la lentille épaisse avec les approximations suivantes : - -$S_1=S_2=O$ et $n_1=n_2=1$ - -###### Pour le **premier dioptre** : - -La relation de conjugaison genérale $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$ et l'expression du grandissement transversal générale $`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ des dioptres sphériques, donnent : - -* **$`\dfrac{n}{\overline{OA_{int}}}-\dfrac{1}{\overline{OA}}=\dfrac{n-1}{\overline{S_1C_1}}`$** (équ. 4a) - -* **$`\overline{M_{T-DS1}}=\dfrac{1\cdot\overline{OA_{int}}}{n\cdot\overline{OA}}`$** (équ. 4b) - -###### Pour le **second dioptre** : - -Ces mêmes expressions générales donnent : - -* **$`\dfrac{1}{\overline{OA'}}-\dfrac{n}{\overline{OA_{int}}}=\dfrac{1-n}{\overline{S_2C_2}}`$** (équ. 5a) - -* **$`\overline{M_{T-DS2}}=\dfrac{n\cdot\overline{OA'}}{1\cdot\overline{OA_{int}}}`$** (équ. 5b) - -Additionner entre elles les équations 1a et 2a donne: - - -$\dfrac{n}{\overline{OA_{int}}}-\dfrac{1}{\overline{OA}}+\dfrac{1}{\overline{OA'}}-\dfrac{n}{\overline{OA_{int}}}=\dfrac{n-1}{\overline{S_1C_1}}+\dfrac{1-n}{\overline{S_2C_2}}$ - -soit - -**$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=(n-1)\cdot\left(\dfrac{1}{\overline{S_1C_1}}-\dfrac{1}{\overline{S_2C_2}}\right)$** (équ. 6) - -**Cette équation est vraiment utile** : -* au premier membre ne se situent que les positions des points objet et image conjugués $A$ et $A'$ sur l'axe optique relativement au point O qui positionne la lentille mince sur cet axe. -* au second membre n'intervient que ce qui caractérise la lentille mince (_ses deux rayons algébriques de courbure_ $\overline{S_1C_1}$, $\overline{S_2C_2}$ et l'indice de réfraction $n$ du matériau qui la compose (_la position du point image intermédiaire_ $A_{int}$ _de_ $A$ _par le premier dioptre n'intervient pas_) donc ce second membre est indépendant de la position du point-objet $A$ initial. Dans ces conditions, le premier membre de cette équation définit la vergence de la lentille mince. - -Connaissant les caractéristiques physiques ($\overline{S_1C_1}$, $\overline{S_2C_2}$, $n$) de la lentille, cette équation xxx *peut servir à calculer la position de tout point objet $A$ ou image $A'$ connaissant la position de son point conjugué* , c'est l'**équation de conjugaison avec origine au centre O de la lentille mince** lorsque les milieux de chaque côté de la lentille ont un même indice de réfraction $n=1$. On l'appelle *relation de conjugaison de Descartes*. - -Les expressions des distances focales objet et image de la lentille en fonction de ses caractéristiques physiques s'obtiennent facilement. - -* distance focale image $\overline{OF'}$ : $\left(|\overline{OA}|\rightarrow\infty\Rightarrow A'=F'\right)$ - -$(équ. 7)\Longrightarrow\overline{OF'}=\dfrac{\overline{S_1C_1}\cdot\overline{S_2C_2}}{(n-1)\cdot(\overline{S_2C_2}-\overline{S1_C1})}$. - -* distance focale objet $\overline{OF}$ : $\left(|\overline{OA'}|\rightarrow\infty\Rightarrow A=F\right)$ - -$(équ. 8)\Longrightarrow\overline{OF}=\dfrac{\overline{S_1C_1}\cdot\overline{S_2C_2}}{(n-1)\cdot(\overline{S_1C_1}-\overline{S_2C_2})}$. - -Je peux réécrire la vergence (premier membre de l'équation de conjugaison) en fonction des distances focales objet et image, et je reconnais bien l'**équation de conjugaison de la lentille mince plongée un milieu d'indice de réfraction 1** apprise au niveau "collines" : - -**$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$** (équ. 9a) - -! *REMARQUE * :
-! Du point de vue de l'optique paraxiale, les plans focaux objet et image sont situés à même distance de part et d'autre de la lentille mince ($\overline(OF)=-\overline(OF')$). La lentille mince est donc optiquement symétrique. Elle est caractérisée par sa distance focale image $\overline(OF')$. Cette distance focale $\overline(OF')$ est algébrique, une distance focale négative indique une lentille mince divergente, ne distance focale positive indique une lentille mince convergente, - - - - -!! *POUR ALLER PLUS LOIN* :
-!! Du point de vue de l'optique paraxiale, toutes les lentilles minces caractérisées par une même distance focale $\overline(OF')$ sont optiquement symétrique et équivalentes, qu'elles soient physiquement symétriques ou non, et quelques soient leurs matériaux constitutifs. Ainsi les lentilles sphériques suivantes : -!! 1. biconvexe symétrique en verre crown (PSK) : $n=1.63$ , $\overline{S_1C_1}=+50\;cm$ , $\overline{S_2C_2}=-50\;cm$. -!! 2. biconvexe symétrique en verre flint (BaF) : $n=1.63$ , $\overline{S_1C_1}=+50\;cm$ , $\overline{S_2C_2}=-50\;cm$. -!! 3. plan-convexe en verre flint (BaF) : $n=1.63$, $\overline{S_1C_1}=19.3\;cm$ côté convexe. -!! -!! ont une même distance focale image $\overline(OF')=+30.5\;cm$. -!! -!! Pourtant leurs comportements optiques réels seront légèrement différents. L'écart entre le comportement optique réel et le comportement décrit par l'optique paraxiale est dit lié aux aberrations. -!! -!! * Aberration chromatique : L'indice de réfraction varie légèrement avec la longueur d'onde dans le domaine visible (_selon les types de matériaux, la variation de l'indice de réfraction limité au domaine visible est modélisé par différentes fonctions de la longueur d'onde : fonctions de Cauchy, de Briot, de Sellmeier_). Ainsi, selon la loi de Snell-Descartes, un même rayon lumineux polychromatique incident sur un dioptre avec un angle non nul donnera lieu à différents rayons (_spectre de raies_) ou un faisceau de rayons (_spectre continu_) émergents monochromatiques : c'est le phénomène de dispersion chromatique. Ainsi la position des plans focaux objet et image varient continuement sur une petite plage de distance en fonction de la longueur donde. Même dans des conditions de Gauss idéalement réalisées, un point objet diffusant une lumière blanche (de spectre continu) ne donnera pas un point image blanc, mais une petite étenddue colorée aux couleurs de l'arce-en-ciel. Ce phénomène de dispersion est bien connu dans le cas d'un prisme qui décompose la lumière incidente en un faisceau coloré, mais ce phénomène est aussi présent lorsque la lumière traverse une lentille (_même si le résultat est moins accentué grâce à sa forme_). C'est le nombre d'Abbe qui caractérise ce phénomène de dispersion chromatique : plus il est petit plus le phénomène de dispersion est important.
-!! Dans l'exemple, les lentilles 1 et 2 ont mêmes rayons de courbure et un même indice de réfraction, mais le lentille en verre flint (BaF) présentera une aberration chromatique beaucoup plus importante que la lentille en verre crown (PSK). -!! -!! * L'aberration géométrique : xxx.
-!! Pour une lentille plan-convexe, l'aberration géométrique sera différente selon le sens de traversée de la lentille par la lumière. Les lentilles 2 et 3 sont réalisées dans un même verre et sont caractérisées par une même distance focale image, elles se comportent de façons identiques selon l'optique paraxiale. Cependant, éclairées par un même faisceau monochromatique (_pour éviter l'aberration chromatique_) sous incidence normale, c'est la lentille plan-convexe utilisée avec la lumière incidente - -Le grandissement transversal de la lentille mince est le produit des grandissements transversaux de chacun des deux dioptres qui composent la lentille mince. En effet : - -$M_T =\dfrac{\overline{A'B'}}{\overline{AB}}=\dfrac{\overline{A_{int}B_{int}}}{\overline{AB}}\cdot\dfrac{\overline{A'B'}}{\overline{A_{int}B_{int}}}=M_{T-DS1}\cdot M_{T-DS2}$ - -Le calcul de son expression : - -$M_{T-DS1}\cdot M_{T-DS2}$$=\dfrac{1\cdot\overline{OA_{int}}}{n\cdot\overline{OA}}\times\dfrac{n\cdot\overline{OA'}}{1\cdot\overline{OA_{int}}}$ - -se simplifie en : - -**$M_{T-thinlens}=\dfrac{\overline{OA'}}{\overline{OA}}$** (équ. 9b) - -Les équations 9a et 9b prennent le point O, centre de la lentille mince, pour référence des distances algébriques $\overline{OA}$, $\overline{OA'}$, et permettent de calculer les distances focales objet $\overline{OF}$ et image $\overline{OF'}$, et donc de postionner les points focaux $F$ et $F'$ de la lentille mince. - -Si c'est points sont déjà connus, alors je peux déduire une autre formule de conjugaison et une autre expression du grandissement transversal en prenant les points focaux $F$ et $F'$ pour références des distances algébriques : - -$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$ - -Je peux par exemple multiplier chaque membre de l'équation par $\overline{OA}$ - -$\dfrac{\overline{OA}}{\overline{OA'}}-1=\dfrac{\overline{OA}}{\overline{OF'}}$ - -Puis réduire au même dénominateur le membre de gauche - -$\dfrac{\overline{OA}-\overline{OA'}}{\overline{OA'}}=\dfrac{\overline{OA}}{\overline{OF'}}$ - -Je fais le produit en croix - -$\overline{OA'}\cdot\overline{OA}=(\overline{OA}-\overline{OA'})\cdot\overline{OF'}$ - -Je fais apparaître $\overline{FA}$ et $\overline{F'A'}$ - -$(\overline{OF'}+\overline{F'A'})\cdot(\overline{OF}+\overline{FA})$$=[(\overline{OF}+\overline{FA})-(\overline{OF'}+\overline{F'A'})]\cdot\overline{OF'}$ - -Je ne garde par exemple que la distance focale image en remplaçant $\overline{OF}$ par $-\overline{OF'}$ - -$(\overline{OF'}+\overline{F'A'})\cdot(-\overline{OF'}+\overline{FA})$$=(-\overline{OF'}+\overline{FA}-\overline{OF'}-\overline{F'A'})\cdot\overline{OF'}$ - -J'effectue les produits - -$-\overline{OF'}^2+\overline{OF'}\cdot\overline{FA}-\overline{OF'}\cdot\overline{F'A'}+\overline{FA}\cdot\overline{F'A'}$$=-\overline{OF'}^2+\overline{OF'}\cdot\overline{FA}-\overline{OF'}^2-\overline{OF'}\cdot\overline{F'A'}$ - -et je simplifie - -**$\overline{FA}\cdot\overline{F'A'}=-\overline{OF'}^2$** - -**Cette équation est vraiment utile** : -* au premier membre ne se situent que les positions des points objet et image conjugués $A$ et $A'$ sur l'axe optique relativement aux foyers objet $F$ et image $F'$ de la lentille mince avec de chaque côté un milieu d'indice de réfraction $n=1$. -* au second membre n'intervient que ce qui caractérise la lentille mince dans ces conditions d'utilisation (_ses distances algébriques _ $\overline{OF}$ et $\overline{OF'}$ , positions des points focaux objet et image par rapport au point O). - -Connaissant la distance focale image $\overline{OF' }$de la lentille (_attention, comme toute distance en optique géométrique, cette distance est algébrique_), cette équation xxx *peut servir à calculer la position de tout point objet $A$ ou image $A'$ connaissant la position de son point conjugué* , c'est l'**équation de conjugaison de la lentille mince, avec origines aux foyers**, -lorsque les milieux de chaque côté de la lentille ont un même indice de réfraction $n=1$. On l'appelle *relation de conjugaison de Newton*. - - - - - - - - - - - - - - - - - - - - - diff --git a/04.lens/01.lens-main/textbook.fr.md b/04.lens/01.lens-main/textbook.fr.md deleted file mode 100644 index 08fc6bbc6..000000000 --- a/04.lens/01.lens-main/textbook.fr.md +++ /dev/null @@ -1,304 +0,0 @@ ---- -title: 'nouveau cours : principal' ---- - -### Classification des lentilles - -A simple lens is a volume made with a transparent substance of refractive index $n$, that present a symetry of revolution around an axis called the optical axis of the lens. This volume is bound by two polished surfaces that can be both curved, or one curved and the other plane. The curved surfaces which have to - -### Lentille épaisse : 2 dioptres sphériques centrés successifs. - -! Dans la *cadre de m3p2, (UNAL-Manizales?, UdG?,) INSA-Toulouse*, les résultats de ce chapitre "Lentille épaisse" ne sont pas à mémoriser ni connaître. Par contre, *comprendre le raisonnement* est important. - -##### Le système centré "lentille épaisse" - -Une **lentille épaisse** est un *système optique centré* formé de *deux dioptres sphériques séparant le verre constitutif de la lentille d'indice de réfraction $n$*. - -Nous allons mener l'**étude du cas général** où les *milieux de part et d'autres de la lentille sont différents*, et pour un sens de propagation de la lumière à travers la lentille. -!!! *EXEMPLE* : la lentille peut être utilisé comme *hublot grossissant d'un bathyscaphe*, à travers lequel *un humain dans l'air observe un poisson dans l'eau*. - -Le premier dioptre $DS_1$ traversé par la lumière a pour sommet $S_1$ et pour centre de courbure $C_1$, et sépare le milieu (_où se propage la lumière incidente_) d'indice de réfraction $n1$ du milieu situé entre les deux dioptres d'indice de réfraction $n$. Le deuxième dioptre $DS_2$ traversé par la lumière à la suite du premier sépare donc le milieu intermédiaire d'indice de réfraction $n$ du milieu final d'indice de réfraction $n_2$, et a pour sommet $S_2$ et pour centre de courbure $C_2$. L'espacement entre les deux dioptres est caractérisé par la distance algébrique $\overline{S_1S_2}$. L'orientation de l'axe optique étant choisie positive selon le sens de propagation de la lumière, la distance algébrique $\overline{S_1S_2}$ est positive ($\overline{S_1S_2}>0$. - -Le **système centré $SO$** que constitue la lentille épaisse dans son environnement (_ses deux milieux de part et d'autre_) et ses conditions d'utilisation (_le sens considéré de propagation de la lumière à travers la lentille_) est donc **caractérisé par** : -* l'*ordre de traversée* de ces deux dioptres par la lumière, de $DS_1$ vers $DS_2$. -* les *trois indices de réfraction $n_1$, $n$ et $n_2$* caractérisant respectivement le milieu de propagation de la lumière incidente sur le premier dioptre du système, le milieu intermédiaire commun aux deux dioptres et le milieu de propagation de la lumière transmise par le système. -* les *rayons algébriques $\overline{S_1C_1}$ et $\overline{S_2C_2}$* des deux dioptres sphériques $DS_1$ et $DS_2$. -* la *distance $\overline{S_1S_2}$* qui spécifie l'espacement entre les deux dioptres. - -! *IMPORTANT* : si la *lentille* est *plan-convexe ou plan concave*, il suffira de reprendre les diverses expressions mathématiques trouvées et *faire tendre le rayon de courbure concerné (_faire attention au sens de propagation de la lumière_) vers l'infini* ($\overline{SC}\rightarrow\infty$). Nous retrouverions (_certes d'une façon bien compliquée_) les résultats pour une paroi transparente regardée sous incidence normale et dans les conditions de Gauss, en faisant tendre les rayons de deux dioptres vers l'infini ($\overline{S_1C_1}\rightarrow\infty$ et $\overline{S_2C_2}\rightarrow\infty$). - -Dans le cadre de l'optique paraxiale (_optique Gaussienne_), ce système optique est quasi-stigmatique et il donne les rayons de lumière issus du point objet $B$ un point image unique $B'$. La **position du point objet $B$ par rapport au système optique** est *déterminée par* : -* la *distance algébrique* **$\overline{AS_1}$** entre la projection $A$ du point objet $B$ sur l'axe optique et le sommet $S_1$ du premier dioptre $DS_1$. -* l'*élévation algébrique* **$\overline{AB}$** du point B par rapport à l'axe optique (_en choisissant préalablement un sens positif d'orientation commun à toute droite perpendiculaire à l'axe optique_). - -##### Calcul de l'image finale d'un objet initial de position connue - -La position du point $B$ est connue, grâce aux valeurs numériques de $\overline{AS_1}$ et $\overline{AB}$. - -!!! *EXEMPLE* : je reprends l'exemple du scientifique qui observe un poisson des abymes à travers le hublot grossissant d'un bathyscaphe. Cela donne : -!!! * milieux extrêmes : $n_1$=$n_{eau}=4/3$ et $n_2$=$n_{air}=1$ -!!! * hublot lenticulaire : $n$=$n_{verre}=3/2$, $\overline{S_1C_1}=1 m$, $\overline{S_2C_2}= -1 m$ et $\overline{S_1S_2}=5 cm$, - -Pour calculer la position de l'image finale $B'$, je décompose l'action du système optique en considérant les actions successives des deux dioptres qui le constituent : - -Le premier dioptre $DS_1$ forme de l'objet ponctuel initial $B$ une image ponctuelle $B_{int}$. Cette image intermédiaire $B_{int}$ devient objet pour le second dioptre $DS_2$ qui en forme une image ponctuelle finale $B'$. Le point $B'$ est donc l'image ponctuelle de l'objet ponctuel $B'$ par le système optique centré $SO$ formé par les deux dioptres successifs $DS_1$ et $DS_2$. - -La **relation de conjugaison** genérale $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$ et l'**expression du grandissement transversal** générale $`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ des dioptres sphériques, *appliquées au* **dioptre sphérique particulier $DS_1$** donnent : - -* **$`\dfrac{n}{\overline{S_1A_{int}}}-\dfrac{n_1}{\overline{S_1A}}=\dfrac{n-n_1}{\overline{S_1C_1}}`$** (équ. 1a) - -* **$`\overline{M_T}=\dfrac{n_1\cdot\overline{S_1A_{int}}}{n\cdot\overline{S_1A}}`$** (équ. 1b) - -Je peux maintenant calculer la position du point image intermédiaire $B_{int}$. De l'équation 1a je peux calculer la valeur numérique de $\overline{S_1A_{int}}$ du point image intermédiaire $A_{int}$ (_projection orthogonale de_ $B_{int}$ _sur l'axe optique_), et de l'équation 1b la valeur numérique de l'élévation $\overline{A_{int}B_{int}}$ : - -$\overline{S_1A_{int}}=\dfrac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}} -{(n-n_1)\cdot\overline{S_1A}\;+\;n_1\cdot\overline{S_1C_1}}$ (équ. 1c) - -par définition $\overline{M_T}=\dfrac{\overline{A_{int}B_{int}}}{\overline{AB}}$$\Longrightarrow\overline{A_{int}B_{int}}=\dfrac{n_1\cdot\overline{S_1A_{int}}}{n\cdot\overline{S_1A}}\cdot\overline{AB}$ (équ. 1d) - -!!! *EXEMPLE* :   (_suite_)
-!!! poisson : $\overline{S_1A}= - 1 m$ et $\overline{AB}= 7 cm$.
-!!! $\Longrightarrow\overline{S_1A_{int}}=-\dfrac{9}{7} m$ et $\overline{A_{int}B_{int}}= +8 cm$. - -Maintenant que la lumière à traversée le premier dioptre $DS_1$, est s'apprête à, franchir le second dioptre $DS_2$. Du point de vue du $DS_2$, les rayons incidents initiés par le point objet $B$ semblent parvenir du point intermédiaire $B_{int}$. Ce point $B_{int}$, point image pour le dioptre $DS_1$ devient point objet pour le dioptre $DS_2$. - -La **relation de conjugaison** et l'**expression du grandissement transversal** générales des dioptres sphériques, *appliquées au* **dioptre sphérique particulier $DS_2$** donnent : - -* **$`\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n}{\overline{S_2A_{int}}}=\dfrac{n_2-n}{\overline{S_2C_2}}`$** (équ. 2a) - -* **$`\overline{M_T}=\dfrac{n\cdot\overline{S_2A'}}{n_2\cdot\overline{S_2A_{int}}}`$** (équ. 2b) - -Je peux calculer la valeur numérique $\overline{S_2A_{int}}$ en remarquant que - -$\overline{S_2A_{int}}=\overline{S_1S_2}+\overline{S_1A_{int}}=\overline{S_1A_{int}}-\overline{S_1S_2}$. - -En injectant enfin $\overline{S_2A_{int}}$ et $\overline{A_{int}B_{int}}$ dans les équations 2a et 2b, je détermine les valeurs numériques $\overline{S_2A'}$ et $\overline{A'B'}$ donnant la position de l'image finale $B'$. - -!!! *EXEMPLE* :   (_suite_)
-!!! $\overline{S_2A_{int}}=-\frac{9}{7}-0.005=-1.334\:m$
-!!! $\overline{S_2A'}=-1.605\:m$
-!!! $\overline{A'B'}=+14.4\:cm$ -!!! -!!! Attention, je dois donner une réponse pertinente au problème ! L'image finale n'est pas destinée à se former sur un capteur pour son enregistrement. Ce n'est pas la position de l'image par rapport au hublot ni sa taille qui sont déterminantes, mais la distance $\overline{A'O}$de l'image à l'oeil $O$ du scientifique, et l'angle apparent $\alpha$ sous lequel il voit le poisson. -!!! -!!! Donnée supplémentaire : l'oeil O du scientifique est situé à 10cm de la surface du hublot : $\overline{OA'}=-1.615\:m$ : donc l'image est situé devant l'oeil, le scientifique pourra la voir. De plus cette image est située plus loin que le puctum proximum, donc le scientifique pourra la voir nette.
-!!! Je sais que l'image est droite, je vais travailler maintenant pour simplifier en valeurs non algébriques :
-!!! $\alpha=arctg\left(\frac{A'B'}{A'O}\right)$$=arctg\left(\frac{0.144}{1.610}\right)$$=arctan(0.089)=0.089\:rad=5°$
-!!! Je vois bien ici que la valeur de l'angle apparent __exprimée en radian__ est quasi identique à la valeur de sa tangente, ce qui est une condition pour considérer l'angle petit. Cela valide les conditions de Gauss considérées pour cette observation, et donc justifie l'étude de ce problème dans le cadre de l'optique paraxiale. - - -##### Calcul général de l'image finale - -Si je devais chercher les deux équations qui donnent directement la position $B'$ en fonction de la position de $B$, le calcul (qui n'est pas à faire) serait fastidieux et le résultat complexe. Il donnerait : - -$\overline{S_2A'}=\frac{ n_2 \cdot\overline{S_2C_2} \cdot\left(\frac{ n \cdot \overline{S_1C_1} \cdot\overline{S_1A}}{(n-n_1) \cdot\overline{S_1A}+n_1 \cdot \overline{S_1C_1}}- \overline{S_1S_2}\right)}{(n_2n)\cdot\left(\frac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}}{(n-n_1)\cdot\overline{S_1A}\;+\;n_1\cdot\overline{S_1C_1}}-\overline{S_1S_2}\right)+n\cdot \overline{S_2C_2}}$ (équ.3a) - -$\overline{A'B'}=\overline{AB}\times\overline{M_{T-SO}}$, avec - -$\overline{M_{T-SO}}=\frac{n\cdot n_1\cdot \overline{S_1C_1}}{(n-n_1)\cdot\overline{S_1A}+n_1\cdot\overline{S_1C_1}}\:\times\:$ -$\frac{\overline{S_2C_2}}{(n2-n)\cdot\left(\frac{n\cdot\overline{S_1C_1}\cdot\overline{S_1A}}{(n-n_1)\cdot\overline{S_1A}+n_1\cdot\overline{S_1C_1}}-\overline{S_1S_2}\right)-n\cdot\overline{S_2C_2}}$ (équ.3b) - -Ces équations sont difficiles à établir et à retenir. Essayons au moins d'établir la relation de conjugaison de type $\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n_1}{\overline{S_1A}}=\cdot\cdot\cdot$ - -##### A la recherche d'une équation de conjugaison simple pour la lentille épaisse - -Les équations complexes 3a et 3b sont difficiles à manipuler. le plus simples est de repartir des équations (équ.1a) et (équ.2a) où les grandeurs $\dfrac{n_1}{\overline{S_1A}}$ et $\dfrac{n_2}{\overline{S_2A'}}$ apparaissent déjà. L'addition de chaque membre des équations (équ.1a) et (équ.2a) donne : - -$`\dfrac{n}{\overline{S_1A_{int}}}-\dfrac{n_1}{\overline{S_1A}}+\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n}{\overline{S_2A_{int}}}$$=\dfrac{n-n_1}{\overline{S_1C_1}}+\dfrac{n_2-n}{\overline{S_2C_2}}`$ - -En ne gardant au premier membre que les termes $\dfrac{n_1}{\overline{S_1A}}$ et $\dfrac{n_2}{\overline{S_2A'}}$ j'obtiens l'équation : - -$\dfrac{n_2}{\overline{S_2A'}}-\dfrac{n_1}{\overline{S_1A}}$$ -\:=\:\dfrac{n-n_1}{\overline{S_1C_1}}+\dfrac{n_2-n}{\overline{S_2C_2}}+\dfrac{n}{\overline{S_2A_{int}}}-\dfrac{n}{\overline{S_1A_{int}}}$ - -Cette équation relativement simple semble convenir, mais c'est une *équation inutile*. Certes le membre de gauche ne contient que les informations sur les conditions d'utilisation de la lentille épaisse (_les indices_ $n_1$ _et_ $n_2$ _des milieux de part et d'autre de la lentille_) et de la position de l'objet $B$ (_la distance algébrique_ $\overline{S_1A_{int}}$_, position du point_ $A$ _par rapport au sommet_ $S_1$ _du premier dioptre rencontré par la lumière_). Mais pour être utile, le membre de droite ne devrait contenir que des grandeurs caractérisant la lentille épaisse elle-même : -* $n-n_1$ et $n-n_2$ : indices de réfraction différentiels entre matériau constituant la lentille et les milieux extérieurs. -* $\overline{S_1C_1}$ et $\overline{S_2C_2}$ : rayons de courbures algébriques des faces d'entrée et de sortie de la lentille. -* $\overline{S_1S_2}$ épaisseur de la lentille. -Or ce terme de droite contient aussi les distances algébriques $\overline{S_1A_{int}}$ et $\overline{S_2A_{int}}$ qui concernent la position de l'image intermédiaire $A_{int}$, or cette position dépend elle-même de la position du point objet initial $A$. - -Lorsque les **positions des points objets et images** sont **précisées par leur distances par rapport aux sommets $S_1$ et $S_2$**, frontières physiques de la lentille épaisse avec son axe optique, il n'existe **pas d'équation simple** séparant dans un terme de gauche les conditions d'utilisation de la lentille et de positions de l'objet et de l'image, et dans un terme de droite les seules caractéristiques des deux dioptres formant la lentille épaisse. Une formule de conjugaison générale pour tout système centré sera établie au chapitre "Etude des systèmes centrés". - -!! *POUR ALLER PLUS LOIN* :
-!! -!! Tout système centré, qu'ils soit composé de deux ou de plusieurs éléments simples centrés sur un même axe optique, pourra être caractérisé par deux plans virtuels, appelés : -!! * plan principal objet (P) de point d'intersection avec l'axe optique $H$ -!! * plan principal image (P') de point d'intersection avec l'axe optique $H'$ -!! qui remplaceront respectivement la face d'entrée de la première lentille ou miroir du système par la lumière, et la face de sortie de la dernière lentille ou du dernier miroir). -!! -!! Ces plans permettront de définir une relation de conjugaison simple de forme connue : -!! -!! $\frac{n'}{\overline{H'A'}}-\frac{n}{\overline{HA}}=V$ (avec V, vergence du système dans son environnement) -!! -!! et serviront de référence au positionnement des points focaux objet F et image F' du système dans son environnement : -!! -!! $V=-\frac{n}{\overline{HF}}=\frac{n'}{\overline{H'F'}}$ -!! -!! Contrairement à $\overline{S_1S_2}$ toujours positive qu'elle remplacera, la distance algébrique $\overline{H_1H_2}$ pourra être positive ou négative. - - -### Lentille mince - -Une lentille est dite **lentille mince** lorsque la *distance entre les deux sommets $S_1$ et $S_2$* de la lentille est *petite devant chacun des rayons de courbures* des deux faces. - -Cette condition, $\overline{S_1S_2} \ll \overline{S_1C_1}$ et $\overline{S_1S_2} \ll \overline{S_2C_2}$ me permet de faire l'approximation $\overline{S_1S_2}\rightarrow 0$ dans les diverses équations de la lentille épaisse, considérant ainsi que les sommets $S_1$ et $S_2$ se confondent en un même point O. - -$\overline{S_1S_2}\rightarrow 0 \:\longrightarrow\:S_1=S_2=O$$\:\longrightarrow\:\overline{S_1C_1}\rightarrow\overline{OC_1}$ et $\overline{S_2C_2}\rightarrow \overline{OC_2}$ - -##### Lentille mince en milieux extrêmes différents - -Je peux toujours considérer la lentille mince comme un système optique composé de deux dioptres sphériques centrés, et donc reprendre l'étude initiale de la lentille épaisse, mais avec l' approximation suivante : $S_1=S_2=O$ - - -##### Lentille mince plongé dans un même milieu - -Je peux toujours considérer la lentille mince comme un système optique composé de deux dioptres sphériques centrés, et donc reprendre l'étude initiale de la lentille épaisse, mais avec les approximations suivantes : $S_1=S_2=O$ et $n_1=n_2=n_{ext}$ - - -##### Lentille mince utilisés dans l'air ou dans le vide - -Ce sont les conditions d'utilisation des lentilles minces dans la très grande majorité des cas. Je reprendre l'étude initiale de la lentille épaisse avec les approximations suivantes : - -$S_1=S_2=O$ et $n_1=n_2=1$ - -###### Pour le **premier dioptre** : - -La relation de conjugaison genérale $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$ et l'expression du grandissement transversal générale $`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$ des dioptres sphériques, donnent : - -* **$`\dfrac{n}{\overline{OA_{int}}}-\dfrac{1}{\overline{OA}}=\dfrac{n-1}{\overline{S_1C_1}}`$** (équ. 4a) - -* **$`\overline{M_{T-DS1}}=\dfrac{1\cdot\overline{OA_{int}}}{n\cdot\overline{OA}}`$** (équ. 4b) - -###### Pour le **second dioptre** : - -Ces mêmes expressions générales donnent : - -* **$`\dfrac{1}{\overline{OA'}}-\dfrac{n}{\overline{OA_{int}}}=\dfrac{1-n}{\overline{S_2C_2}}`$** (équ. 5a) - -* **$`\overline{M_{T-DS2}}=\dfrac{n\cdot\overline{OA'}}{1\cdot\overline{OA_{int}}}`$** (équ. 5b) - -Additionner entre elles les équations 1a et 2a donne: - - -$\dfrac{n}{\overline{OA_{int}}}-\dfrac{1}{\overline{OA}}+\dfrac{1}{\overline{OA'}}-\dfrac{n}{\overline{OA_{int}}}=\dfrac{n-1}{\overline{S_1C_1}}+\dfrac{1-n}{\overline{S_2C_2}}$ - -soit - -**$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=(n-1)\cdot\left(\dfrac{1}{\overline{S_1C_1}}-\dfrac{1}{\overline{S_2C_2}}\right)$** (équ. 6) - -**Cette équation est vraiment utile** : -* au premier membre ne se situent que les positions des points objet et image conjugués $A$ et $A'$ sur l'axe optique relativement au point O qui positionne la lentille mince sur cet axe. -* au second membre n'intervient que ce qui caractérise la lentille mince (_ses deux rayons algébriques de courbure_ $\overline{S_1C_1}$, $\overline{S_2C_2}$ et l'indice de réfraction $n$ du matériau qui la compose (_la position du point image intermédiaire_ $A_{int}$ _de_ $A$ _par le premier dioptre n'intervient pas_) donc ce second membre est indépendant de la position du point-objet $A$ initial. Dans ces conditions, le premier membre de cette équation définit la vergence de la lentille mince. - -Connaissant les caractéristiques physiques ($\overline{S_1C_1}$, $\overline{S_2C_2}$, $n$) de la lentille, cette équation xxx *peut servir à calculer la position de tout point objet $A$ ou image $A'$ connaissant la position de son point conjugué* , c'est l'**équation de conjugaison avec origine au centre O de la lentille mince** lorsque les milieux de chaque côté de la lentille ont un même indice de réfraction $n=1$. On l'appelle *relation de conjugaison de Descartes*. - -Les expressions des distances focales objet et image de la lentille en fonction de ses caractéristiques physiques s'obtiennent facilement. - -* distance focale image $\overline{OF'}$ : $\left(|\overline{OA}|\rightarrow\infty\Rightarrow A'=F'\right)$ - -$(équ. 7)\Longrightarrow\overline{OF'}=\dfrac{\overline{S_1C_1}\cdot\overline{S_2C_2}}{(n-1)\cdot(\overline{S_2C_2}-\overline{S1_C1})}$. - -* distance focale objet $\overline{OF}$ : $\left(|\overline{OA'}|\rightarrow\infty\Rightarrow A=F\right)$ - -$(équ. 8)\Longrightarrow\overline{OF}=\dfrac{\overline{S_1C_1}\cdot\overline{S_2C_2}}{(n-1)\cdot(\overline{S_1C_1}-\overline{S_2C_2})}$. - -Je peux réécrire la vergence (premier membre de l'équation de conjugaison) en fonction des distances focales objet et image, et je reconnais bien l'**équation de conjugaison de la lentille mince plongée un milieu d'indice de réfraction 1** apprise au niveau "collines" : - -**$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$** (équ. 9a) - -! *REMARQUE * :
-! Du point de vue de l'optique paraxiale, les plans focaux objet et image sont situés à même distance de part et d'autre de la lentille mince ($\overline(OF)=-\overline(OF')$). La lentille mince est donc optiquement symétrique. Elle est caractérisée par sa distance focale image $\overline(OF')$. Cette distance focale $\overline(OF')$ est algébrique, une distance focale négative indique une lentille mince divergente, ne distance focale positive indique une lentille mince convergente, - - - - -!! *POUR ALLER PLUS LOIN* :
-!! Du point de vue de l'optique paraxiale, toutes les lentilles minces caractérisées par une même distance focale $\overline(OF')$ sont optiquement symétrique et équivalentes, qu'elles soient physiquement symétriques ou non, et quelques soient leurs matériaux constitutifs. Ainsi les lentilles sphériques suivantes : -!! 1. biconvexe symétrique en verre crown (PSK) : $n=1.63$ , $\overline{S_1C_1}=+50\;cm$ , $\overline{S_2C_2}=-50\;cm$. -!! 2. biconvexe symétrique en verre flint (BaF) : $n=1.63$ , $\overline{S_1C_1}=+50\;cm$ , $\overline{S_2C_2}=-50\;cm$. -!! 3. plan-convexe en verre flint (BaF) : $n=1.63$, $\overline{S_1C_1}=19.3\;cm$ côté convexe. -!! -!! ont une même distance focale image $\overline(OF')=+30.5\;cm$. -!! -!! Pourtant leurs comportements optiques réels seront légèrement différents. L'écart entre le comportement optique réel et le comportement décrit par l'optique paraxiale est dit lié aux aberrations. -!! -!! * Aberration chromatique : L'indice de réfraction varie légèrement avec la longueur d'onde dans le domaine visible (_selon les types de matériaux, la variation de l'indice de réfraction limité au domaine visible est modélisé par différentes fonctions de la longueur d'onde : fonctions de Cauchy, de Briot, de Sellmeier_). Ainsi, selon la loi de Snell-Descartes, un même rayon lumineux polychromatique incident sur un dioptre avec un angle non nul donnera lieu à différents rayons (_spectre de raies_) ou un faisceau de rayons (_spectre continu_) émergents monochromatiques : c'est le phénomène de dispersion chromatique. Ainsi la position des plans focaux objet et image varient continuement sur une petite plage de distance en fonction de la longueur donde. Même dans des conditions de Gauss idéalement réalisées, un point objet diffusant une lumière blanche (de spectre continu) ne donnera pas un point image blanc, mais une petite étenddue colorée aux couleurs de l'arce-en-ciel. Ce phénomène de dispersion est bien connu dans le cas d'un prisme qui décompose la lumière incidente en un faisceau coloré, mais ce phénomène est aussi présent lorsque la lumière traverse une lentille (_même si le résultat est moins accentué grâce à sa forme_). C'est le nombre d'Abbe qui caractérise ce phénomène de dispersion chromatique : plus il est petit plus le phénomène de dispersion est important.
-!! Dans l'exemple, les lentilles 1 et 2 ont mêmes rayons de courbure et un même indice de réfraction, mais le lentille en verre flint (BaF) présentera une aberration chromatique beaucoup plus importante que la lentille en verre crown (PSK). -!! -!! * L'aberration géométrique : xxx.
-!! Pour une lentille plan-convexe, l'aberration géométrique sera différente selon le sens de traversée de la lentille par la lumière. Les lentilles 2 et 3 sont réalisées dans un même verre et sont caractérisées par une même distance focale image, elles se comportent de façons identiques selon l'optique paraxiale. Cependant, éclairées par un même faisceau monochromatique (_pour éviter l'aberration chromatique_) sous incidence normale, c'est la lentille plan-convexe utilisée avec la lumière incidente - -Le grandissement transversal de la lentille mince est le produit des grandissements transversaux de chacun des deux dioptres qui composent la lentille mince. En effet : - -$M_T =\dfrac{\overline{A'B'}}{\overline{AB}}=\dfrac{\overline{A_{int}B_{int}}}{\overline{AB}}\cdot\dfrac{\overline{A'B'}}{\overline{A_{int}B_{int}}}=M_{T-DS1}\cdot M_{T-DS2}$ - -Le calcul de son expression : - -$M_{T-DS1}\cdot M_{T-DS2}$$=\dfrac{1\cdot\overline{OA_{int}}}{n\cdot\overline{OA}}\times\dfrac{n\cdot\overline{OA'}}{1\cdot\overline{OA_{int}}}$ - -se simplifie en : - -**$M_{T-thinlens}=\dfrac{\overline{OA'}}{\overline{OA}}$** (équ. 9b) - -Les équations 9a et 9b prennent le point O, centre de la lentille mince, pour référence des distances algébriques $\overline{OA}$, $\overline{OA'}$, et permettent de calculer les distances focales objet $\overline{OF}$ et image $\overline{OF'}$, et donc de postionner les points focaux $F$ et $F'$ de la lentille mince. - -Si c'est points sont déjà connus, alors je peux déduire une autre formule de conjugaison et une autre expression du grandissement transversal en prenant les points focaux $F$ et $F'$ pour références des distances algébriques : - -$\dfrac{1}{\overline{OA'}}-\dfrac{1}{\overline{OA}}=V=-\dfrac{1}{\overline{OF}}=\dfrac{1}{\overline{OF'}}$ - -Je peux par exemple multiplier chaque membre de l'équation par $\overline{OA}$ - -$\dfrac{\overline{OA}}{\overline{OA'}}-1=\dfrac{\overline{OA}}{\overline{OF'}}$ - -Puis réduire au même dénominateur le membre de gauche - -$\dfrac{\overline{OA}-\overline{OA'}}{\overline{OA'}}=\dfrac{\overline{OA}}{\overline{OF'}}$ - -Je fais le produit en croix - -$\overline{OA'}\cdot\overline{OA}=(\overline{OA}-\overline{OA'})\cdot\overline{OF'}$ - -Je fais apparaître $\overline{FA}$ et $\overline{F'A'}$ - -$(\overline{OF'}+\overline{F'A'})\cdot(\overline{OF}+\overline{FA})$$=[(\overline{OF}+\overline{FA})-(\overline{OF'}+\overline{F'A'})]\cdot\overline{OF'}$ - -Je ne garde par exemple que la distance focale image en remplaçant $\overline{OF}$ par $-\overline{OF'}$ - -$(\overline{OF'}+\overline{F'A'})\cdot(-\overline{OF'}+\overline{FA})$$=(-\overline{OF'}+\overline{FA}-\overline{OF'}-\overline{F'A'})\cdot\overline{OF'}$ - -J'effectue les produits - -$-\overline{OF'}^2+\overline{OF'}\cdot\overline{FA}-\overline{OF'}\cdot\overline{F'A'}+\overline{FA}\cdot\overline{F'A'}$$=-\overline{OF'}^2+\overline{OF'}\cdot\overline{FA}-\overline{OF'}^2-\overline{OF'}\cdot\overline{F'A'}$ - -et je simplifie - -**$\overline{FA}\cdot\overline{F'A'}=-\overline{OF'}^2$** - -**Cette équation est vraiment utile** : -* au premier membre ne se situent que les positions des points objet et image conjugués $A$ et $A'$ sur l'axe optique relativement aux foyers objet $F$ et image $F'$ de la lentille mince avec de chaque côté un milieu d'indice de réfraction $n=1$. -* au second membre n'intervient que ce qui caractérise la lentille mince dans ces conditions d'utilisation (_ses distances algébriques _ $\overline{OF}$ et $\overline{OF'}$ , positions des points focaux objet et image par rapport au point O). - -Connaissant la distance focale image $\overline{OF' }$de la lentille (_attention, comme toute distance en optique géométrique, cette distance est algébrique_), cette équation xxx *peut servir à calculer la position de tout point objet $A$ ou image $A'$ connaissant la position de son point conjugué* , c'est l'**équation de conjugaison de la lentille mince, avec origines aux foyers**, -lorsque les milieux de chaque côté de la lentille ont un même indice de réfraction $n=1$. On l'appelle *relation de conjugaison de Newton*. - - - - - - - - - - - - - - - - - - - - - - diff --git a/04.lens/02.lens-overview/2-centered-refracting-surfaces-1-all.gif b/04.lens/02.lens-overview/2-centered-refracting-surfaces-1-all.gif deleted file mode 100644 index 04a301524ecd51366b59411890a063131f2ba828..0000000000000000000000000000000000000000 GIT binary patch literal 0 HcmV?d00001 literal 876169 zcmZ_URZtyFuqf&U3-{n|!7aE$aEAcF-QC?;xVyW%y9Rf6_uy{9VV!^Pd(Y#Ur+Mgy zu9~i?uCH5CT7sL$&<9Eac+9NNJe%7i^ww$um(uLE69@{JC_ATG+R}Z$WT4lj zp@n(KY2g8FRk6Q$gtw*|@qO2%lg~Hlsm`rbtWzF85Uq^~^wtC{w<(o?0zl@nRdl`t|h%{@+6eMpO`2`7J7}D9*~n41@px0A#OF z&?W$X0KVJkiH(a-NK8sjNli=7$jr*l$<50zC@d;2 zDJ?6nsI024sjaJTXl!bZ_xGoQM1kz?=-X^Z@9FvF_3i!R^9u|BA`nW|=l2J}VbJM} z)fWtgp?#OhmTD**j>2WL+8S#p8jT};KkGCd2=4aug?ZE*Z!DQiV>X`1mToGY&f<1H z-x_Z!o6QpnLLic9E}t)wN}|)9Xs%c+Q!J9nk!h)1uF^1${SY1dCF7+z7)d1CTD{(6 zu~?})*;=#N<^cXX!Pv#IDpODPaK1g+R=3*=0wNO2wb${n;L0qx*^N z$-G~^J)iF{gM+I%y}e*C0ET7{M0O>)7XU|9z88q}Wo{6JCPA|wjH$M^8H8qm1CPLXOs9zvE|eh|sfdRpi~+e7m=ntjFMuNliu`QKRnr_;Y4*AA3gP9L8Z zhY3}A6k)uwrT?6-=`ra1||_=W{FYsTs&y{fC$e6z``wmq41+xEj$`qTE~(kiB$ z)7p#cF0)p|o9;&=TKhjQ$5n@a-kvV%Vn4pJu=7NU%)xS9{zW0A?CeA9Z z>lSRjZW}hRf7~`5{(iV^xs39=Z+jH^xbOJ5cf0R`v_IVUg1PuT_QNrJJPx9tyFC8J zFTQ&mCfD(K9;GLFdmd-ocX^)V%f5S_7E|+ios}bcd!1L`bb4LXPri9wHrMfbU$rNB zd0%(CcY5FS{eJVl9pd8kxf>(!^0}V^clbQa{eAU$TpH!^{kMjS-#WhT?tk@fCv2Az z{Bn?HPx*RW2BvsBZ;PXNzaHKF{&BwwK7G>Jtn00Oytx5Ke!k}c%7S}ekZwWg2&9lW z>15EXw*jd11_`86{X#tTfw=s0&}?JE0NeT?(xF*cQK^B~==xw9omu$bVQ-m6-~c6(NrcO|K>&fHIMhQ^tg#>hI>c zqg3=cNGbLBPDOqZ$uv%m-Bv#AtNP8}z$OBBP-=uFlf_b-&0uR`ERmzKA;!k1DBfyt zRPfD_L-M1D6jpkyJ=lyALdb*!eSA!uw=p5!r26}3HcL|g8xU2%Pa%vw^DRV;OgdzSz z`WV#2kEHP_GuEc`ndnmXq>d>|t%uB(04mP5arq6ErYy1b5^itl8OO|~>|BN;detI% zliY`#3m-&&WB8d;pQhZGDQc~aidnz62Zra5GKJ#^g+Tn~d^k!<1&a)PKm3P$G*=28 za=N*qEi?8G+P}u^TJhN?CSk6JhE8IcQW2>t9F+1Eaw>F6Y1x=GKZweaUNKU=qg{%) zGAamQIh8Y{KmZ1aN@cm>{jYDKxKWs)gYfa6Xnt(s^KTBeBH!Kj)QAiB{ZUf!lp*7R!gJZG>w(DHfDQe0`*W%z6KeFD5F|Q zh1ij#tdO-<;J;?nC07Pz6j{ve9d=qac{|l*I?c<>wr=Kcm0m3u+QGqYRCJD3b`fuS zS-8(kJi1KsA_vRv>0-S+R}t=4QE_*j>K#CZ3&B!^z3g}xa-`!cu+ItN9@O{rMpisf zDA&|JinqrgB3whb=!YSywZR}hZbPJM_5pOU&=7w39e}+r2pNME>Js%H%1w~LfZGM?jQy$!Jl-eCz&pR0LyE*DDN zN1DrDpm7;MwAl#(G3%{$|7t-XqywNsVrZoc)G^v8X5 ziQHjg+1nEP@f|=<0HkW|a};p>IKfARA;^Wb;Jw2>Y3gU0wYNnRrN@)*oO@P&`+6!O z{5TDvd-CG+Hl;YqUi3`pDo*ltUZ3(fqPcy-calNl-`ct4t#^tVr89h=`aHPW^Q5Q# zan+W~vAN208M66#J*3vYL!0jqwA!`fgZi;^7yAsRmg~Dkw&$+TBMltnBD{gY@n~+5 zf3^R;v%5C)0pzTEg=Gdon6C+)a*@6*gnd1hQ2U;aGY8?-_x!7O|AZN1e&3kgLuxJ) zI9K}hwv!hCK>!fA{rT%-)>&{1p$t%ulb;Bq-9~w4-N&pgk$3)+(J1&2MOT@i;P)|!37hv2mF+> zCTg{+g0W&OvnoAyYUK>JdG-LWg1pr2A#g#w`Jm~Q5IAnzch1mlPEevb2nN^o{n^IS zB9spVayYe3UiG|%^}javS#=M)3iI_^3mba&J~;^sED!VH4iAR&|7Y(1PUQ)wVRyRX zbJ@x?2WyWYWdGC}YGvX7PdzMTEo^NxBA><|2>`vS9#)hd7KH0HP!<__8deDF)x+ge z!yVPE5p}&9;jR(p((YLj9=_fhzHJ6_7_+fI4S~S*7<&OBtvW=X1gXH;V66r+o)}V= z8HKC6gTven96UB(ptfIPP;dffxxulhlGX(cz^~BQtoGRSFk3rrhtISa#5VUw8jmLp zhe;~iv^39*6Pq>cNWge(#F%Z=i>>X8jq^(sLPhv{xTkeF5KS|BWGzJhB@`Pz6h0iJ zjT`rGE#dhk!4n6VU~WGzkx20xOB3O5XJJp!k?>!EnUTi9w>gA9Lt)-R{jQH0CCM3>1?%GaLxV-C3j| z%s@~quPMLl9n8>xEVQWxw5f)g_J*{nL+ObStF|tdw%6hDspe^q)bVfbw#g@PUaxV1 zwEjWku>d^(kc?25bRvzaS z5no6fU)YfmRFV0jo>ATrQN!bj3i5A?uq_aFz{3Nv2qkEQhop|VYg@#LXLtyn1&yo& zM%IHSGP23{f~GYibSglGW1-KZw)bTj;Tg6c0)}spTrfuTPYxpE0hn;c>?^@SBfvr`tFBUy$x$EMqaQCNhKQsA z)TORUuLXA!!ELGFLW)wuZ*&Fc*ccFs1p>SP#yv~XN<(&oVm1jNL1+HEXa4@0$Lfnm zL|86He(tbYiCbCjVQFrUWy!!($uVB30bQKFw2eJauJ>y0*poZvUaEt%FHj@&;3?6= zJ=gsN^erOmE!-cTC!;JpEElKTb1b7{Eh09A*-<_PrPQij91FhWjX5~4Vd1W$urOslF@AabO)Z5H0HZ=# zg3fPMM~Ul7?qLZ{4?#QPM$uaMnMlBd5YvNQBo~v9IC%&5mRR zot)buTB4Ei*pg;5xcn)fn6tX#xUpuVk^#Gk{oS!K)D4|0p!La!7tt7Ft>8{A0C%m4 zH_MTOpy{K-8Umqm%%kFuv;%@h^sJe^Azbbre4Msaf|iC|Y*@Z%xto+mu)tbN*mL$i zu1!BxerTJ=G<>BUA4H5Hq$EL#bC%WCMA4&6-F9bNj#;g=nKe&W9=f}u%&}voRSms+ zEt@;I{<{VSMHWU_X<%xr3O$)hMyrL~zxKFeb5Y?&Rt;?NHf`u93n(-ISE_}L3MLJ+ z@ec&YDK3|0Q(dMv>q#pM$p%B^yLS3C%nUV`NVEFyQnd&8Dm~hDSnn<@{cZfEt~s0* zxsx4w>K2Kzt`r2Fn(Bco^cb|^F0ceOms-^>vH=}Wl?a_~oFF{!5?L%I*Yn8P{ z$2E-9y>e2$8(M9Wh)tCfJ=%t_RC5+8IDLP-ooUuwVWKfMCp+jgT#y*td`F!3dEL!Pje1u0$i)twP+f;coV&9U|2yZbo8E&M~xVLlqj`GUy#2lPk#bNL#>um)&P%>_fj z1Ki*Axx1xeL%Rgq`e|N_Nf<1-CI|aUjJ06eDV_pjy$7Hq^c_PDv$_U&Sq5e9T>JR? zG;9K?yIs_}JCk8l7^5wYIYwkhF=E|ZLRY#p%w1`1x;Cnu^>zB0UxF*Kt>7*i=ihpO z+JW_|-KwJlAnY-XwvPD=SI}|yIwc0gvM%>OXF(QMD*iv#WN0$9+Li2`;x>lWA>-@` zgR}|y-y~Gis9cELn(AZ?kr5lew^mboYqVi?p+D&kLJyld>LZtoPyN#oDlmUT7%|du z?v2Lp4K`bDF(?Q&v+FKQE73`?n8Yy~M~eEEQLU<5s>KtkR`gLzRAwZ=JN*g?Zk#^} z_|@LM^>3n_ztdSwbTS*uAazDGVMbwU%xPp?H6du!MX5eY``$*AH(+wM8np=t+l6CJ znPsjE6ElV4SF+1Dsr`t=T)INrI!9d89eGDH#@Vtt?e_ifzcB z6Y74h3vn(BR5glH{mM?1s)e%SI%b%6lzI@1x{8iU7f-WG{92+M2HYiTUmsKT*{Xt8 z(m%)+{7lrX`0zrze9HKj`AbZ1SAx+qE!kjQk8M8)`KAA+0 z3n>;`|0qWO!N1mBhn??;9MYAC-X=<2tk5ydBUG8u-5F*uEQwKOnN~(8-pcv6fh8#I zAh6}$vdeUZVa+Io`h|WcuvnHNlR`LI*03*4v{eSRlrx0!TB8{w58mw&z}Wq>1i7*; z3^C5=Xv#pnt>e2#3}Zs~G3XOoz>WQP%IDzc6*jw|;t|nN^V0q~)DoMX)~Brj&6gzE zHTrkIX+q@VC*MsIrsMvSO(s`U;?g7V06Otgkwz>erR$D@?eR?6U(;)Bl9?lq9(4Vl zZE@QZZ^3QD+>?Q&BT)!lrh;Qai8YB2JH4E}S|rWL;seL4sc^v!Y~d}A>-`X4%yhvu zo7ye&gfqV{)ljC>JUdJf*=_*xsW0*c`!uE?NTB)mOLj+r>1?`-=uW#@)3>dwy?b;qL6;L^%$k{-2(sI%>+5W# zn^55!s5-i5K`r%>ixAVj#8Y%<0f{}zD`bCM7}V+DSUiLqHuGjYvR`zQQ)X>~ca-{! zfAricWaaR8=M(4e=Dsd78tw!8Z&^|4sYz~MFK5mRXBfWj^NAlw>Tub258-~@6ZGDG zufyX8(+cbw>|f6c-{>r4-E&NzOY}an>0fgESd;60h$?uH?4_g5Gkn{bQOjeR{%405 zWp<))#X0*;>E|tS?W3zdo;w)F?B*Z8{xlEEUJTQu{4Q8bFvOGq`?vFtbIe)&uwS^+ zdDq_dc)m9{{`#*dKVCQuFQDySOnxxlw!H8&=_pNKdpo}Rvb;8+ypWQ-cHBQY7w<0X zzL+h)^ce^@IEwvK}cm3qkyk*_>oM$%A~cowewMb!@l#ALEz4CefBBV?{kl2n;-kR z-2T%M2nUJc?~elM=j-bi9`*kM+v13_vcz&m5MNG7cwH~?t%_*=6Wg#awLi*XOvQ|<{eqP`|A}pB z@H%ei|B9{GGjl0lhZNpumQYaPp(bL+jB&LH!hd3WCY+AgX6f>u*sAJFXcAqmDxNLZ zsRr4~pJV-x*a`?Qudw|mwsuLj(-z8jTU~UoM3mO(|ADRg>I9TrJF~3!*>NIc=0g2n zPn>5b#`pHdqp-jdy`3pdov|U~vad_IPIZ$U%8OLJ=}fKT)*9nUVpFGG@Rpwd!R(Ii zH%&XEwyV#c;jVT^g}M$R{h6(2`^^`TI5WMsoYqaL9D53dKiRY|M)KK-CWqmaQ}HT9@K2p*XUe^&h`Q~BoWa8ImdMTP$XV(jqdh? z_5#18)>MS>AaN!`5Uk4f!%Kvv4kGM*)%L^SXATs6X=;ZGT!%@^;~ZFyU(zFZpQKU( z&etrWRhZv!=cC>JseBK=#Iih0QoDmYN@j<^D~`u)l`IjH`f3Uf(MU|*Pc@O?2^X=U zRX@%oN^$-bB7$=EUw4Bwme0q)I<5zjUO1zcSN@`<5s-2U`4)&k0p>o*-*b^Z42wAb zuPxPLwXzfo(5tlM3fX`;fkY6?EJ@26_*)+4cpgMhvXydvE|k$jM_*=CQ?3VuqY4ZR zsF}%xuY(D75YNV)<|?fl3&pT*oHF`X>d)CqE?if=vtCWvmx(z57~GHwGV#@=w_~4- zwYHR2|jMnu>ekq&|xRtWvx{c)^p*9$P#u2Q(zsRYylFJ-K{5ufRQ zus*ucA7brt;@S1#`rq4+5VHA1LP1F7*T%F@EZn-S7=6?;|D(dM@WR5eHW+0$Z*-id zYa+Y{kheLB_rv@E{iq|V>y8`?N01hsdfVxsnIYUoY8f1B27>~Z(I2O3U@k&4Pv{a$MW0p1<3!!j|l^5FM2liCct#dWZr|YsQOJdgU@drkmY4f zSsC6#=5}Ga$7`*l$LMor&?B)aBD9D)b3DlB3iLQ_gp3Lt(*pmey;PD+uft8XTQaNF z-(Rk-)_oPc4vKE{D!Zdm6&--F)RCAI&6n~W-PqXRdw-TF8}AiKP1mb8Exn%_r7Lo(92}r48V~Tn0!mEDqAp46ei9*jFdv z&BvQk@|@0s5T%5hW!4}ep@cx#v_|MPVKLa1meDH48N59$Oebf?TGpFsC356K%qYy( zP;(&cJ1R)DbET-4g8))(VUP&+y}yMGHabQ{h0Fd;g!)G&eW^Gg?hk#Si<}sl5;cUt z^_(>=pcn>byoqT=DLR^;9B~mdS0%FQCvE`|YKVl?Sq@Z!-~krI^=cC)yATuxfb34W zo~iaOKN+3-kaqo8Mm04dWjZ)b$7LYMwPY^{oY=f}!C4}!fbc^FBVDMxnTB19m@OlW zUyVH{qO`yIA?1q{7qf_lDwO%RBE*&{E2RUM!PA`qGAY%n#CVe~oinK1=cFCGLJ^=$ z!!pW%`-Vm(ewZ`$i>%@=ljq7fW;h7)fFGA9h6g~L|Bw$iY%2O=crGPzoI==ya1OIi zG;-y43Ge-=;0?|^v`;eRfXXkL5Q#YxE2j*%?qb=D<%JT32)wE_EQq+*A?uZ;P^98K zfyU6zTsi|tOn{Y8nDkQOy~so$Cl=bw;u@yW!Jz4p;u%k2M_tPR^_K1(^bPb-uaJWc-9PyP=cbfdpV%` zUjGl_%`KqWw|H~DD)-^6>f3wu&cl-Ym1@nwf0scl-U8q1+UfXz1-5i>VAb$+Rn36O zCwsBg9IS7+Rf$#<6gs^VZ97brU-i=JVIEDfB{j7sOgz+Z{Tf0)4CgeFJX|pVLFGd@ zM&BVU^9SB3HQ?W6LACA0*)9#yU|p=glx!|K zYZNlAk?UQMrfz2i@1N>VmR31sx7W-EQdVE0sRb!`Wqllxu~VSN{=@vhy!{Rc191_J zR~zeTM|mx1WC(;J#7mBZ&dsNQ*@E)wVU4|uz7~yErN~z{i!j&v)@x&CpqHJce7*1H z3~PJAgI zf0yTA~3AH5;VHxyT<&AyTBF@<_m~AJ>yQ(tNbe;R#BCD|>{7Myhiu4+-lg*S` zqHT}hLN-VxyFc0sD3#e#wW-{s^Srq7aGmqpW4=Z2lMW92Kti7JdEiR|la4J2L4m}% z*oRcM6!dP184Q4aY~^PR9O2;us;+K=|NC}Rp( zT<$U7dh!{G@s`*I*NtP>exmL4fz*BOUT!<|eJ?m}O^FQN`jON4?`EbAyeMs`eeXY0 zdFwuBSJ$@QvW~EU#cvRnrd{qy{~o9v&PEZP&(jvQjyZNeF&ulpM((15Tb0P!_L*~VVOO;*}XV%s^5ap(|vK*zCUvXHGWgwD}(S@beJuIz@!R*0NIbX5s1L~ z>|(mit@zD`SPp*G2LT7%ObbAWsVtO^=A|1dLz7^d4*``alzQ^N?;w1pQ!ps9--@QftPx z@CzT^`l*q_H0EkRQgr0j;1fr7}#R6KoOj8ipWj!V|IPGm{Qt+4Fgj zkXud`e_FPz0YO5b1=KIb93(`1S>O)T2fzSb^=TBtOeKXeL80vk1g>0~kET@Z!EmR+ zkjvmO@?sP+QV6p8gcFT02x(jZULuGryi7S0R6L@yO2WTRMoh2Lf1EKLeQ(=^oC1eduq=Pb&O)zL-+MV)C{L;-5l84kvAR_UzW+sqct6kj-zd$S~=5U_c0 zvQ3JVf9khX+KwQG6PIkBIGYM1SoWwS7vBv|MB{e73Qa?g@yybK!py&Fv~JWaH}{~w z%?Omp2TJVu4L)WMV@ll}3Gn|d6~?p3aL)|Xsw|Z$L+@nu?upSDOvRs@x%vFd11Uam{9H#-?`xM1c38CHV}hf|X!6dibSHU|U=X@!_+t5&>f z&@wBJD_mn;qe5tlpU=vYKs8>G7>8c99vev1>$wQG4ydW1`}QhcZW;W4Df=>#9pWko z4whV+g{Hi=nJea8beYb=uB}|o>FTbho%Ki;`CS>gKhcXD@X<5&!8Kd(wSG#q>2viM z?G1!g4QUQ(hp#L-G_j8*!PIY(f)-LwnGIk0%$IB0#3|LJ%YL8u^%=a%BYmZk0la*R zu#4oXEH4dWlMQkavA+-+6apGlG;y%Bvorge-60ww7wb{Ao4Jyk3EnCr45|*+GRX6T zolj)xvy_XuTd0JE^Ba?C76ElTH&wdW0LQSClm?V!y#Il6Q`?IioOByKIm4QX6AD%OGpiBW{?X}A~&YmFnQ z5Zr!l{}Pn)AdVK;W~$frM(awytlEUA+;0~J7#FC&yjue^z%`LwHPMsxN_<@hT3vN` z5}iinz8Xn#<$eh99g~k$wjzWrTFMZ^=@#&2S2$)qRP`Qe@@A@Su6)u2<7{L>^{Qpe zm)70aRb9uC&4b#x9h(JR)~J89xs?%dRJ7r5-g^&u8+#3Z3M4uC9!DZ@YZ%MQNwlbq zcw+zkjt&%R1HoP+bMmk@|l-Qm-;W1d3d7AmN!6O0h1J+ZR?@{R?T`}0Q{`Q18 zqXfNH*`s~$Nd0pH*zEjmmBAeNaTxVgtI3d5EkknIrJV+_F-I%U&>FghBqtLnoQIlEL z>6OwMiIeb4QKLlXv?B|>|D>C(lCT79Q2rux3HUoqErwX}?A6dmp}qwhtt(RNsp zcK<%C((R2 z%UKiQ`ENvhFt+o!(*whNSvXyzN%?d7@aa1h&GI=*T340EL9-G$Q+m_<&mYU=`?G8A zwS)Ttb5rweT7_f0<3^Q0g>Yt+>S=>{d7-MHIBtkBUX2u+()#vt4>LJ`Rr!MpQBzYJ zcI1IO$)$c{o_|P7rPZW-1)Rp;R$iuv4Rz=Bbl1;VSA@^k3w5Vd|167n_4@P8X)wYg z_)hV4ua|x@7YS?{%Wu9SZLXhf&=r#B#(;BMYp|YuR@!_kpZ`{Pn8n!=#hH3m@G_5Q zaw@zX6|?BzxT^Q(MWwQ5rXt}k27Ri>rw0iJuN}jropxgh6baR$&7SDWI7u(14IF&Z!%$k2Pdy)-fco%4>)_(AfW6a)$YQ4DVAjRoHuezUX24hQ?;J1jE7=|>CTAgIiq`T8bL?@1zWeHiblDjZ=g z?Doj7oXAX(`0W?lu4pOjo76TKL4dJ-GnK>X9luW=cC;SlW^W8!{AZQ z_JhCQiBl|QXd|`f^;y>u?KPjcRY4RZq{z2)t z95ASlZ+wO$)7<9j$>-PVHcA~HO6_QWXIyb7K)JbHhqynB-~G7>OBVEkRrct@)Gr6V zO8dO>@_Q6MFiWj_7!r9*?tRS$zbxbur{z(n`~R2K17{+ds{tfzF#T$E1yOg!hHDY4 z_q2%kI|b2u`>yu0I9O%p^X!;V>b3H{>BsxwX@3mkfPnUvTi#Eh))`Vc*Z1OI=myV+ z8XrFXm?Lfq_{*AVt(~J(P0!*Vht)R_dBa=NXR{JBp)J)@_=m2j8gBM$q0>gWUm3HZ zU(Q@#Z@*?Rpy3dZ5%Kxafk5=gNZ**KxUjHrAXJQRL{d1qZ&r3>dPE+6QBaY3LL`lE zB@GR*Ha#sP6AHbB5sJ|lA_J-tT^(ON6FkPU%pDW}TlyK?2kwes3&musW38SAkP~0yMqXB^2c7hkoVp8bq-40JMCW;ID#LjoeuBEx}tG6UxD)OyW5g)b|{D%>}C(wZ2GAr9?7y|Kh7%M z!N}dcklz52%mJJjaNPa>vtvsd2+66j2L*sJ|2sS#Uw2U1d_a+Vkq)^mXl+m3hno!NIjln zcn?USiO|=uvq~ejpNa@k>cALi=;v7kCPSGqCIzw)D;iHDp``DX!fP2Gu1hba^wRbPNj&kfg;4}I`HNUwi&N5U4NW0UQRFNdB11hmG}6K% zmPq7fFAmJ|Vi15W<81&!SC%3RTUGETt(%tVA_IX_HuF6H{VA@Mecxx-Ge10nA~sLb zAP>AiAc zvM01N-fJU4072WfGH!ma!%@Cq4c)2TvW~@DVF+|c$9w*5iGJ_W)IsE&(qs$=EZv%i z?t;lPkfN6(T72s~UiU!z(VeTIG$@%k)85a2KQXzJei<=P*nSW>Tq&^Kf!I zgacN%^_0m6eS5v^>${5CxTZMTn6I%d5e^KPG2T%)6!z|aw zbsVAUTnoM@|03@Fd&gD_{tCyq{<#PEAlSVPrGq@S1;Hh6ZVs5yVC2Nuw25SGY?+a# zuvAInBcRQBIJ3{<$}>#7lET3z5G+9^($*EEmG~TVy2fO=1>2 zQEI|Qnxlb>92W4(@j)hqK|LHzrZrb$KE^3jTp4YwR!-6&3@HGZiu)_$KDkt7>+?K} zXJY=B)7xgi5oy`Pz!gB6SV;NsT%Ctf*ic;lEgmOmD9Kx%k-3+QB-n*jP;}qcA8-bX zy+I+cX=?yGQ!K<1zY6!)^C4^J(2N^y4uEjFCyGi6EZRE+YziQdz8Zrrk8>H9E+8C0sI5_o|zrq=o;c6j4o?v^aH2sRg_IMPBH#L~}GySanZ1L`lU=0sobr@h^jx(tA#;Q^i{zl`Ehv zF_XoPxv*wa2XjNwNk!T(OR3)JtZl27Lvw1f5^P~wL9tnCpB8VO&F%;*u)Tbijf@N8 z?jPU2zLw5b!xw6#+2cR$sK{gkoqXcM%1%l*r-oSD;TG_5Z^W{<7JtwHocV-Qux^W; zfF%%I2))BfO#hAW7_Bj;+C35KlOR4X0k$SZ2AYcHtb+yt4r6k6Do*m>jrF9>#3o#L&D2SDwbl}>~^ZAhv-Ab#e>mBUlu0QkfH%_6o=mUo&=%_PDJ!m z-RRWcyk)bEY~|{+pdTf8A+0lYllyCmDQn8~CL(tY~5#V-3u@2@YEme~W zoSs5*-F0h1@*K4~uPH@t50~k^%;K_dz%BLfOX3Vz^c3il5~EtQQf7vx`4bWpp#59wEz7NZk0(KeccgnJ1^Id5_efQ-WOMP2IAPU5-P&&=x&hW zJIr#vi6X)E7yB6fO-P<*guJ2=y6=XW*%_gP&xAIAVIN2>VOEj|(JPEWZtbU+gShYM zB^DcaO_Ru1i8m!YeD*M8=6!M}U>}I1>fcPz^JB{4HM&7#x%iT;pGG>p^yL=G~B#d3_VJS6%`3l?L)h=bi9h z%f;eXv~9lDy5te7RWa0JY$reGXMT4Qw6{KP9fG!BWgzDDTASQwFNKilHqdXUdB(c} zIQyla7NhKf%+Iclz2A{8gTBNjV}9!Yye{;Q>fYZzjz$^we$QF8-9pdf!iI9U^JZ(= zLhtn$uG{^*BL4W>^5d(26O8kK^Ywji^qm*?CvQ!nDHGRsj=X&*Q}rJy2Tqob&?&5d z{&+L!cDLs{OkDFHW~**kFLYKXt`fp{QA%bYLuU*YGqo@gr6iXiLplBtW5u)|peL72 zVeCs0QR^}@&tZ%>M?&RN8tvcT#D0I{h9eNcAdxXJ>-_9;03UV%G7JV=`3b)Y02!YgKk|;$s*psCAYk|~k zgu;NrLvoCKh!_Bh*MN63oI;N~e1itf z8YU2x8R#mc8+%Xl_TaVEDmVhi)28B;wWhTl$^*l}Gb5=qQKkg!_e(nt-*or4$MC!z zg^c3zPc91&FAooWi8-){WdXp_6vm#tgxeQ|(Jc7Zn9+Q9vq_-hoM<+ZE|xrA5FPIS zQM(^f0KviQ&OD+*SjfV%-;ZacAqv|RIu5}s8N`%MhWEuv#0?>;-yiJ!9QWPCX^Net zte?onjM-ByVQikjC5+J34PVHdpdjIg8aMj_ZA*M2q}Sze|@R$1sd9*7~3Mg_9c6lq44TJmod>jLZf z6^Bq8-F+4x1dGG%nxKBcJOP?HNV|n0oUq6#MU*K`y<&>IYT1>-EVF0avtgesi&F%b z*SOxPtXAN1JR`WAJ!7}Sb0RI$+}8c9BVw*CB&}5G$rI!DAWfuUq(YW{PhlpKNhc`2 z=8D5vAf17+glT`=NVCYl;6L!N$YtaWDzV6~8@?|j)y*4Xv5<&{;|oM2ij5~RyttrS zh48_LV09#+vSHVgnYJn=>2Vi4-U|y@#w-2C{_a)C4Ubpnn8dP_kA^R5T^j$u>KX*& zLOgS^C>UNP5DkcWpBX?)3RxB?)7WI6NsGL& zq>$?=-^&UyuLl1(Cts#n?oX}&tOsDsQAilrQr$+4x+5=2#dspHsZ_YjMrYDw zU%Z5+CRJL#=yM@OhuJx=3&wdqbtjwlQz9gqtF${Fg9;VhOOkRLao~suO{XzZMKFs+ zAnrM`eW(ahfitpn{P#+?i#t=N&_cn^_$7Q?fN{#ly67|lp*$XDZ~t!+S@cs{rgP0k zxC1-icCIIw97b!dX6Z@~>4@{;Y+y;{D9_JT($WgLm@=&e1=f0(vaT`QA9zJvPY25zZ7Ci_2WB1PYPwe?RnAnh}yt}cp$vRmm#=Q<}?Uw z#UV(G_1jSJTOy;F6WeB@RTz#zk&4XFsg~|UQ(8L}(w1NhUplOruOeTETBZbcs8t~! zwz#>O_Ch}q62B)pz+)2<#gMmju^$2#=)J-$Z*2{^WU42m}^digt&O0_aUbQ`5!#- zi*E@p8OhcfPSaXFV9TB;IYQy}!o+>&yMe&N$l3$LWCeH<%83xHE--sQs42z+5ms7a zgCnbdUr>KPR%(kdNmp_@QsW817&dGnGjFhcXs~Gdq@a4OdPIZFZ>QtU@pt&K?`O4S zv}3c899TF(7VYB%V@{!S*fw|YOIzP)$OMJ@1H|`(FpcQ)+q6t3nvkp8tu7U;d}j7q zM`m#QquDAOhtq8+*$$0Vo}!4v({PA&P<`kA8{N_9IJJFbBYH0M(;7g5joTd2oUeCB6cZK^C=*#`h4ZLNIXT2QS+Fe|{8X6|4%>dhf|ZPqBi zImk-D;`;~UnCP%Qe$?n(e>f@Z4I&}&g1QB}_E!sC%H+?vaPY`!_L9sejdV_BI8VQy zr2wo^fkgkeZ?ITzdTbqCQ5McnDgQ>Rx!w@aPH-GDU{otMTUuV+0Ulb(eMJ@zx9Q zmK~R$3W*GkG2KTTCwzLVv+DG?M14}%xjJk35xOF6NkSzoG`O7czad1-_oEcxR1Xdd z74&N7AZbivx#05wDNALi1!ZeSP^OyDs`aFGbaI=?bsi;;$m^aAr{nhe!8UDM!IZ!` z$W0=E<`e=8*|29IVuuibpA?ckEB&l=D77oY+R4_34op1>IouOA|0Gb}Z)~db2r%Ev z=no%?z1?M{)9#tDWn~g#toc zKu95r6{SM4|3lSTI91_>U;ZZD-O>%x4PLraknRqVPSHy@T)N@X4VP}DyFpr|QxpUh z5M}xPc6WAm=KT}inP;B!obx&8-WaZF(}N{acMYPar5Lq-l-BbWna4;0LZx@bgjKVS zl@7Z72MWAS)Ds8A)*EcCeg&GFCER1&eWl zRPX0=Mvc$Vzgeq>>LKE7IMU|hS(5kzRYV2BokqF8LlzfawKLnGeY{-sV65JXstlO~ zu+kDp!>ty}!Tw82TN!vf1fU_huh^e4{^ERnkkZ-<=?KxmX)Yj%wh{u}Lz?#le9IK; zLHR6DwT5UNvndluc}wYM8R=m6tjaxwCXOTG0pjMpR~;0^0IYO8?8xh z_^;eX9rr`CtkA~PjnV=i?y_Tv_bCPelt*Wdd%1j*dG=(KkE@j-jbpAP^R?7r>e>g0K6gY>ukZ$BbfeR?ud zp1npV#loU~Y%=B+)~96yZ7#WR+PI!EC6=lTHgt&A>v;?w*brM?My-6nP^SpA#%3MF zG_G^w_WYim{I#F%>yX9wJqTVwBerof3x`fl)?Imue)p+#GeJ*k}Rm@x9a0=b1Daxi!7G-p^m+6>(OLCoD&g9koAZbs5O6l^A+Wz}7%WNw(jZ zC!2y03=VAEaNLM!?8pd?Fpl`xSSsvP?63$#b{HZlDm<kt-AvZfVCZ;kcAtkl3 zys5c9DL<+M3%3gki}4AH@PY9^C;}t##METp_~87=JS9fZ#IW7Ay}lw5Y~+j!-X*j6KBawvrX}Jb(j%bwU!RfRbiM$u}LjPXU>W8R3ME1MP zJ;+#(rfSsY3oXOhs_pdDIuH>{^3QzrHRP5Fz}E5vxG$~w$()@MgrFQZ%fgJeb~XmU zati&p`;+i_$=|)#Ht|ApPLLN$H{Or7IO3nv3pGJvC{0oD-*7yc8|DqV;A?`z|DXtW z2QSs8UM44;(ih9a{#BinXMrOrD`2*n&JID+f2)p??HW#xl25af-Nz*8iHC(r6JFBvZ zyf-in)>MW8=G)HBYW-E|fo`$50YToMc&%98A0?X&9!&P9N$pSAO&# z6rtA4qM365A4)f)lV``evI{`<&^oNV*~26I<}q}21cXixL8Yjq|i*jrXBQT>P&SA%(V8f+tew?(VpV?!8or z@G<7_f-qaZYDK9{e=O?+@7BnV8AUXGyIIS3fp+?8&Eub6$^&`qrR9kgg)(4Fns}Mw zteX{u#1Qc^080hBj@WYt+ENLXSCl>rYVSi@7p0#k7QKl3T=h%ewWEIj#c?mKr~x2x z@+8lhSIS|IvpbMOh1A;Ku`sYlLjX$2gcr4!-CTB6@R8X)aY~>xM*FP6?v-gm<9h+(t4I@{a-)xRR)L&6X zZkGT92@T|+>4Y!qfJ||WpcmoD*-IWMncrq&{ym$xr(SLmf zK84bN)nIQRpF_~z%LBA%1QBV2myq|$N53B|1U3!s9L?0tK0Zk_IiXQ5f?;_3ex=k$ zDzEWcQWsK{+JkzPon+2OJv2b z7_c%Ba?-jO=p0r<$xSJVGwg)XXc2rC%p;6_6BGHrC=w*x@koj;nVv(skd`BMTru1_ zjMhUc+Cmcqk5o3#b8HLq?;;FQzsiv z!5pDPRcvQhM`Z;YQxPXCc8ajm;iFBDv8o{uF5%Yl+QXP(W)~z)@(ebQ%O;b(ZL&@% zBPv{fTp{Ucngm{20U*oFEDoNkH7-M?biV8?)Ik{OW%T5#<&o?b#jrRBP<3JzghwfK zMT-Mbmy=L)+|Gom;#{eB4~eWiz%uB!*sU&=J2`HBxdwdjMFG^m8qNs7pHK-+&iwIb zI`%riiXUm9PYEzV?5R0-vh;?oFQ%+qT#G}B8Q_Csy9>SCRwT4Jktg0wcj1NK=Bi(F zF5vqrxyFykmbd+zaDJ9y9^#n+frsn?5Q2FAqr!F9ym=BDJ1V@84-mNXCsXu;v&g!r9)mr3VK3X4%Lfl2FXKe2{4uU)Zja;;lR+DIEN zNuuga;`F6fMx#-X_-YqbvW|?pt=+P4dGhXZEVy9KXq`i#R5v4e&IA#jd1_I&@eG}~ ze$@@LrA`N>&gSo_LS}*F4!47Om(1r`eQ(kd9}eepDQEQkeq^Z{fAPaawYE@OaVT@_ z+$8zUd7jo4*5a7Vy7@gX$GtF>ss7?`VVr)|#wL9}WZ&32Fo%dTu(UyO-58r>AJ+I- zM+8f~CUZr%vvFuas-K-b4gXVxp8zT(3)YDhctnm>bX=Ln<{w$WY0Hgu0@LF{XTIpt zfZv;vEJ02HR;!PKRz26%xZ5)CF>;XgmkCyoPWaN=dQJLt&MfzVbnvT|U-bf+K&)?E z+JQ3%{XgtK%wBl9QchPV_@^uWKJa%H-#}CF_uksucj%7#MC9~zlvxOa<3BV(L^}tt z|E&Z0ws*qZr%N%vy^hN=Tp*9O9Fys`=hbEgkkN1$Yb5u4yAO76LZ`Bey}3sFKh@*!HL1xS{k>|91%Q&#dd&X@cjGO~`dk2|MCKRC|5mpWir zdzku};OUU^dB5aQYF@nGW1+qOC)t|#sHL`t5#z%zw2r>4-!sNpAIiU!f4xq(ro7z7 z-`*XyytS~Je2Dz>wy65M7;iCp$cpKgFNM)TBhM{A_f@@mF4{3Yb(M5~q(FCcJ?&_! zw#voS@1dej>uNsmF!TALSK z0nq{3~7jr9?w3TfcK_2nv znoP)$?3>T?)V8D++vFc7@j!9M<#Oi}fw0zWxY2K}K}PPep8#t{(EKt@Rd!r`GeD*U z{E0YzTPVKWh&LgWt6M2d63P9A;>99!^3$xk7fJ|N3|nS>)5>D<*WT--BfMwD?b;~) zyv!5Dm~?)UbkUit-j%F2nWSEgsP~GRFOK>c6Z0lC!>l^d#5vsx(``G3{7Lkk`H}Qd zEECc0gC3YTxB5PrH9c?wF|e-jv;y};@*ah`VpeetTs?9b?MRO_0~^E$uy=y3f2Y`V z(A-43@OsMg1E7Kcnb)GOgUehT;{IpL)U4~SzOq^KF=;Q9$t5uT?wYw>Lj5ol4`&*USNSWUO&c9U2({|1*j?A>gq%);`I=h+-J|4$H;|8(|{2mejRvLlRm@jRpE8oPp*tkO8O_Q`Ubkv- zdrrnDc4mEr_gBQlboa%hUHS4cA>I>O(|cO%XO9^rzUml(uOFfdfK>&YXH@v&zFibF z*+P4_)MHV*2XJR3_#BfQ@$@usCH48C~~dTY;wp6sV?oHC^S3+@-F~- zZ*v4OWA!E~py)o$_a#9Vd!wx;JUcnJo&7Ic`v}es%OW}Q-O+wi4M9!8@aOzn`s5*njzK~YGEbk#GyE!u@dI_K%86q;> z!jhYKp{E%=1Q>zFePX6StEFfk%gW2)9dD*(!Kx>&YWcd^YNy=Zg4N<2*Irsdwdm09 zKHdJ~tkrY_#E4myw^=XI&6P3s=eVF=&zLpnnTx2GdPv zdZ;|3@&g4LoJ%@l0>xMHolzED|=gZ#Fg`VV?4|4{ei)8v1a9Q0}GLx}W~Nmbx| zCG%GgGw_EWl{){BiEG)#g33xJ#%8jscB`KNA9?NPW}N}XPtD#6`4 zq;DRrN{&m@(;++-H&bpyGc83?53ei!1h1GAnz-&9IsG`&!Gydv41EY{7sej()zAh| zSB2NadMXe7a(=7^4WP;<%<6_FwYMpW5Fqds`3-eEq^?Ne+#K^^;`xS;OW^pR+e|CX z829$v`v=bNQ&j6_^9>2(CGiu1-0dU1h{|I15bjZ{c0fuFZ_Y&O=S^xcDGD5?AwPm_ ze0Bm{`uEJaF287~O76*|tTd4{lp8EETf%eEo&%X%{r!aCTAEt-(>cQ4iF}O-a@u8q z*Ynf-^Hn0tVmvdq37z-b^WTQ%=3=M-^Er{_a1=9h$4niI+%{Jo}UW*#O}Bc>LT2mNToz&aj0IsD<==JO`zux4v> zcf&T_ngx1n3-pj2iGixy(c*a175TcgmhI_)Pn!*|R|2e;1@1QMXV*Mjw;sQ)$<1zt z77YG=8^O12ZhmeW|Cj5_4{3bbPEZQ>VDO+=$lwAKut5aK4{&X3(sVQ1M$-1h5rR1g z0xxq{-_~tb&u+Dbd_KWl@nhIJ4O#2_)cXBm8b!0xb+I+k8|9wT9}pbdPdph<`$5{o z?B!oyXnJ!S_wvF8S&P6YIus8DWwwWM718AI`LYaPO2XM?+~tDP?e*u2zq|BWE53uD z8U8(PUxR0K>pr9ZTYJ&B)~z}63wKNVgbJG;1gTo-y8Y5=Q^hLvK?g-VEgbUPeZ&5k z>|Go?zD~|W+9x8q&A+%5MN@?p((B))4)i}S$BU^LHeN!{uL66?$7t^P~AFGFutiZLHA zi4rV;(lt6+-%iiJg{p1aNYfOc$xQliPY#hqzWp9vv2!(v57_>mdH4Oj^OF5*|D&=v z68wv=KGzc8S8+dF%M`6OK3u2d?kzR!aga+V&3v2NKEdS~utV|cFQ%;gTm2_Ay7CeA zh5Ltw*7+N^QC0rU0IYh&$7?sbZ+7p0@qfB@(*D&jl(!@E6aUSnc=DBYXE_xTAo}ld zg2Bz#Xzgb6fQL%;>B6^B^=;MQ16i{tQwHZii^I93MwOSwEq2hAtL24* z=od=j`=qxNS1)?6(Y_y*z5AwpD^V-*HPO9XF!}4dM`_ zi8L3n4vF}tDP-#eUOmPNLmQXtBzb)y_TH=ec@YU9J^`OM>3M5}#O5eIMo3uLyU57! zn2@OdpJE#w8wLz1C@3t>D=o|Ue-zu){{vBoc;kBzg4BEq**BYe7V`%e~JBO}(^TVH&Vzf?pkWqph+ z)<7te3WXS-Cw@^MB{fBByrWi$V&M7q;59)huw6G1ghiv;Y}lT*q4qye1a!w-B>{<((ze(0CP>%{488X$NZ!0`;?A@h`0K}^ z?ZWdY5T+0@Lz@uRC>)Ih@pXM?Ap#I3=%7-ja%H3BPwcOATPak(*%o8`gJe|SXm1?B zgq>h~{;DB2RnXPlzLjDDn^T{j;xQ56)Fi9OFS^<;e(F+@jO8j&6B^d(|CZk*KPK;c zZ;;J}I{{5NXrMF(?4GK_*U%X`*aSP!ygK{VcV3mX#SjKNbF3e33DUG647@s7J}#5G zZodD0iEBzs1#)tJhM^RrWVIUx)tP~LTfF7UV2gQ~B+i)kb_0iR@U@|J+egd3t2Ust z^&!(VSdu<80__>)uWYYamCHG`!H zi25mPEh$8pVYI9(gRp4YM_fKQ!%&~=0t*=#-a({!{13CWxx9U!gHNg! zM4kI?;edd3c*YaP79m8tcUr|#tf288ql!+__7V{q#^a|i28cLsq;D7HQA9)#;=>%tZh{lssKd%Go<-5L8BD@UA=v$ zK;<)DVxb+Uo>#2`%53#FOEtpgcgLcNJe((Ge_Up(jb0c>5P8?ZMzK)C7Q$y-g#HcpHvR=?jG?D&2|41x7 zn*JRLfHGJuVZ;F-VH_S%5rQGC5wS5U8f!nS>rm%jL5_#X>1erHGw9%rWN838jpU9M zdU9l)Oy<5Q9z4frA`F5hv?C_!h53hZU0}=2D&mU`1{rTz0R~T!E_I+8j?loEDUVZJ z4T|bt?>?nXD?A38FHe|D|ABFC9$opIL0ATJ%0!7VuAL@>me5m?#0nFLt|PY=2k7C$ z3Qgd8%>MMXgdmdhZ)Mu>Li*Oaa<_QHtPi`j?bY5YE7ng3PonB*`s*ejevUohrK+8J z!XC0y$_foJqufbmF#IAD-#D3xk}VdbY;q*<+WriaQRS5QrA<9%EmL;Q<@MAZp>F0) z-2Mx;DGW0`64gcyB@7V>s?|PTKa?bh!j=s}O|x5OR=Whf6|dIp_4HZ*6bOf~u}TIx z0web;BG}7bdcOu>`-E*^&;odvHRvNltmg1Zi7TKaUg#XDyYfz*wK z;&V#`L8K8nVxFyam|qRlU`~V}2L;AeeD;tYI;icLL8D1)!wZu{rM{HW2NG*ndY+0$ zl@#YCCZFO^F%&?zGY%uLZ>2~+uiCCfmxNAAC7JS?RlHX(#U5y&U5ILg)g!1)#IfEkt@vO*vz6pS7 zNxV!{eaAHQ;<2R*bTn-<4_uQgjg!m`qG>lOqeSa$agv78?U-QLnKzivda*)f*+HI| zXp)>Wp$0D8B?*1jwzO*kV0f9f)!@)w(f3I~H+L{UQ6M(kL1EnlbG4haHOUGhRD$KSQ1o~k^k<8BM5tdd zO_$pk2AwpoO=})IVZzwOP(|BU)qV{Y46?>H69ej)eNy6>?)GV`_*sUAgiHDxds_bU zl^%MV+=HVL3K?E#H-7v)#4`bbr`#eZe~~@dCHy+CfJJOJiqX^50Xg zk{{kFRUCW=TbZd-yUjgp5gQ-70DSG!Z}g5Oks^UVLzs@KBQ zRsQJsPBK9}w^0B7Ur5;WwS|J!Ye?}?E>W+f9Yd$|?pz0GX#CGT{ge9`(iU`JFJU}U zYb-;u%?adoC6&H6^z@W}XchD!FG(V!=E6^d(WJ#skqgw^O<*gSth_ukJFFoi18{Xc1ho4HM5%2<{xAZY4hq5BS ziCr1s05t#?8%tcDT=P>&Y|dE*#@K>#oza^*7!+GaCe-wDyY_IHEe zMGBf09E*{byjx}^D~=>kLC9Togzy}DMWX=o72x{FM|?ke+E`+*>6fp+Bb3RNfW_mO zeQfWC{E4=YaQ{_6bUh%R^m-O$FuNP4+E$6A%vUb@IO;aQ%9W=NEz6Y6#F!m(?MM$J zwi!X`DpW#jBVa_?W~Qy6B}2P%KfO0>N+O7G$1(`h0wyfnKRUpdLfLXna!pDh`mt$M@@qTv|j=9nMsfs%4K zLRJbbHoyr{^hGwM*mgD4^;76p!_q(!p(M*7OA|5P+KhqV7&?P-FJTO{-_NQIIUbq4ID^o@kU|d&ZeZq@o zmBMfz4AY6WfO{mg`!KeF4%gk2L_A>pZv;hbc@PS;x1m38nQn|SSb?l|X~~=fz7L){ zBL{DJ*gdT8-ZI-m6_DZ9BykoyP<;a6!&TBUb4qQ1eLY6}N-0~2ZA7Ocyz|Jji#^fe z>ixvERf>>Xi9ICQQFamO5N1U%IRWt7k>-olb}g}d%gp3oAy3W<$3^m@H>XL(n#*jM zGkJi%h^5C?*x9w(s8y@Y3BNEGe|%%eXG@M$xSZfJs*W*Pqtk22lO5rDJhI_srP5x4 z{G$j7h|!r854ZKvaB_z7T7g$`GGqJzY%%^m#+sCd5uXE7*uqmDT8&gm@$$q2c$Vs``mBy196l43kKVtW5@;MDv^LpGM-d$pq`5iT!W?jHl(t({NR3m_YvPoAxG)S5 zN_eX{=dV$tpWY~l&Iu(MiOheFrjC1^q>q_@>6t-a!_@<#ng~py(P1&whb+XxnueUF zR4wKzGgnSQuX8Ne;4B-?$aKM!)KQjzz?2~8lwYGbvdRD)5vKEv_j&g59T*ONKvkx6 z(TGyOZ~%O?6EoOLU>E*KaCsnw(**Pr3CNCo=T8P7fJBs9Ny$j?5L1G5RPjigu$^6qK4Y-E zBlO_bP@leF*%+aW4Cm!55P?DDjlt98PP6nRSZYNn2Ck%(wY%bF!I<$bvVhRF6uP^V zBXo)vP!j=dj1r9*J83WPs)ldVu9qPUhZ4@^ zuUwQN%48^8p~sr#YC9*61`$5U$8lhXI7b~8cY}mwD{F1zZ9$N6ZLl~N6(5k?uTa~B zFe^uOVV!-zGg}Y=K|cd3g-XwB|2a5NWX=r?Cayl!KGZ~8%5xVRU4Gg3n2gmjToYK3A<*hF80hL*r;)|ZQRvuwBo|t^kw1wN%=iU z2QMi7u+zt3qcu0X8q-k^ouh&GGHCkuvl_O>#-JwjA02^RO<|Iq3Y-{JI#R-2WtL;q zT3B*8h-Ruiz?HGeb!_?4CC&~ExaftJlKwu(v-#wd(Fcs=M^xbM5OPIC4xG{+t-5e3 zL045Dl~!`9^CXhKy@Ci`Qq~IuP$e_p=P8ffKd~NM5Q6pAoYJtym&JqU&pL)P-W(cP8_-P#_r^^5>X8h)6`Q|z zz$p&R=V^a6_tTKY!0wPDyg1wAy?v#7G=d=`6X)Cyx69&(7gsgAp+30w{hv7adB2I& zW0@*xz_t1ZhBZr#lg<~Uf(Rj+zoxxe=Qwx*?2;a$c>Gap!5{uP=Li{hFH0al)^yW5 zSsDq!CLE)S0yKDGpry6eO;?XLTb3Lr4^*sB>7dzlW*i~2LrCd6wu33uaZ2oTeQh!O<4H0%=s2K&>) zYUQAw1n8AVZ%b>c4>&^@Gn{b30YU_sc~iyzLIE@$ZJd|SGV=2hx+YzVCqc81BoVnB zFZeydh~x=OJqN?|Idn-F!c2j?K#@$cj=QH=04hODa!_Ar2oKhUbc)uAtu@UVU>WNsVlOq;!zU!wWomCAw#kqwm|y8iF5PDZeac- z;V1(L3k5Jld9m}%#j@kPz~JMjC@9SwNx~`RMfnA9R{rbu2{;3r2D-l=Rg)HzGF&ds z%ufU*Qb779l?eT+k1?Bk^6KJ*>#u`izP3hdK!KHh4qds6zpK@yLW;99PoblX7wQ!^ z%fG{>*>_1e>zn#|0n~q%VocvLQg^@gDHPGf*9#zj$m31N#fEqaIEOtFv|FwGMls^l zt%#0Cyt*3r#65Ur_)+-nM_F7Ua)R{on(+CYkzI@ivU;aiOZ9Hp>Y$Niu572!07bdM zP{8YH?}ACey60Pey&HkL7_%9sJb#9xZ3tFK zG)Cwi%}N5fP0hff(YR*rR(CyMTm+DgHeBXRZ+P%ZIWN;js1&DqN=2!_M;R8&4XG7+ zLvhcUB!d31J72wT?pK+&qcr*j7spq+@izvR+DCL+w9s^43^@BBbDoOdJ?{PzPs3V6T0p$M*Riwv*?DkqC9SLYY za%(9+cc%x!0s7SaC7bJGeKr;E?66y$7F3g(ID!GSAnqiP29ZZ-E{il;N>~4RNp-Kr zzwv24ejk^#GkxVskOOlKMs0Y2TIiz_Sh6s7u1ih!mCduCPEH|;)nR5cJPG*& zHC+wox}J`Oiof^nIV(N&I{M=19&a$2|>@$NART`f3@9hjMbSl;gq_k9m1tiNr_CDJby9 zamBp)b;Ttj@)bAmSkCG(ksT&hb<14;R6JIZuQ~&5+HG-ap~4#wLOvCb(KSvO!vsdd zNN^Q2vI&@?@bLL;g92bJM_@Ej=b^WJ-cJo=I3n2;oK{t_l=ui89X_Oyax}4ls(K`5 zWCRckK_6(P3^ycJY;qg8Tdvf|wR`<5p;}&9oe)<84@0-fW~C?K`>HPmOc6mPA7d2D z7BM1CeR#7$;buRYPskJpF}6N56Mq(=bV6Lx7*noHMqtFHd;ta>0@An$TEr zRG`_@e&O&T43}&5c>UtbK=|6`md6(K*=l+WwQ`kC2a|{xe%v;mx&3KcJwaWQT(d9H z8mTFR?2w`lwesUvLLm(sjNhI@yo5#gnw=K+V>ZL9-#tp-BLEh%sc2Nl^e_z0rj=D= z>Aw-LH2JR%=ryTVbXOu-cLw2vBpS%jm-wGLp1lb{B7snT`ayt^6{$hAk=-40v6kea zKAARO+aVd$Bc+v4{>t)K8I^vE>_K6kdFelEq)fu6QIa!Vn z85bs05LeWxlbL%d*=5S;5pA~gt z2O2Xl2{q+N>{+R5+lTAwY7uDmdn@3|YGj^T%SQh#{T%cwf>?o=(@lUqBovG4 zK=J1lTjJyU5J1&A06Rg!3OvAArKgUqV+Y>8t8&2c0-~7qXE+w*B_Jqr(I9bvW~ZG zo&_4jfH9$k0iYemt<|6>=Zvgk)hFB%7RFWIH3e~RqpT#KdmM*C8O`fq=0&|U0`s)W zZWvwQ4~0RMyqhD*qG`&E861Vj$c3Q>20|4pERV```ljc*RbRCy_o_rc3la!_Yn9Z2 zM?9kW{#`|YNOVxcID797;a$WP=gVCZ8wLA49_2_`Wg-F;&jxawsO-4BO#IsO5r>dK z78=N(ECV$VL6?l_wUx(JyG0HyoWQDk7}CU#j9nlq1OuKaiKU*{JYstjOf@MMjGo2I z-B|5QF=hcj+pA|Pi{5!Xm$Be;Y@Tucoa zq+)ine$^Sug6FeCCF@~17lej41i8?Q5tFmk+Q1vjw-rPOs|=(3vQNZL`Myn11^aD?nJ}-y>z46q)0FyvF2VQDJQb1k8q4F=!2_p)@43EFbr)a2g+8TOMp4@dPp> zhbQln4iXp~5wlxT9Lh!^tH?vNrkhJK>LbnWCFY`zv$OP+Q$sS1_C6M}n6rv7mh1$) zqujRwcug~vr98u6BDN=^YMsE~mQa${vN`kraC}jxE8_~nl_LPDQ;dUZILcD!ooAHs zd?-`xHq;$m;$_Q)5Oa&4?j=a4z!Z$mH6!CvNtsg$9?=?Vl0#hA=(-7fgE3cI7oRbklQ%)VbI2}sn83OJN8)k5elLEZV*nwKg!z?i-twU2V{bC74qf+rMcJ?-`3d2c`y**H^eCBZq_1+ z#MnV%u>X(%nE;Y`E3G^H3w;NTl^jb2X<|xV*?Nskj8Nz!H$fBPorC6BwehS8K^Q!U zFK3UbRzkWqAv-L&YoU#FCU*_=$(lnwlR%T83iT8Ri&ZbB!m0e$!2*@56uc43=E$ij zsEst_!+87Vt*QZCT_!p`!1IfUiY!2kqoa;q;oAoN(u_kPsvaEUu!Uha+sRVZu$f>c zYP%QldiB8Ah$72y3dO)2fYBru5rv(C3Kx8P$YliIwrBAnqgI>)-{-^3Fdz%~O5{2= zT%U852qKse==!#;(Nej;UR1P^(a9I+ON9Bg%Col#Ms@-o@aQQy*XM~0HV&Xp$gl=K zxAIuC2F5GzeG9RyRQo7*L^gVpiy66qUi%4F3Bh9|aYE^2y(T(o*uV$*GOw3VeXEzm zCnj65arzg&z}3w^pMSXVgaJZHs9HlYK{vlOA4yY_@T9dX~hSVzsV9XYru@>gzX z-En>%B>+G?9@Z_RD2KS)<}xhgbb(<84e*I&KP z@S!o_n16p^eY_xf_!pPY*gy=`OF3poqL8Qr<{SP&Em}>?G~Gs-v4iSCshkPjzTC&{ z3H@8f%gi_nWT~o7Xr0UKlhh6u(LoHVKfd2XRxosqFJM^D1uya%fC`VcB-*=z8Zd4Jb)qd;C!_ z1qsC{5P*K{2XJG;?}#-Vt;h$*5V3TZ1R(c6j=z`8U~}>G5QgM^Fr*3&W-bnO$v1p6 zFRnLWvf|%2<&OP6I{62f1@9Vd&cR(@Ui{0BcV@s7ErHg~;HdppD$Mc9xEowjJe6LY zG1kp`1*U6njV|TV`B4w8z?Kz*LkG@ogNMz!1de?waRaY)gP9GVZERO#>!*?cLX6}- zA4|<(EXExSn%1!levfKNdC6+SAlXW+3MbT)1S#BzzKkcy}&5*M*2lgLPU?JZeXE(BQQ zcsE9&J!YY`k9T>Am(dha$rwx+!D+1M)obY0n+268fTCFeFM}=+}n96VP+aCN328q#? zY!dWO2U?yONFw#{6ny!X7CFZWrF2+dQ61u{Ef`=%QH=vxIU=2Jh{6F5enm#l=>6V3 zjD;0oyk>-OF|^`}u$x`U1}IPzsoIZtOoV9VJ729czTIewbHz;zHHAm!l z!SGv!^^GD8vY{3`Xl!ussJ-*QY*t%Q=>?bsP|;y&G?phohR$0@tTGmpRTJz*gbnan zLzm|TD#B#R_=iFS_K2w$L_3ZEIP_v9C}m(yRF*z@LX{W}QUTEkRCE-dNKFwTBKCtm z7yR}1o;-1)^D)6!R-uv*AOuizLwA-vlE?$%y9y<>{}v)Te32;|pI+>=WQ{3A&$|7Q zk_klxMudO1dQmT@VUaCkzG`3HL}f`PA{~nu+)Z0sPGC27SeQtY{}IMF!Q;mGh6eG{ zw+seo0)1P?)xi{gM5-MqWfNw@?p_9KU?k&{MApeCo7zT_0)PZo$r;8#^&P0L2Y_Kf zF@FsNWm)UZ_6 zoER_~ArUH-NaK_T*nIIR;KSnK?O` zcR(l#V!i-;=nDL&0zfl}qJ+GvR27(7i>(#MDiv|*BGN3+l&e%C@@5x(e&C|~JAZL9 zB=|aon^D^iNlF3}W9ur7Q<002w@J8;`A+Vtb)P@8K|~AU{+RQAWHN2Tn0#y>Gh{cz z79x8Dl!cbjVnBrBbvX@EBW(37q5@ga(DCl*g|_IaWWd6mD&alexKp;kMEwLe-^Vv| z6$wQXRQ$HKXq;ICD7LhlH<)VGKnaH!MJ(nv)d_3dSM84WM5cXU4*x92-Bt6jBel>m zinw+<1{cdC{$ys+ob137cB;CJz?|Cv0(3aI=O-(gV(!RsvUqpqU2%nUE?2$>sq7}< zQGee&b(2_47oVL2(LKg@CQSf~>ek}@!|7dYx(%mn8BVOZe@s6i#FONT z|3@HoR^^$nE0jW6LU7A4Lu8$iVDjh7*hx!6#*+SKNr7*xh7cEQA(I%sV_!Mir|kRF~TitTd~8 z7Z^X;LRSjkSi4xYIGrcezZz%$C;R9*tC>Sle3S6`F8-e#SQEOtypnL>v3m4Q@tz;* zII}5n$UIz)9|)(!wzW6=L!zX3M$~JHRE!n;lXYPpttZ-+gQ0W(=FPwj^Z)_ zAO$59*KkTTKHc_V6OG%fyka5Bnusowk{hQ;4cFu>%(gwQ{%3$k;4}KR+Y>Y&1OU?t zfCd8_^64SCuu6T)%1@o(_0AjkJw^6CEUoGnVKQ4+ky;ntqPQCwzrGF_t1Q_5 z#@3vOU}IYUcX@WRGRq^3fWnkTKh_;%M=(wtV=kP=%*MWJpL6_Wz!22MhP2C5oH}Q< zz-^B+TViyPrFZy`54PH~XS$giDgj;g0d9+Q4~0y_DKl)&muXKOD;Xi0Qp_|oSOL`>TVR2$-LixJe367%^5*Yc1y0p8bwcf%NHW^8&+qcIXX7h)SNqSG8D z$h*`B?`wy^;vOqVnm8Q-R%K2tsIGoj_62FMUyT!yL2#JP>;k`O=7OL?X$B91ADP7` zLytw#5-Pl0G%Qq&rS{6*hUVi>cVnEH`LR(U^m*rsIRPena|hgCX-)YDj%QYdY0VK7 z1}x~;p33p9tXTcQ53Te7AZ}s_{_7lE+C}!<@n;AqMFG@p=joxjFZ7>9)j2X|7AtB9 zs!7=2S_04o4MU%HTrl4(7{`HVAgt^)c7rc^2_-7YEfAvz(I;^A?R!5UNj$<^xcJE#S9cD8uDPw%5+ZRjkt!8=I$Z zp8=Pj&su?KxYsMeV)cd{4=HIZ9Wu0!jR+N>JOA@qZUtr=1)YWR#UJIf;!L_cA8#tP zrEDsUF7!mlJ_avNPJ+{Fem`32 zJoUfYjQ{V?4Lu{2VjD`-4gA_!F!FpWniRH6XK%oNv3&JRu%xu^LmLajLY=j;{q=vg z-zv(^H&Iy`ckSCA&P~2`^w6qw2V#-;JgurjGmTHs>}&kd@Utq8%{`MrBW$LJNnt*t zC!wO-I|eE|v%`LGRGcShl5N3S-SS;Z?8Y6SytoT>DUve>3r}X-m818%`QhVA$gY9& zZq0w<|5*!!@H?ICa<6R5mw`TJpPEUN)n4=WZl1dH4JW~!?_1kFHuK-7pa1gT^L+-M z#gTve_~+4LekC65U-)F8_JA28_e^3d%yI!}OAscD-3kuWDvPXH9={zdmp%EN@#gzO zy>!&3DJ8ijMePw#GyA>40MNs1fWDJT`w@W4{9^fa9N!2(kjZQ%{zGn#&yBZdTNYcj z>R*q_Lk=(bHRMiB>^6y?NF}lWaUn3|{_;s-v_1**arm}svft_F#G&E%p~Ej@TM}_) z1fJea=i2K$*0WZqlt}W9#E*S+7w$3T`&4@Z9}bIj{-I^Av@v(j5XRAl-uskB_qnp} zd7!pD^{6=UE;p7Ubi803>$d~ajNmFt+B8On(zaUNd-b2z?|)j0)ffBqw_n9*Ja&yE ziK;<~ADnU4eT1ZUv5VC)KXJN=``ol zAq#yrb0k+&juw7I7NFT7a4HVy$&`MraPfAq^;ss3Wa)15<0t1PH@IuvfiNU6PzKEY zsb$3A{zC`eK?QLEBOe}>yT5N(w zRtA~rT0k(k%2d3Qm6Z+H8~eY+b~x@5v89ZTjX!xf03HB7eFl_@ZJmjI3Wu8-8IiR% z;cUInrnW~WMz?nl4&NUg{{MJ);8E=HkBR-CzyJLGw{x*mNXphvyc}grO9?6z(^u8k z3hkv&#NDR==2$awHrCn!;A>OIXxB%*-5!S@PnbV^wocTdf|~8i z5~m9w1U7|Y3GIm_cG=L6Czn!%n@}Q00J}zU{M+%kKU!vUczqrwkN}O$Dc*nahq(GfITBP+yrz&dy91c0Ozu{g_66x(`gjm~wj3lp5g^GT&X|P4G6SE&_0E1)vTy`h{;LZ)u7CtjMUdzLWWP|XQ_c>|dWWabLg%^?C+l8D-HE3u+XYum{*bVlgs z8Uf8ALnIL_)u?CfKsCZ*OC6eq#kr_0gs=N2Ox8R2w+S!!#o-+Ys@KQjv63wY9U>Kc8NJ3_0rJV_+ZUljPCf4VZ zFFsySXLbylg%IPcM9p=RIj3fi%8y_Bb`U-eQr*`OscdW+g&9cFJ|317ysa!QsyjKQ z49Y;X;E!wznDb9MlA zd9s~UC}!Gi+6js0OvjD##cCx~z8%M$Zdq#0oVU8(>HA+!+JzD;)|TAa%TIXSRq4$` zyOO%JLYnfrCDb3f7{0o-_er0}HQJ+(xs9MJBr1|?hBW7nfAgf1*_>)fE#1Oc5tMup z9Fz&9#T-%)yppQ)e*#S=xgTYqI^`ZmowMwX3YiFupV?jc^>YZ%$Nl(>5*aUAjT99m zJztA(k7jw~4IeTHXST?du+1ig+6-ICn_On_rkx)07yALm>gt6>)w?|mlsRD$j&b%G zU6=w1Yx)FNsWO9;Jq?1YMpr*=yBs)iQbaSl#%IoMeQc}XdIITJ#`b^R@dG7K!SdL# zTM8$=^rZL7bPN2<+d<GAz<>q^^rD;J>B=pV@8BN*w6|f%=1egEJ6P z_^5I9@0UeAj8m!cT;<#B1SnUj7qqa70y_RaKKmU9thxhWG`ieKV zJwd&jbdE7h*COiQ7rcFyzO*OyLMt^}+$@Mm_(^Iay@@Ne^Gw18xZz0txX~Ol_SC17=r5YU3DK^7xVk@cyO9Y!hC?c316fRh$*NYV zAQlx4O}_l#{O4p|qr2`eV_Um*=|c9MoULqQV{UMCcM8D*IH+lV5e<@PHyAUQ)6^W? z?zdQOAoah>i|H-hy)r8atPx|HlV<86^WdLn*I|!zMbt2j0fiH29JMe2rqW4)z}~^6 zh27B=!?x;wq9)&>$9>Nvt29sVuyqe1ljRLR>%*qaCzg?cA3JGL77OEH$tw~_JrI>B zH3v6ukactLJT%{ba0Nr3E-;_D^#19qv`;KI-APkMzzax0Xfm-LCW8eFAW5Rj6grog z1geH1CWVC0>PB*2{OJl(P^LU2k`*-bya)8&^qkp9CV)w8XjK@!oqMSM(UPfqh9-%O zqmz3cMkN4z{k+Fiik=8TBIB7F`=Ande{Egb_6_zS37wqVF%0l#k+{xr?CH9xrKfzL|x7>3P6iO`%!j zk3+d!Nr`ynCY169L4i>3+kYd^KR0&JBZS@ihO{1#Y*GvwswI&AI9ciEWk8nM4_?YM zXW~r10jSxlfV2=s4Hk6ir_zJl&4>Vp5#8{rU!!28U&82EhPgccT_Yz!YNtQA_o~ z^#c_y^bef&fy}!w9{6Ov#~0W*?xn{3QXShweAb^b_kIgio$45<1hJeZ;YX8{DFKx2f~}`a+a8~ziJP~U!^#-HbN!s+c&*OsiA#g6t1I@D>ob&6y`^hmJu^7ap$sP<$ME=|maN0s++YH( zBox%25}k$wt5@?sC#JkGOJ&IAcIslW3(}x8ctFo-s2gG)tt7VnOobWR4wFSp$$?!m zjz8-VnsTrNK;VuII1z8~!h(0%f+txSTdpVXSsz!aXnHFd>okU4S`2`&dR^_hdK2VT zAsF%{1*J3Y9Z0wkHem_{O~({QriB?^!@~Lb0RfpxY;Lfy+(IXmoiC@4@0GJGgRmp_>8JZyiD-}6K z1rNB(78%fK=_=>ol_aE)7@W11ecpieosiUCfzz|{zC;Cncjsm1PfyH-^VO$>5OPC^ zbk(pVe{HI2EEVD0Fxb$CAC5c~a{qmBb0Eci=fJi5d;Bmq^kRWl6e?mbn-}6k%vslb z#+EIxo*9`dL8Y4IXpM|+pnJ%C)rJ68lwmY*Q#)DoG|~o7y)>y8>dB688j{_2j<19yi?CNGGRg2ps73Jco_g=mZ9CqfI%hj81Sp+Xo@PT~#vbGC#< zzXBWB{i=Am^Q>ZF7pR_?N46Oa>0YQ0t!)l#sGxaVqTkmUr>`n5oROS%1kRt4?23)| zGvzJRit|71=kv&A`!MSBWCNzXlJxm;d@>52X-w*trkOCDT#X4d2}K|3KxRUry>B@T zstF>J?-f|#0M_PVz*xdf?oQc{{b^fB7E7FVC&f^9HmX47_C+?w0v5?_7T`=Ns94|~ z6SSqcrT%v(H5O?bbV(Iq$@z)-t9AJ^DYhoFxLF+{d^3jLLGvgTeZb@ftd30zy%4lY z2BdsP+V&SjPvkVt$l+PBRRzJNVTFJsdFN`=I!{yFDbRLMQkP(QrAO!?yePjw(rco~ zBRJEfCTeQo!3{*#3!h@9W0rpi(O?-T*Bb}}4oh%!=;N+eFAZ;BP0R%Vn=)DyR?WhNl2GeHJM#i7{< ztYpj-R7WRA%^~M!ge17W+9TO(4xBS1cZYYB#5c_&JbuTh5A-@&>f-^DVKnfIn+A{^ zDENa~W+-ZYyIBrVI^0JC9-yt$)%#g@?fDKwar@>gHtN?%z*hyECfkdf<~g)|NH-Mf z$~aR>a9DAaU#RgNj~BMYIpr9}-}j%-*s@S-6W}SENc3L;My?P#7}oQ3gPkJ+R zGS@WA-D+1nQ`Tx~js3WZ+S(5n6*;rD1@KN@-~5;(Ios029iBSn+$mkG(>Z(}Mr~0~ zgH@)zv;rsTG!=$l=>^{AYzQ89DsbhZmSMYU=^wc;lb>p+;6F&aiU&Mt~5Dng>R zp)pfM4j&p-Z1Ia;LNA0n@_yUT-Cu7ZnXop zIoH-MIS>ulV#XWFzNoe^bCynaMX~A7?I*jxp2GiXV(e()K}Yat`q_J{lFpi|rD33- zQK)2FfL3~lW{qTWL#O*Sl(f64)l3b=$6I8x?^6S6(h%q41|%rvClsQIe^RGU(K{Pm z!JS-UNTp=$%c1hV?PeAisbp@lw80l-CgU$#*5%fkmMc!|A z<&f=E8IjeKYw0yEBMzQ4Xet>!C8xONXQyozrmkHSeinIj^Fx3S0>_sbC*jZ^2z`Y0 zyu~xB&ux1rdjYOQpdMN?$XelJTc*=OroTv}`&`&M!8Ek>Y^b{FdaIcc8v$TNHps4f zut}+$KcU@_81BZ>SxpH(>=jHdFa*>LeLorh^nEB#wDhj=aQHwM{aRbf)VLfQ^vY z2HL8Kb0!GGWKuUXG}yV?%ziy$c-`g8uQx$@Eaa$T<5$P>{&Ddt`+_1z0S@@RWmb_x z>zBH+XmPw6P06h&rLD+rD-kY*R5ra=fXL&E`?C~^$qxo#Bn{(h_p1kG2%ITubuz~Ti}1f(rk(c;8O`*OF<->ELI zDbtL%aR>P#)-jEa+%j^47%9P0Gf%DvIhSHNBW;ji%EPZ}LLM2@j~$mhnY|$B5e4N( z@;g}1Jvq1y54vh3OyA+A#I0$!kh6$~)C#7**&@5^aHTtyCFQkKk~V`xMIPhF=A~@v zXy4twtk;oG9UQ_wvp;ET1x}QcrM_OUP+|RQ%)^C|W`G#qv%##+J0*k&E5)_Mk^&m2M2&f%&1(@3k_zjS&lD&272i;V*bH5<--B* z#t<`Gc0)zc>6E}=e>=^QNAZt5I83K>IHodZ7W2;+8zhYJ-1)HuKKv z4>}XPns8Nlb7p?_p`_Yd+ivKSSC{%ippjFdp{21kT$_&me!zLvld5poNfmQfS;?%(fY1d<40P7|>!@0D zWVmXPs=)?h)4Zi!u%x-rVZ?^lQT1x**px2s*YOHlXkZiCjdSxAq`R`&8Trj3|7PC{ z68kHkAl43t2Tn-XP^|h-*((Fb?oRC=@i`}{ReyewwW=Zr7-6I>94MaHxlOcm~N>0Crz7x3` zd?ubD9Mti|aS3^J@c}}?{@3>Qhi!&e%gFdW2e=nRSbX_~*8ZKLj+DP6YiCJeBVK_@ z(1~DS^MBFyr=G?cr6rVQ(Q~_>Z69W{ z##n|Ezdh0X!Tn%(AYVXy#K1fx=F%g?>PFar;bFg9$d7HUx zd41!#SkuGD8&9n^obPqGN*~;2E+qU7GG8$e+C|*?P*v+~Y)aWwz{d6;Z~lm;cifwp zb$In(!7Bp_1cwA3d~GwN>9gpHn7sA6j2VI>x(bOSI zH0Rk6S(y9H&i*Ta!~|P5$13#8J+C71Pc-)ux}Jh4fNw1TxAfn;maXaRsGWo<3!u?!rM^AW$EV-aI-o8^EDK&Ux}P#5 z>;>k6AM!dB#0D3BvfQ*loOh_PxEh#3;HH9lxJwW=xayjV+PXM$V=ze*S;SZNrC#Pi4ok|EYOW%g9h5 zi3cjb{!AlR8j~OFX(kz(SBoZBV14D3+pj4Lks9aJf+x~ha+NHoyZAlo=-6}&tr`JU z!eFFg(DBHf9zZHc<8A^4G1~B=oG)OtyrfQhsl?1zpERuCXNj`waTC%WBhm1?jHie3 zhtyk?DHLhTJPh|^Ex}aENk#X!o65R%4^}Y&Q%Kjr4oJHdf&9l27n0&Gb9V2ZSaV*$ z40$Q;L@1q@MJkd}Ck4j9pe?^H;|^to*>x7n$hwawFLrRu6#m02XaNU-t< zu=rhn?QjYfq#UrG8IL|VSf~hxtlK#7$*eFt+(JaMnqM3(Zzm%4*_o66yVkgDf}v$B zWO3;W%|hCAVkVR_m}L!&ZRT*3$_b%)a26wlcnXB|M6O2lz$)RoKILfF^T&1w z`_+#=2|4AWq1p@j9=slA0QKRu1zn`rfrw6mlE*~XkaKA9i4Ohij{LHQG_nEEa6u;x*EeoQ=ot#~bCR&~2^=xchJxiDEOZ%ypt<30l zY@8H;eN7gT`_uZ&JOr$cYvT8=r-0<|Do#;;UM+3+kq~(fPYrxw37jbs>Ts)OzSG&S z*>$nh|K&Ar=Ro22N>t41m)LRNpH>6zf$Q`{Zq&2=gYuBb1tp$A%*JoxK+Gmzypo>5B`A05ugW65ZDk z%NJJ%MtYKT3(^Z{3KRBSjSV6V-59OdU*-zrM%L;sr^4UqWMv-M&-SpAcg=#XPI2tb z0Cj)SD(HyL&OrFd-3Yl(6(&-FAW!_hv17Y#R*{SLrs+!NM{TbM>*1{`8Ub(eZuI>F zoH2+TEW`J!cRe19g2Z1N9%v)mw8P0CiBA3Qc~r}3S4J|Kt}|+7qW_@Z1bnM{qvXTR zWMlfh$kI&uCnn!qJ145JOR-BWz{>NQBH4+mko3VAgS=c*irvB=VT$*vubZjk}6MACkEc=Xz!_xz=2AVi(fwSC5+l{?1z6; z!nxcy1-2uyg}K$pd{};lKij5*{O~N!s6D!QjI;};*1vLy6;WH^m=91op@db`EB4-@ zMCg)<8FWOzlhX%%Ki1fnzQ4H9B9ja`W`Zb3x+3f;&+5bL$)~5s+E%!QpDtc`Ri<#C ziy^m#alEbov=y>XJfx*bWs z5R{qHc&4-a8m!tgKg*)g4L%vL+IvGoS{(W?!P5?mVLuAaR0MxlZ;$P&jjeE%_ zsR&1&hcnWMDZ)GF^O%+;MFAxT%-Kfuc8 zU}hGv_Wjo9(bY^%c9Yvdi{4D{O6)F3tW}b^JyONo33Mi7b^hG0kd*TespM6CrSKYp zV-FE?fSza9On^ShURnouscE&j$)Gv`ucUI7s}h>++u&IAL=7C6 zi#BA+?NP_bNj5Z?GS|zP(cS*l=oWSiUN z6rWs39eTs|P{RypXZ?2A5TbKAzB4N1vsmq0migj%9arS!yY(ZbzQ1m0{G2ZNbFr#w z3f^&kl{1>N8~z_QCx)VEcep<`j=+`@qqdn7+Tg98LJ^X{{03J#Rs*jdweul z6D{`O>vF09i3+~Z8W_gJlcdW0Zheh}0Tn*lvdj3nF}-&)_)-yOr~t&6b6uni2Ni&t#LGWANto^>G~aqjZTYH|(%K)P_0E(Xck7_w zYLNwb5ZTi9nZNuE$c^+slkeD%k`CODlLIF(EwmnjP?3ICU z$smKv=S0ZIniT2Iofd>Cax; zpuq}C^9$A)9$Yo`NpIeX=ESIZM*dO&+_Xc3%ufP-`Vlf1O`<$pl_-e81(LMrn-`7G zHC|@33N*wbE=+ciDLdi$j8BK1j(obqBur%+bo(fT`OvKnL_Cclgq~}?G4>NbVwNhC z^0V@rC$A>|>5}uaVp5c^Ol(f0;UJt~A%Pgs2~BcT^?Xj#EOELDNRXvv@PauQ|4i=G zjP>Fdqk`I)Vw{>K;r?Z7&ydbCNjFN+f8WMjSMIP`*)H?U`9Q4<{dKCv*AG~JCs=PF z+Bk5P1xQUbLA7fhS|SVF50=)bla_#uf`Vdpj8`t4f&(4uKIH`;6IE(L^e-`p5t)0*wd~-1eT<2!JTqHlB)iV`fX5 zNin&yLOr*p*0sy%DhIo%9dRmj^9m!=CNmnDd-EVUkjsXpR^TqgP1A$z`sYH3F!WlRk;F1s9A73l_7zf-bh;wn~r^isYi22hZ^XGf|Kl#D^|ZEVfvW$=MK*n9!}h^SP$0(7E45^5v!nI#6aSxZxjc*amJ+NOy;@ajXVc5mUL_ZW#L z-m>>N=KVA_0OGk2B3RV4-p91imu^Kye@TW;F+2KEgrU3}umtZw&b}~A%QwmWhUr%F zzp>97pChVdfuTeeYywn1)fHYViLLA|LsMesB5kLFUEk}neDGko)+GT8&sQ8}`Q>%v zhX_lgz2@G`&94W#dLbmGDp%)oK6iHhtu(gn63I|JK!r#}Qf8MT=oGQg*4i_s9mzI| zv2$Xj*+V!=cigBIcs9FuC6iQJMW^ z&WGBBJK9woP6W2+mH`XUH_kFm?Q3rqd;JHA=-%hANE0addSTo4gASjNKDc1Vy`Xv* zXhIn^ETUMM!ov7ZBvrOkzUqQghyae!6pLWYP>;GpRZ&b+(LFo;uPkZnCv>TGpqih? zi_mJ;uHq}xxxrM%9U=y%G9~H#E~`ZKXev4-B;7|ny7DBUMS^nsd)i=?l%b4*8cME`^C8#gedRq1 z%02tawT{ZI7Hfv&DuU{5oYuwt*7A1{l>wb>h;2y*Qe}}IpthvC^{An($zK!;;3Q%V z!#LIX=W z6dA;0rfXYeD?tXsx2u}!tSb}^9Y#}&1sXz(9J2>Y?&d|OC>D2$D2@M2e8b5=^h-$Y z_U~egT4SZjM~Jn0QspI}BK;j>UJcy;-MC1kS%;LWj5UyvQjSo@?A3;IDn8CCr{@^w zewbafHEM&(^=A>2)=n&h68jn^ULnC;?tdYvk8{O2+;4Y5eK`2UyOfC$J0ZE*aC;3Pdhinov)AQ?<}Vp z%a!9?E-G<=Ck3F9OfElnr%?mk=%mu`1OonWGY!l1RB?tOb3da(-!1~g$W~khiM*wu z5~`wYWcn$j*X6M&6bZ3~*;p;hZ8ro?AA6mPw2p4FLK-A+=?_85TH+s))W#pmIkFi2 zM&Zp1R`BXB2^dpLpA9r(?uP+{(TRMVSW0MHdnhX*uegeMW!lRazd^P>!#$pjmqVn#<5`GmVnrZjriJ zm959zz_nb=q8XLBWt|bBt};=j8EpcTsh;f{~F{?DJ*z5w8a&*N&z z;#Nu~NroHvj?&KEWQn<8xi4Aq$&2mAjJFqKxo)!_r&Fya@Lr64LCzqm4MJ!6O`+Re z77dc?+gLq^RBjMJ1b;{AuRRV>YOe@c*tVw$zosqO5Y&9fNXM}(l&&$-&cwv% z$#)vxjI`c4mG9ds1NxIoQ#1-Ph&;UU6GPMNca0cXL&K~a!jJkK7@3L>2UgL8-Q%Ll zxpmDlNrp7m8qTE$5aZrGM#t8ICG^cz?+W^{%)=jiW$GHPEZ3R1%P&oR6T$fJVddiv zv+VCEtbbYOYij!ctO3rGs!jM`A(A!X*(h8i`?J0j0QT~Wm9o^Wi)@fOlJiA$JIner z_F|qj*GH>P7Hqv2kESFOW-~i>p3Qv@f-uWi%46qIzc(b3AYlM2Qza`oFmFi}kPb=p zPyBh0$#YAVX-p4-A4xGRmfP7Ng+kFAO%J~vtU1B;95cjCwlpSHwYdA4K~MssXq3uy zVR0$d;hpl`jDdo8MVX2!aVZEVar?h0M)L2c&K0ya!Eq{cg^ZWnIWe-rddpxb^}=+b z5t>GKclE z#prREy!izn$3*-fU*q`j`qf$Q&7|1HiY$jBFHdh<2i_iM={C1)zNl;f4*?RSvlv;s zy|uah8Ot~*$;F$U2upe(!e+Jd;lYDjIH=_n+H4CZ@?3l~InK?2rgKxB!hII3-I+B{ zFY}82Oj~e>N|s=?%MVgRA5kxKD$!M6P{>N35l2IUGuZ&^2DzPIHc%D?5_k7g&aL$( z4HKyw&Ry!imCE}ZNjpDp8~ol1gXjs*zZ7}nAbwi3g;ehv4{#IXsE15{;h{clV+>yh zUKs}C=OP)2k@;+}W$6zhu@YXQ+dSG0ImL8U3hHnd;in4E1Ei@L?qyg@?mX%Zm{&AK z=UnUz!^9%Tl?*E&pNocn%`M-EO)f8qPM`rlL-#6ni#$=-Jy%(5MDIXdRm<~ST)QW4 zH5Zb(`6uL|*!Y`9u9EM6-tb@}VQ!eoGkpb4iZ?vmgLHqLMQkZXY1qc$*Y9X-n67ID zu5YqeQi+b3{3%Tbn`b}ze2boulT6iHMRg{TEu+s#kB3p5=GW%pg(n{kbpZv=59=Sz z9e0sq&E6Xl-Y;h!>ag(CpFUoGINxu&c{uz^eH$p7ee~pCr{(@pEM`0_6u^UpiSAh(?ZbuPdnO>#}Y(b~Yc01nh^I3Ye_Hk)h)^_3x&Uzzn^8b+}++;sKP`+>; zZ={==vP+r5&@fhy#X2a=K|UYG?ZW8v_aKMU8Y1&WVp7|sdv~r$8s)?N<=YPY-)w)n zH=U@)hr0S@E&PjlMRY{om))N?|9h^{L?dBx3ldc@B^F1s8U})GONO40m7$;2Tkcj8 zkO=cz8P=yCCntxNn0cOj=-tfx!-9SYV!qh>`iqt2U1Hoc0*-`068KnHkbFoa3m;!n zRz_w)Gwr!#A@8nU#n)tTt%1Y~&`7+!P9)7#n6(+dmJb6vcqJ$U_{ zmg~JR$P)zm!xcV3mOSNw0>vhlJ9wHiZP2J&uU%r4CoHJ%U;1P|;BXKm7&*@m(4iN|-P+>72Ogy_<}ryIGJmW~6W}9{z@v)j?-{ zdpi;Irr{)|y@`pD74WO7syk$Gp`q=+|~b%CrMYRX)t8*2qu*+#d|p?1Z~XU1mP z$xgxP0y#)G`293+lcBT5XG4Uz481Q#0J3a7Dx~N3PB6D`P+&&HHm#Zs)0(AMS8&}P zK_e#rABhD#)QK|yU2?Yb$uk6z!*T^ucmv@{l3rgJ%cZJew1daOVWLH z=3gPn^s*+MMBHk&vbRYAXUGzZ{se%eo3)Bdu4dbkzeq&zbh(eI$DH#Opt_&0K(bSqt(dO%~q5tdr4B z_1sPSIq=-N8Ic&pmiEky-Z1vyEW~Ls%h{^&m!Pzjwbu{@!hwDLG?|?3%c#3EW!09& zvKD{avkHHkq9=JeF~;&k+HH1rVBPaYg=j_U8j1UB%CpGSt@h9;SY_mf{U&X=01PdY z#zs-rPX8{nDnJD4kM?9pqYSNw_ED!Sjx@uoWIF5`b}~t1n@|P0)baLRS7q5PnU$8W zF$1g=6!NYs-qh#w{JtVHfs*l?e42?zja|&Xw(x?~30qLB?%mg+KKdybd|x|VFp>LR zos<4pv7T+HB?45q5>tFy=Wz^G}aj<}i%ysg4t$T`E_y`k&{!gb~U=7oEd8*o63$@DjA%T!3fIb=sVa=i@ z>b2B)P0Tm7vWz5`7GNw0bte_rHpI0KYa56huZ7i0bC8k8nEeh1xZT#n>`gT z)NTvw1F`1h724FZ3=M(P7_SN>EM|JaYwPMj`s!xcGodVWp>{#hMkON9)E^vrfRnuk5!H zRg2T;LmQW>aweNRoSs?#^{VbZfp6d0-zk{&SWPMWI{{M4xF6Gq=lctOpJi%U_7e3& zCuE1@L;H{}(P6xo|E~x&BLD=#uBN!!$*Mm`+Y59h=D97KKu()(AfdgSdX1pKl83q? zDmj8TBEK?Osxg9<%IIXd8${02> z4t}k}{AFskG0wyTs*csZ_%@bmsH(@nff~HjXq^De%yq45n_*u%PwuI;Qt`f$;JZd> zP{(dG1FtL!C=JP9_53&?QqRcRwT@1{7&5gl6Wn=)8l*6$yGi8G@PK)M+M|;1B|PGV zdJ8e^27^{oIh`5Ba%>bpx`K)GFMxlt*%kg;q%3>%JK9(x0PF-00G_Oc(FRwZl?#Ic z?dB!M!=$=YXbBTm*nRqOaF zvZl!+dqyI9w*0%n)vNxcd;BlO2u0nG_>E;zhx;{Z z7EqNx?14d8k&6q}mv5N+8f6^-%-o^zcmHFevN*S(fYKGjFwU$Yf+;UA4<3##lkI^I z`ko!UJVSkE!4#@N6nX46(oH4rKag3s>k>_>B?eXP-d!OW2xnD%-;5oV3(bV0u z2~JZQY!?h;`>r0Q@`Uunj#{H3Rl)3c(_>yd>sf{Ve3etqPuAs-S^WxZomfkQ%Ul8# z4oTjB5euH^g>B%wLINZ`7;W3#4?G*=&NhJMrTp^M-T|^ypDMCs0XRNlr{6c!Ug*(l ziZ2A!Tr2g)LabeGY2UsrhTIY||J2EtjY&sOSA@`8G~G0|PTwn3cQxp!i6~}b9#lMj zHs&m^N-7yxCvnlD6{Q>Kg%9TCm7aLf2IjsflT8JZKL?GxE&0ZCs5GsnIEIgiIxPD( zClRk1lLh212GQbA5_n{qKhKsu2216uEeAE);*4PLdJSkTkhH_AVawAqjrv<=k{+WM zgSAISau20dwK?+gSL#$;uCegDHrsVV0==#! z-WuGu*Ap4aY`ERA#4(ET+&zX2-*RX_*b^5qe>zg);(EQgciTPI$f7maI6`vLtimy1 z{bd}gs*{E{NcF2a)TLol5idQpFz4LqJ7Pzr{C73ZR9)l|JF1vi>4ij{N8w=?j9<3& zH&5@~#q`F!ai=t$;}~I)fKl$x@@MB+w0A85+tl^&W_n26os0)$kW8a$iue87+JCu! z;K6w>nfy{*e5aAl^;iG)fGSL=NxR%PQPrL=@VvJy~;~)N_h- zmsa+)tfUHVC5NDjsqb~NqR!Ye3#|fb!6iWgW&E^`H7+F}hpU(SWj1Fwjtd*?yYHrI z6T#(H5azL>o6hfPrR44D9o`ud3iAn?TMIuPFpQYu#moCN6guQuQDs0C=(`oX)+3z1 zS`R82&4yDa{Y*}lXGx!im}diCCsQe8r`%CdjDcHQrSgnXI7VeIH}?w=oX82&31BN$ zt`JeK-*y~ii|+F9NiNxKi!-j7o)N)fW`;H@f$ZLjF8Z*^TsQhu7Kzjl zrbY`h^LSWqs?4DU2`9W=jnS#c#Rr*`H_Fh#W)Z4%iLBG_E7S=C&T5^3ArqrT4G_A zM5qr1h;K@iyYoDCOCL4Fri8nJt9UbO{THtHz0bjhcz8VmwRBpdpi$xvK z?=ju0Pbj7BybQ}E)JnX44{syLu)jJn5?&VHd@f8ze^Lv7H-{;>XTUu?&DlG0f-fJ& zWuwyq*3$#u+Z9p?+5j!)UuJ81-lA4u-ONpLi~uVUz^V1%ggq;V-Ah;(2ys4lxNRc8n=-5T$E|}m+w*) zNLrjv5(T~~lAM{GfA5En@h{Gfs$?ff2?&wk&Wdq21G;BJ^hzNvC!u%uyHQUwf>tyaqUHK}Q3CO)Mlh=H*8|Q-^z_(R5A5ANU9&IH+m|lR zX}jD1;XwyAfS|A8VPkRAGFdCdH+zP}&y-R133tar%$AE7e-TRM3DA8Nu?4#uUqg@% zRDK^;IFuJ#P!#@8=l6K}+?;{8_=`-sFkX<8?4R%NOhPMdM=OTB;p)ft5ig6PhoU`` zoz+&;*i%(oD6Q(=xvh(=(u6ApMD`FFn68MQ>Y}H~p?omL%bYE2Ua=lUt!w2zMP#02vk_(8yL7L%!A}p5D07(73rq-*89t7cz4_xu-Td!DUjw(df!X|ZsJa$eg%s>Gnc=<>*-1@f zt#FNpR{e>WNWK-A_HvO7_3x_wlh<0)jT$`@mE6Bafb z!`(Cv`(@N%$cnw;-;ZIAajT{&^^Mt5Dh)9nSRwGD&>*vu=2wS|jT-~G={HFhO`T$K z|Lt85KLLP7oA|yyVUN~x=r7a90=clwB~R~yzL!4ABTQa1vn;1?MWOhEpbXnXV8F0d z-90Oz>b2~P;hBYDD6#jXSaMbAVTufH!t)vvyI?DLJY&6LsK`Hhw&uQ`7p-NQY`v;? znaNWWJLH{5n(U(x0*A<0N<9>;m1nJmv0{Vw$Jjsq)p=d{0`cfz9Ldr2 z9bEfNr-cz_kAxYcxo|36CmLMt6yk*Ki-po?Eu{iHb-`N`g_I@bBQYb2wG=iXS~8RE zNfP2w7)CE)_Kwx#)1zzy##_SWLO98Zemrwo34oiD)3VENoJesvMXlR z$QFz4Lt9Hpw6s0MWa}>ZlN$byrL*9QvTNJ$G(*pjLk}=C!q6$w-QCg+(v8m0-CfcR z(yh`h4qXOmU{Q+s@bRwo{f2wpd+qDo$90^CoTtxN$!s!xH$ zvoW|b{U=&OLSHDq)-`j9tPKtiy1aTo;y>dlUsl3Dl=o>Son%nC{eJ04>0Z!!L>n-W zY53ui1pS69(*{llxZsgSAIEOR49~$EP4a~Wvh&Qh7ET5*#umtMx%`OAEGWqv-8lR$ zlZL|zacG4QLG&!JM%dgCOgPW`!~NK8zIi4ZFOeiia7HzRc?}{N4*Yyzk#S{VOXm@5 zE@r%L9tdMI?EwAb*s1Nm-KlaP9Ga?*A+MIqS1l2{UnHD@>~7aXQ|d16YLEVIGw!>4 zvt8~}V%D8aAo&nA-|dH@_hzi?!Pt3|5W?cP0w;TC^@L2^WAW~}_YW}IRD0CFmDc}l zDCqjo+TEEY*_;k8QEza1an5PSnQW40A7<2M5ur;aL-^`Kj zG)iKgYV0`rJNLr9Y$Wz5(#Qx{J!#81?X)rBgU!@-l}srhQwnRY6!Ko7yE8%|GZKrY zeR#!|dle_W2emm{R{mZ)tXJ~OdQtl;U5amqIkr>Jqtj)UwYhb;ZPArY3mkWK!y5R5 z+3}&6_85>KO(Z_HQ{mh6_|7V;v9)VD>sLHLual#o3nUiF=3M-OtmYU|K5t~Tr+d?e zGy3r9*NdEDlT?M2ru7f4VcvyUE`@IC{7d5Z-BR~rl`_A>y;m5Mu4yF{NZbwjINr2t z@K$a?mG!@w_}v}9wYki;oW53j0~>Q?=tfkCd|KaUC*OZFy4`dupj3T|e6BKkbj1I| zf^u~EZOH=QCgZcji@|DH0g?UBaC>B9>D!1!iV(oB5utFqt{+wiFr#poLyO}Y+& zWNwpjSo?T@${0-e&);~va{;n(?Ke+63h8XN&h6aU6!#a4?r?nArnam!GAU*F@r}8- z%iM&OO&b8$j^!7p2PVa&q^6~(Kg`O`$<50zD9rwUgF#AGOi^A&eM1_Mot?f7&Z(!Q zbnB*-kPsLcl9Z5qDybr*f|)Z5&?btulZSHnk^gg=rdH0G~S@&h-ZGVO1 z5jVaCkp{<-5O~I#8VzgJ@Afs}iC|)qOU3wl0XiZZspJsc^b{G9%ez9~nwI<3lRQlfZ9c)_h+hXDzI+=!j=F0MzIEAXeT|b*uL~*+5(ur7o&SHo| z$X|yYjYIbD&S$GG;U@+aV`E9^#L`I-)(5e)PvKn?Bx*M1JA-mY>cMMN1(kSL;z{^z5g-oJ3gg{uL)UICp4tSEWwx$ReQGM_ zD@{^bjpM-TJ0m}x!11=M;Z>p#D$N(g`}v-3B`50*Z%XDP;*7;!6=qZ%~&FKm9^DbR0M5=I&6(S+qd@^J*#R_R165sq%l`Y1FSIjC|d{wj{HJ?1n zJHN$HO4N>@Td((^kUV%Ak7m<9hPbvG`VjCca9(VmbzUlh&&N}jiZDhIT>+#H}Ivwq)o6(b#LnFPT{MTF7?LK`Y7ujgp`!$ zrAYgh%lV4Z8(aFyikRQ?+&E$HyviWHAq{?b`$XfVuh{I8o5bF0XLPJRD{na|3rqDC zlHRF_J*f>Pdbpm74VlZk13K5He&S-ODtI4!{(VcyP=u6Ln*UZ1O9zno%JJV!MhbU% zIB0=K=NZd!R;%THTv|}RucXl6c6V%{4QS0ZZVJcXMrc{Sdi*k9C5cJ)Ztd^4p-kXA z;*Tl&m?Q6k{t@G=|KW?EY761~ z#in4505E^-T^C{AJ|k*_(05F`R}E%+W0ukSece$WetJ8abFBnN(QLsa8Kxe6+-P2l z=}>$iW-`SuGfAw1A%KSfKBSD&tg5EXK&9}*;u!ltq_;9!p$j~v;C`(N^X(40wkkh~ zI+&5!0m6(>rS>p|paDRi2U9mjJIm&Ay})W>AC>s)D@lb%49$L86J@4XGZ^Y>MOu1) zXgX-C*XDC9eezK*hGBrrIXpE&$n>z)p}6eBU0pq`X!c6kAA>Vc1J1guwU8?e`Q3Rw z_J4R-O){ZAg|Heb+2o=Ttt6)^@zt31*EB+ORkpyYJA_D?SRY}`Z%LBOs22}^{LVzR zjIiLe4jHF+u)_UwI5HnxRRIle5fO_YTGV{3l`V5oSg87j{}e^XK;UT)HA=f9*7W$_ zS>qkQh}K63RGT+6RnHmL4}?x9Vn_Bl?uFUE!!O60k6v(%KQznE*3(jh3;N^ureNg+ zxkH|;fkdYKt2)6FTB;kn37PWV7BfMh>9Ju%!vi#i`L{HKqVeWJ204GyuYJe!36%!F zIfA@~om*6@v`CKZhSPTR&c%c(l?z=vCrcNI7;~IP3mNxjT;&k3#^swZPk;nuan?{E zgezN*&cDD}ki>n^X3XpsC05!S9hePhHnDu9y80R4LK?gb9z zK|2vDuI9ai<)Q}hcI+>aat(>h@M$so=2AZNIoubu-pn6hYAnK@YRJWPXDpCbl;YPb zZAYIEAQm#*%`KebCV|m@e}CFS!Nt?H=1do@I^M02C=@L8Th+t<$A!TtGE@^x?$D3$ z0wwIOJqwC>&`Wr)pEC1Fga(CE`}e(n1F`SLG!0}N9)tbfCNVc)IrJ?|Ta7mrZt=~v z4bWa-dKde?o6(3>!7r8HQP%}6vvfc%McP9XlsUVqWFj4&o82(XGxhwVkEXZm+RM8u zIwZM>_~FxD4(U5-EH&foaEF@7N;4=kyeGp?wVxK^*WpSUduP)&&U#8hLwkSBzASd- zI|W~7=%2+$cYuPeLw7V&?b;|ex6Q>rDeL5wyR0xLS!Fa0>WTdMjI6aVkz+qa^+a=o zW_mY*ZbEhwpy<~Xj2u~bX-prrmEoN*J_sBMMmYcSH4=s3tp4< zb`e#U`lRzl9&=7V6HzulIRUZZo+xHzwECQ zrmNp|JOI8fcnN&>#O5zGCgH7lM{EmeHB14k!j%4GDSzZGO~zUL^mj>N*qDQKva*l- z=RB?=f^^qH2C>1gU2es!+%jLyRLvz{`l}=TvJum;*xhnvEoT=FgCVh~7a44F*7A94 zn6RQq7mNX8OSO-Tc(ZjCkG_aDoZkF~($=5(hQ z4UvKTH=2^63evTXtc=eo<>krjHhjx|X9@1tNh6)3mF?Z{6M0cpz8Xg4Kba4{M-cHr zWj*%Yp4GHLO84H9-QBnO5Jo@Z;%)QiPvI!Bf)Jp_du*G(^BHH{SfG@^vv+=vyHSe3 zAY;PMm>(P()ME!+SlcNE&cm5@D<M&S7qx2e<8~ zA$m^|i?#^b&@^`s@llr^#Bo|rN{V=d+F3-aDNDuHyGMXMVAt-G8gcjrHRBH)54eH_ z_Cf8EVFhYhg=V&41ES#|8OCIj3NB^3S#kuDc{nkFnuERlotNRUv=!F-aUx|i#HIt| z(~(a`emkL6d*#O`DB~hv9DL6W!^b5e%8PiBPEb{Bn7@bie-0+QQ_4#wTK1xlewwf%QyZtC;0x;0c|E+qox+X@i8}K!RZYk*|4RNCQkDKmC zh@zz<5jZsFKbi+lQkqxlhRFeje=!eNh!}`}M4uih*p1V^2!ws+ar`zL^R6J6p*|E& zF!FPF^an{(8N#&k1A01`Io8j%+)oV!-~ijK(laWP4PipAIH_|!5>3!@wzfmEGpDo2 z9+3A`ky)_F={6}Bf{2UK8|%1Iv!QY{&6#D2D7dz>%)g^?(yl`VHs&Z&Yp{fIkfV4w zkgf_uC01S=mi#J_~x80&K_?cmk@vuJT;5;)k z3}YWEhz;Q(D-R9hAWBr|4XcK0OBX43gn3OW>cqm?^|Y*Dfj3su)0BS@l=ZYW5xla0 z0SLGe(6AZjWM$*X5Sc?oR<#;bL?f3rR}}Z5AY@*8zJRhW7r_#w#Ue$PY631%=6h5l zQZ0d4Gf!Pd@<792sZ+E9-tjcbSh!&L%7da0(ND!<+gCtfLv?0<&@EH^ z=RnWhl6tKl_VFk5Qd*Uu#Lt}|wj3;CqQ-rcgFqhfM@Ep{C6b3aIg1_O%1kNloOrlg zn81_yMbD+_dsNk+qR991k}Ia@xkoR~!>~zKO$j%#x%oCqJi#89X3VjGwki#AO|Szu z+!O&#P_gKuBO3>hv7M7zafBFO2h(^}Hv=$A^O*VwV)^FyP&dma2e{FsrIVONAFigG zvoORWEd57<>UR%wVki3M@Vi^dY<$Ujj44e8Ea-s3@*@NdyNwi=P3ARaD`yECLT=H4 z_r7fSEWmpxxUkh-hvmR)&<)Dw3HAS-6UWAiN5mktm(M$%Y~-3FOZA_sT~U9B@c@wg}>X?FBG3kJKc zH0q7$GnI$Wt?0I5@7&_^JM<40i3P!mH-@)x=KcUm%)wxtgTeaz!4<~HqqG7K0@9uJ0KEVIYk^R?|>D&qH$rX9^tDRqox454C7eEKL5O8)Y@GneG zObv_^g>5M6qKa+rO+CJ2TK6+Kpx}s=MKfn3UhMYJ0BF}m@`ba^bJ=c?CLWmy|72GT z)NIYxgrBJ!8HQx%^JS!Twb5G*AfO(#oc!4uE$Fm`kIhCRwc5tDlKkrUeoG-L4gVyM zx~+t1apow#0t%T#m*l!f?v*Jioqqg{%B1Xu9}|MRDOh@vEK=LMp_G4D!tW*^oJs7K z2|1|oWE&2oDmJMAN;NRukac)d7sTJFw3nal(Yu6WP9SDgB5@`0CXM$Z!(4~S2efBc z7y1WQ>^Wpcr?FXOH%o}xy^UTS%+wFnamW-` zsk$6zbFSjCBIu1tW^L9}tw@T14m|&pk%>oZDwAh0dm};T1$Tu?Rae<3$dT}l#C+=Q_N154Bqo(!6@MmSl~(I1DIgDF z5{C@pIl@^<=8`G-dxieiZRpf%lSFvU_clArvK@sZ2*?YWhz@nW-u#H3V=t0GvflOl z0arO?8?_;`eyhO-|L`ZPRZWqpx`x9EEk889=?1PMv)HeE#`CrY3_nnHmHtuImcZbBcNAk9% z6E{}kB&u#p##SBSc1qfhfOa9=1w`Y61_w1t(bwwo}i<<*Zvh zym#y5eO7e^`~69h3r>_j8$~_PT2+nieBe!LJ2t)fm#UDnkIqrtz7v9~%4{EntgiU) zb>2Wq8K6Ev9HP?xB>#k~cHybs!Y+a{y?z51m7x<1$!%|hT82ztM2R_+m*n|`8Z0) zz6<191y?_!Yk}WMbJrs#WAUSm$z|nO!S0C%5KZJyC#0E&tDLT=nmyYe>yiI{gLaVV z=l(Y#`z4F&Jj;AxGz~-COmq(nNM>>>@^Ya1okj=exGkp?vRV+l=ds*>yT`)-_ zZ#(l!;rbNzxvlYYBg9zzuJ;-w>+%dp1A48}2^BSjYT<~&vmshIpiZYrM-917cJp(d zLDvlZIOw>0%%E3Aw2vK~r2|pozs(Hq@;aTZJR`c1$hn)kt(+H_@9MxD=7;z@+w-fl zZ67xsR%lc0h|<0c@9;7%o)YSD`b@3>;vVcb6w7PKCJGHs>p0fgC!38&oT8dlT%2CJ zJbqjwZCJwlpJzt{s6^kqGq>m^L(Wp}Y>_#7Z3$;qP7x7vq0O|6NW8e&GkPk2x1k3l z6BKQ+dzuzC{N@=6$@ArZL5i(Y0@6g5>+E0Kp7X_mi5vjLRsPq4dj)*r6%&zsa6&K6 z!rK}6RhOeyi;+w2ZJyy<{;0Qt0v>jk>h{pE0WnwcH~rYnmH({voq0X0k0U8py&mlD z^N{zimLVhfsF2%7zS1R4FISyYxC47C+63TkPA$}NaWTBSJb$+?mFDYPmbefHh*{957zQ3FEA4RUN z)%p4#Po@_ho^z{KBr{ozI(EBB9bmXBEk+e1DI}DDF;7xXzEM>*SI)~f*N{{b$j>h= z%TudVt}std#x&A4$2CK}?|Va`Y;19j_0_oo!%Cw95|Sz{h{+ZV?Iap8k48gtGzhoO z1a}J8P%(SXg2ZY3YJ&U=xyoz~v{qxuVG`9c!ytvr-6z7De zfQeDbjyVyf5mSe;E7W$MY&zZ_VKesEDS!K9?Cc^AUErW;;Q}1yHPhzw?*JV zl@O@rk`J$^@gZ3zn_T28ET{8Kk{Xkw{O`_XH9-ny%wH`>fZjcz>r9(gl{cIe_G-{^ zQa#-&;HWT1ZUCZEz#o3dtz|sTRHv+>K=bpWe(VP2id!WAL#jlZ!!G3G(e0S9&S%CDa60@8w)u{C{43A{&vtzCRd*J8SIbUy=AD{NP+tmB9tWMc) zb)Xef#Ti6EL?C8q3RE(JU7M!MzVlpF_ncVG+%u~n5qSST z&O-k|1*2QCQy#MuNyBl$W%-Tkk^^0)f7zx}omVY`@vd7L)es}Hdxv4KFg6<-zdSS7 zT_O@`BvU@OsI_^#5?e898-Cys_ByDbK7?U?PpzcH`fZ4HZ|>t}GRDe*{KMKTfxjiS z8QOsA_=haP{>n7A{woPgcHsvzGCsT|E)nJI9;LD5#*C`eRQkMG3H*U_glFkd@S0?d zTfOg*Xo!sopm@N49IEh>F!la?2L+*3IZTT1*;U?bW8hui$aL{xP=jGy;f zxiXe9xBW^j?d*frY0M2$5m3#Eg}7;_d%Y4dQKYL%v{s=P9ZMYTM$$hxhTbVbPRdL< z0Z6NGfa{5^1YQl9n3X!99AdMR*9nF9hn2s!O>|lKxL3XmPGNst zk63FRlksBjnLs&-plu*rXeG_`IqDZ{E4q zuGU9~egVdtJcn6Xj*>&er0#JpAHz87&9Qp}ORnUvun_x;3+6Eh_trvO-6h#LRpB7y zBiaT3!f`n;t+qJ8KVpOPzbg3Ub@%^!E{NgRw`(twbbk!*jDE&3g{DWzKG^R0jI zWEdJ%lcE$0Olc;_!Hk012yB|=E5aC2Xgv!sTana|5L@bTnKC@=0DFn0^+k}zlNuGY ztlvloQ&$RLIE~n~EtBKDpPq5i_VSbaCdV^(Ah^W*%?$}=`SDGp@%Md`!KtXt=3)df zxD#>MIWNu2nhBsopqOS9JKrWxns}ubkm)86QF+xe6-lonMhS(_w)I6<#xvBELYDD` z-$K+)W>}Q0n4hc=*Q#Amp;Iu)zjr_`tF1c`f$Wfd;`tha4S6YZ>U@GZRbRJU$-hLm zd-~nY`99XLjY@T!zF?vrqT0IftIfW0z8b^_-z5$g8A+Sru%b{VWja`Iyx_V;aV$ny z{+CC>eU06B||G6)TvH+Jb? z5Ue)tayDTK;a~M0T;*5XHTcN#!m>BAx_I&)a6wKwRM4o8U8#5}>D3{h0bTBTT50qT z=gs^Xot~;4A1b9-t>8n$A^3e~55bey8CTR6|HXgBoLfIhfzd5*?>HxC%kh|$gvo$r zel45>52_30teQ@c!-Ry#=G7E&&}v&O`t5|JS*%h~>?VAQy>e zr)h0j@Yo64=jUD{tTIN#UC@SZ5WY32nshSa1c%ONOwb zzqTi-BXvKV)8dWH$vV3~hqWhSSIx&wFH6TITm0iI^*Jfrbvb3sQ_A!DZgxmD&feU+ zd)^f;${!Q1o9UZ$+%=P3Ba+Pv^?i0*=9SX$x>=6E{bO+XIMdT($8L9}+@;r^O_BS^X?@r^BXD1O=$wL5nBe3O1MNk1~QXj-#+ zTx;_izOnliQ(g6^3b4T=^!$frBtBtz_t)y^CnpM3HWu1UY{SP$tHztx2YgM#{_%Xl z)g&(2MJ;EB30%Dk4%T96Rm5K|inb=-{Wc7~i>k0la8cQu*OxRhwfk6Amu<~^u4rRd z{6yc`Or@&h0K}_^H+GhNa#!`>a|+d;j)`Y&+Pa?){8=mvDFF__#h+ zCfgPbVQz9Gu==MI#$uknN>m5%(I$~9xU7Lo^Z{&}ILr6^*g9kl){t`MmvQAsFX5!8 zPW&aGwW-T_Hd`J#pgu79fchHu{Srsjq~&vk(T-!DtG0VWg%T{(p6b-rcW3QSK+zYW zm5 z%O}ZD9|qA$>OXaG?nYwFrQ>voY%W~1jOb%IKB$j?4Zj*WU(E8@X~@qd*mfdAYk@8* z+%6C1LNmJqWH;S3{6jRQ_+m7iqus--jGZeHhInOOe{qGNso>=})=^qwyhoUaq- zeaR|Dm`f~si{-D0j;#YMfD>GtL_{`8-bO{%0g64TQuNCPkkf#8$5MIEQWF#7pNmpo zp}lOTqvv7Xn(NUmg%(YPUKIE!?y4y2u_%9N5YvU{Uk=JzH&}hY%JXocrw-27Xk%))PL|_M8j(PZXmPf@Iis&k z6`D1U|9;H0VTJ+}IZdERZSwh+I2l`@{)-!0TGV+PbSNu`y#=RzpBk&Mw7jeqs9Xfj zMjtoR^#C)-D{!Pu&!h9g9K0wFqDMQhpXoyO0~MqxWs0P`Z?`k%9IR4;WViI>x8sFZ zgUZE%pH^|QfH8`J37^+x<>&LXoo+>9D6=>NA#-5z0iy-Iao(!qz10xMBtu`i;<=4P zKk3`=q>Mw z#>_5j(t0){myNyGG-6gUnP3E6UI>LDNBKS!Wwj5}*-zQXh8T@U*f_w}_HS9(dw;^M zc~Y3Q-a+fc*vhOFE`!OO{lV7*_-PSamwwk~&y@IMXO|!FX)*YA9R2Y-cxD}3kQgt{ zn0tT@gu09K4l%C7{GW=5uYSM5Df3g9)-s3w!f?C~*5=Rel89yJjH_BH{CC2sn-VDV zA&3qE0uw;5H4AwC3oJ_tM6adA!{WOw9h9Ug{|oe%r@sZPfpmyqh)jYyy_42^ZOd(j zjyNYn_d5GxtARMyu%;q^RUP>Wl(Pw=)2g%Pgr-6R{cUwi@<;h@ETgj&rm@;)DuGv< z&M;XK`cT@i4xC($XesC8b&@W5>YV)A9P@&cRJ(}PqJ}s#xq8$=Cmn<5^GbPDP3DZf zKM)KV^n_LZq;u+pJcmU7Ff9+t16cS&*%9scP-@@M7MdT*FVH}802Gc-Tl2KE4XNmD ztUz~p$zqU(2=M;SP1NCzz~*pz3^sbYQH2K|y*rQW+4ATidTdufeqY@5Y96q+oguu^ zQNT$F#sWY+kZad_&+%%;TP%2Pu;>|d_MMv97$9H_YNP0W_8s`7>Y-^Y-=YL#z-^gb z6@+tNCU)C3BwvAaC%fMezH37K>Ybddd5WqiX(NNY3pZ15H5~9EM;@H}fIClY$X4^{ zmiuLrx8`nf^)KzZEgMVK{NC7*T*p0B9XOxx+rohAXDrk>KrPTu@&ntM2wTErJ=GaS z{dd(x%iYnlSEA~;qDj560(YeYHs$hL`b%UtSbe)8>d zHZbOi{e66+G3P>@ETHq;A5t6@;N6rcl*(vtT%0Z2oaxl;T;!6CWmH9!jJiV0JfT&? zB^1gn0aHmCmc056VXuCOyykXk@Jz7iE`?|X2X2P{>2H0aCHJrkGC(7BF9c$PfR#y0 zIju0gaW!x}aqN@99rF*tOD<40>x{%F2G$9RhmK5L< zHMvO%U6uNxiuMilGbgxZ*VNRU+ek?i$dyc@Pk zIqVlwApvtnssP(vkkDaJ1!u6hXmHAV(htFjMx~7!prM%Egy51sr&lvhaXf5vrSj(7 zd=fk@0HbAaQb6)>mU!_nt?kK-QJxj?8kpB;DB(~zw-k53&qh6S4FJX?=_4s3ERHx13BFmeE}6KFr^-cX*M zs!BF4f6@hzbUu5t`%KJ#tV?R_S{8idwZ|%A6bk8+N|@I8?dkY5C@~ zy^}8M`m>x!J3sAlIcMcj|h z>2opKZr6sSCt`D#3!YM>_gcht%WMg*_ng`!9GRCrV#Yb=AE;Tyep8jtc8Kevf%1&q z8j2`ld?Fvo$K!oCB6O$|1l!v@=8Pi*KK#|IxReps%TD~n`aE0qQPR8>{6>zRnbj=L z>N>t|0xU@adQsQ5?(4QtDWZv(t}WQ*Rtcr(NOytP+ej44CQtB`DN0IF8ICxNQ~{PA zM}!y2ELDsxj;7-@J(;v%lD0LaqiaiNN2G-G(N@(Lqb(mbZ zGPyWP1^a{Er!Rla-ufy(mute#VK{ch9QC7I6_SqlV+-S6d3mZ0ra};iBnfc2X!U*I zl`N9v1u}8t*#%$JayOXIusv;hc_jA@@g7@9Pbe+gr|@J2DL{(YfU=B0%aY3+{UQG; zRZ-X8TkD@_GW0DttujK~gK818f<XP;|_9IStWqqD^{PeANq*!ycWOWrjN+q76 z&y?8UxUF|~4pAAAF<+v-M9UZvH-`GX2bxP8ZtE&(aC({W6?B98taRA8d2+w#m)<%n z-ppIb$(^vfeMCADJAKG9GNN_0Q8m1mNt|@AklWt3d3ZYX5rqGrD~UpTkp&UC^;QvE zLb#-xYbkd0_G$QW&*FbqM*rwbyO?byeceRACx7S_oAX8yDh?l#fTpeP`(Uld#92;f zPY%*4KJ3GS9e{~?oh$Kg4p3?w=$Bu{`T zZ-}8G5wNZD{GZB4P^ZbbSLyYeXLA6O|Hcr}E6;N~iEuijnEM)0pZVosY-g{3T7qrQ z?)5_`I^8(>h^N|ALk2x;N906ol6M$V#zh#KEG5E$8cHcirqwy=?POT#dr;zT4(Hx9_oa zV2Ia$`NkiG7eDSl(2sZVihtPt<x`C^^uDS6x7l6R=%k)E8Jp3Rc9yTdSuo{9 zLox~60kHo@zd~((e64(Tt_^hS1Yf+_Pxkv}l8wk0kE{DB*lDkeGyohe;1_ z5!;N+)RY8p43VOdk%Wqh6)mFjaaAR{wzd-52-VT?v1_-}XqWKOafW)=)gz#{RILz( zmJKn%HqB;lXRDt@JNKTpRE!1q}Je`VG!`$M8dKsFib1Va!5ia0@1D!gC(uu`ll@kGy)x11V@ z>+m+u+Yvu0<*Y@$=X^FlTdCl$xXi_3@zbB4+#(Rxrw-%E(dcf<0O$%8pR!9&KHk||{4Uq=1~JdViP%a+Utm@7Mc_cBV5#DWjuTxD9~iXOtie0&BS z72!I_F&fj9Y%a%J+&NH_ohtbZ0A^a+uTG+fmR3ookjAN{a2BFC=ve*6ZtEx~<^W)^ zVl*zp6^n6>yw1?QwQG&BuHwkt$A$yUc&pSSRU7B*gSM7>QaftB}cGxMEPo;R7q_p!t_*#l$_qgl}O^Cf@qYlthShxEMyb4}3oP8}w7yxoaTRPreKP!URFIbi zTf|D}=n4C%^WNC|h--<*+~q@&yVJL$QJ&5UmE|ff`vrq>YuSc)j#J}!t!4N8DF~@C z1t%@@wesND^^p2i$JF-uAMBNX&S4^pVZ@IARLGG8xPn$l_kCH&jtuxk_`c`uW6x)7 z%o}0pu4~rNZ_t}_d-C5WlP_X0aFI-D6-Dn=7dCnfVV1l8YP;9n!oLbdJdDIc$ra!S z&s@yl=9W61bB<|jiPDFKmbt|>1$Wf>j=(It9?F?g7nF9H!d%c^)3!kL7a%>)s82_sqZwHwk<|$IUYv{NtKU36RNtx2l&A zsEq^va$j(&0A6Z!TOF^f)hhmKkX$>P8$wA;I_;4+Hs(50G@saMwA5Yg?Jvr#NDD0Y zlmLn9MOB&;qYdc$hYOVHa*;UfB3p9~yr=ji+lt{6xEu|0t2?2b{;B-vU+1QlYN%wU z$T#b)rZWqj!%)qcE$i_=QN_ zkk*0^2XcpOF;j#|&&S7EY$upUD%FV6ZxzYHu@2zX#N=OoOaROGN8jf+&Lu7cRT~RQSo^LS6l=S#ybfZbOMeSTFRVdz zf?yEpgmHzO2hdW%EWnP2Vh1rP)0X8%^UwEupM%$Pf2hoo*eb^V{J50SmVX*x zu#h1;350qJj@X~7YfH0pxRYl|nnMGFB9kX|KV_#UKf$yV1RIDHQ48;b2X)VFGFryV z`ajSM=VtgM5c{-%yd}K`&&0%x94}YrEWJ`x^-GB{PE6Euily%w>8!|?($8;7?;f^g z!M~8BktT5lzdvUm|9aui0hkYFenAq1JBGiT6t6PPl`}71p^lshmtEim?@xlE;n?>WSA?-?MUi8PWgO;C11!`fPBmo5a~35cd)7_>8tAXV8!> zdq{ewS~KtqCg-T-xQ6$shx+Cy@_qLZn8X8D_RCm6x=a)hz=#iNmuvhisXF5NRY->; z*Y?}#2pGD3Ss5Rv4M%jo9EZ@=rYwLUs_Cx>4u~O6yeU;A#sno9OtpZG*H7ltCT(@E ze3EwFKa!$(q5i=S3D~y}HjSQ#NXON2>k(vKlX4?kBsCgIrIx8wxv{%d$_dMfzC-Ghv1?}l+ z+;1ab-ZFrZeBQaQMX8(k9atlHd9t?*&f_&-t!&`3o%e2411F6ne)tZ&D8V$jUTnlx zN?*&TBumzMYi=OLy1daS`^p!e4M61%Exi%R(;>L<6uXJn?wkzVXn}aa;7HYm@cIz{ z7!(c^+8IZ_K3>k9TycWZuMe~TsLd@q6m7I#gB2MAlc27ukr@Ti9Ew8oaVC4xB8T4; zW~vmo?6u6}*b?|#Eo43xZkOj+2c0?BAg4TnAN^fH$6Y+kB z*7YB)H^+_#xn%Hpf}P0mm(aRE!%xW?JN_Wa8g)G);-6Q)3AH2Q%`j)xIPdrtW!iub zd53?lNFLZZF$6Rp*arRFxES_+=ORJ>?#|b5%YX1Iz^~DD#9y9hk?IOXjEft91S~fx z3%|eqwB*v`svK_9ur9cyk+-OsM`$21@9sEKfAeoG?|cOdzqtzw4OX#U1I>~e@q&0V zI3fJvK%fGSCamTD7E(TgWT{gm5cQGy3opB;8TB47zQ@RyeyjgQGGzd3VVPO!g1D#s zz)=0l-2t^l5dk&Do>|gQ>?)B;P`D!akED6|wTF@_fLhTXx+N!YVLzHDM>^|ol6zme zhLe(TpO&7M{#uA}Hh|25Qy(P9)X7fPpwHybm0`jqcqqM$F}S1&Dwe`Xh5;g1=pXkJ z8z+%3sxT;SISDn8!lBO3L56h)Q0;5#xg6i&ut!Zw4>&KiSrS6b!a_`fT&&laA0I=x zLhd!(in<)EE|JO}JYG#$vMxu`#%$>Dp{T97DOJvmQiQlbD2;;hwlZ-agDI~SgBf+n z3Mp%^agvf^!no(dYPE>-s2MGG9)_)qOM?Pqzz!hVpL`im=z`; zelSx1A(FT*<)YM}`PfN;{X{$wPvOwSRHIs0!9kfa?&59%tYA-SKcH+Rgi6&5P(qXh z^OO()MFB}lcvHp}H{N8R-E~*KMu@5X7|#kEB|i?0q)m}Vlt^Pe^JP5qwm|d_sVA{Q z@2LRA+roh%z)I;-aiY`*T&bDrsbmbEKm@2svm~sVKDtZI{wh+DK_gm|@i#i$&pfJX zjE%+Qj$Z>qTX)n&D7n@k>vN48%19!U^6w^%B8-h)`7!y_QeC&caxqyE7J@${kp`+a zrX>k`$d9gMtv6f$!1Oj({5*%=4C41z8M-r0PY@|iP_{epr@jlMX`;_Mn#tPtN7){! z|Ju$xBG~$9M9KZB1O#pQV2v3QFV0Y|wU#=)IM}93A9dDk{HGtY7FDWrk-zYNRJXHb36A6kMj;YaI<2MYxaU_U%*HA0uh-f-hyhdbGzHyPEGbH(`hb8A4gQS>qu)3YS zxJnj^{(%xrlLzpZTk|i;2)m8jt@-BLM3gKdf=n|~FP^UMV@kuv2TdRKvI=RE%stu} zKpheCiU=T&zu5!hvVI1y+D%H7ir1ELly-tLr;Bo2@f{$X(k`;8lAT%vXm*dcLcl~r zb()bUk1>V4-f0jb!=5-1KplW6m=!^3OVJ#DB+E3GSU;ye8R!r@ChJKd{``(QK&it4 zY?%^nRN5&qfww*nFgw~*y9A;%j-Yvg#YsE1UtlcPaLUx(s?j-0KR!!2ylqTQxC8Wd^ip*WrAjQlW7xxx0|~}{(!v1 zW|@4UI2;I4H4H%m$JbOIakuE>K{1LWRh~kv5iN;@Em{37$@>vQQRd|ysZV5v!*e{# zU^h{;Yi;c=X;YEvlcj0CiEW%J4@NbImQLHYTZrZG(Wo`ia6YDMyqGS7*=9*`qGRXc z95wEMI(@!l9hE7t&#N3@^V!R07RYxoOI=Qia{ollIYy5Y$tpo>v;mQj;d@%w$%pT- zAa6ev2PhU(uTjAIdp7H*Cne+P6Q<}#di~=gL&+4E)X^t~JpKUoF`98Ec2*|ggess2 z8owYOH$<)XZK_sGrbZCOy%`@X=|n_%+osprE3Okust9yL)ar}Yl1tSn$mPL^9AB#T z%KQb;U;$ckJrc9M&2y=CERVoyBmE9KY&bzqVRzSrl zyFwqWsi7Dmcq~}q7RuOBI1_i!N1@j7dX+v$o5px*$XfPMBaP9N2-{yKs0Nz<5CPHO zn|1#a#R~@Z?Ta3lWu*sdPOXfAMwlU_sB40+q>=WU{zs_KO{mxPtkE}=`&GpBChmVf zQLF#Xi*yCh5mGpctA$<>F#>88m>k8LYWb)PT(EiHryWdIa|ByCWsHf01wf)BtJ)A@ zu>Taz7(jMpO8(Q7L7Ohh5-;E$XWj<1(p~>cWl<;FYVe8s!69rxCC#GLPb#PEB)u~R zOx z-Mw@QyRdXfcXxM})Y9D`>e8un3F6WvN(qQXiGZkp1^(21d1vk)aA(e(x#xb*^LaiV zD=9;xNcCkD(}rgxA3y$@R&?bhO=v73q75FXvk+3bpb^0iaS`8(3AWcK(Kbpt0fEhA7!f zXHY4l@NLO`XX}Tr4OANK*+Dm2>1g1ApriNyw2Bf#Uc!t}t-=rClA~3LJ z($(RnaO}>RX(vz2&pnES0Ji5qj+Ic6cQLXPd%~YZse*Q1q;mwO)E#p)iEx%>s4(be zF4^vwyn^CSrc2&MGl@oIij{LXCXl`>>)34wv{$r{&^&FQ@qj@HJ3SJLgZUsf(WOj* zCEt?lvCr*;Y;W|`-e4`>P?Mb*N%@N4L69_S$LS}X*3ykggj;fa@TO;YzxuPsgD+o; z*q45OBNmyBl}X#T2$iz|17@5rKd`Jbhtwo zQ_Q+l8&qXR0YJPO?16+9#avWdpZV`0-+ldJ*!@|R=?+8TFh;)0eh(2$gp%0n?wwcU zNaYGiSSDhiWD7vq5MZ~_!AuYmf(Iyb6`KU646h%Ie>;#nO_h^AwCe$D;{oXQ4_byL zEZ!tE$x!$&KB2qc6scxN1YIpuOKIR>ilPrp`h4wyu||6}H>oSZWDMHw{HtATGbHx~RK(OBj29XN0HL$a9gs|TR%eC~g zaZ$^+O$rB}I&6f{zzZ<$ltJ52Wnf`Q&!i z8GJVR@3%STOziFN?M%Q_Glb%{{9SpeG%aoLRY%QQ=8pa6Q+Xop-MhD+WN`NkrJtYD zyy=kf2(VZc)+xtzKk%fZA7hi>J;DNH6W{zLi7EOWaB~)Z;AXD1L)3~-DfsKhcuC6n zoSmsM^#ocpyy-`|mv)}V6I2C&-53sZa2c68>FJqHI!^gIH?D*15>Zh((c!BK_o z;8~N5&Z9c{5crIz=r6)Ni0tq0&+bu$$vU7(PEMU$9GhfZyzL_kaVSW&Ljp|lH& z#oP+vam<(V25h3CS$`l}vYVtloFxMMlYYo&dZp>KRZ0Iw zSgyW)2%a^B#dXd>{W&F9D)ouOHxv22gl`|QRQJ*flwP@*!c}F?(3o41J8gL(0Okt< zW$s{_mi$Mt#sWK{vGJ6A9+bn$WJ^MBu4;W5fO@3v_3KYI09z!O9 zrZ2XadW7a?3pGu>;Yj7${t^GE48#Eic%imwPh&+*DuW6(3{d z&=XId8llM#T$V{Ao*$f}s0GT2xZQ{!PrSz0$VD2JVsh?^?jnHjn?d}&5Q(RT-m@%p zs0r!^87#Ee^on(1P1f#%=k=_Lu~wxD9P2Q!wA8ooQL`!Xjgz@t)Yw*^G!1C^eV7 zwExkePQZJS+=2)!uAl6Y!$*XMg9djwf_*|WD4T42a-WgPPDlW0wsJl4awJCif3InLw})$J zhBG3ZDROHB%E-IZmo=_xmNMwwx$m-Z3t_HTUc*+i1|6Z|xkdKRH^U(9F`p#v^>6b_ zrl7}NHQ=?1GlgMHjXV!AGXH*~OVTf4!der^B)W77N$dL(iW&wVP7nf=7fMTx*>K5y zOSbh=@ospxs%chpj9YXH9D)W3G1(#uCq$h4lR+FS9KRA6g#vXOP4=fa>b;V2QG_&L zfnD;gDpD;~AUIB?Dn-R885-QUZnFP|!2FM|9h1+Sa4yCf`uvwvHI4x4x%)CE0{I9t z1`!z;eo&c2d`VXa`v4Agd9$URLZ|7|pS8AVTNWf;YE^Y2W$R-FiI#=+>cSoQL`+9! z&5$B&qAfK(d@e}(TzsAuEJKByzo?16neB_S6lB{SCcv_eMoU}&HB5$B;LZ9!2v-wu z2x^pIb>Ky(Pt!;FE%KQ%+hWgvNGCho#a(2`oQkX_0p`=xXV=(+{<7D=`o4kXYS=Ntk9f}k6SN`+a_-k-XLVfYuA#^yFJ~U+A;Imj1@Dm za;&KjV;hFIR?M3UYr0%l?juN-mf4_4+v5e=Alsn|Y*6K>s>HwEbfsmvUk2EIg!U&v z4dR34RJpG0qViTal&h#bk*C_baeIgI$F&AX>Udr8j`edRBS_tpxsE*b<#Tq!U7mwT zTkYDOTH} z*U8OU_Xftd6EbN2ElOeP+4R)sier}T%-QzGGoSD4<*NEd5{)5z{9(+3Y&I@{H@=wP zM~g=Svp<#v!#^$BZT1ci#x6g+gr!Ro)YvveYP>ozj4{#_O`e-YJt(GlZBog9ip02{ zlE46Wcd)O@plMP0jI7(gQt{XsQL%d1z?i%&xz0Z`gQ*RKgqrVuS!%~XYW%~F4z~s# zA-Dqz^dXK7jG9Stq00G`mx1kQvaeSpPg>HF$a6G*EiqYXUH?YAiPcf`t)xIEUaQW! zWpyZ2fn4zFk=&i)_CG=4PnUJOem)+`51}t(-Pyihhn##8_1GLhgPw$tm;||EdpHs2 zIL_arX+-2Sgc^RX{-Wnr*dQxggUB2;eHr%xxu|ib(_33oGekJz%2$cG-Y-a>T ziPptrRhSvS{f1GcEXR>BNhwrVArc#83(>z0%dWu>!f@S_j(+iUtR|Q;B1TPP$YF!K z?w3QOHHENYwO`H5Op&xCNq$;uf#t>q+^;b4`f1B<@$UPyX98~H?MM24xlm(>=Mpv0RG3NraxFv?A72hG}s?c<)evTm^u_hGL3;gTT>&t4(%C6g-tS-XuhKXUg$9@L;_2}oJA=QO4)~*S)+HokAdBlX!bm)8&B%_0i$2 zFBwqK6&!p7q}NeFMkjrUR2fI7z;OUH%2e3RVJ*_|UcajVsn~RV7_YQ|B9N@c+;mcb zKOI2P7NR&FN$*n{j^k25$}3{S{#=w-t5I-e#u9CGNK?l0DmMD1 z+817qs42%cFI@{z6v#EY@-kTNG((`Pn*>i(?nhL~Pn(BzI_Py&S~1g49(0xzYZz9? zMF5#Cr#vRja~I7oXNheb&=dNZojMi1i*R@SAum!a!!S*}aphP@TyZH!SaR+9+iB@C z?W=3l@h5!~c*6h@+*R-@b6DW#4_w!)Ml(Ea%oP|^;?}|b;B~wqs)F1ohBcsqa6u$0 z=twjASF%?k3ZQZhNV*g}+e#waqPnmWx{xdQi@jyy0=Z2HKD3tpo9y)y1)z6}yEN@6MEzg8E+e&EEvBH3fDNm-7Lw5pOlpjx4 z>V0&aIZp!P3G5nV3HoOL(G}J>qbC*{^Qk^UJyW3?MXJ~UQ5M9ccSDL?+zjR1{`Bhq zz0@ehl$j5rk{V0?Gb?L#<;;M_mR>QcdSgdYh*5pvR>WqJpyBeZiHwNZ@+EF*LUD8g zQl+QQdce$8%++)>tXQ~2)J}>KwSY{I5m$HDDS*ZT+-y>`eAA`q(y?4Q7-hbJm_7_6 zq|s3Em&097WL%?7B*XeqyoCt^t2$W}ZnJaIq?-B2U0JvVt}(&)iH|$Iim+ zZvRC10Z8JmjJQ^E>6b8bE!Ujf38t112&S6v_OV8fEUu)7{KurOzLchJnr)E+tA~PA zn@zc|buFsl9u-N2+GAR$Y%TT2w8oGJ%8c6>)N)eJRr(Ignf_Z!kEnjKJt` zUYY62$#&zjtmdVBQG?QbLhy4DL&#y4a1}^L(y+R2(PFxS`oE7&_+dsZ1 zFQG0R6H*#O$M`Ud!|Reu=8)NF0TqHZ3&o^PZ{&{qj?r_{wsG}o-2Zv^`+hhFN%Xqh+zt1X8Cz_#*&rT9Z zZdA_Abj}2bs23tjyNA)lU)Ue_=-1oIQt>v#@JTkp$uf1MhPi9)ryIzX8U=EtEgGf6 zti1(QgaZe?V`kKTzG_s`5LY+=dkgbQXb4D;Fg7uAH(P z^>sfnJeLMV?wL=oa)pj+%IwN_A;k&tKHf?0`xjAAw9f!*_+>Zt@tS){>YCXPy;*oO*S(bS&_p0WTv|}Ilc5y zbhWqZw6`yjE_|{P(q5%!!4)r{L0=3=0B&@vFE9y;SawF#_uv`S_Xq8pdbZbMldme9 zGyFQDh*7?o<^K)ki>nZl;Emxrgn5)TXAc3gq6OS#bv)D(-({E6l#y?Mv|AJx93E%s`ez{~JzMZhg^v{!(qu-=3?BE2R+F~a?KPte)y0_V2t zG}u(HYcxF)EZ;{|l3a3p|Bw0QCo+Dal6kLuv)ZA^`I`BmT!xV$>oREn3PG4*grxUdjAaYnCg7?x197- zJiu!g*vdM3Vd;{VIzlod{Bou9MNS6Rj!j#ijT;3(b~my{g9P_Rx8@OD%)@B_rRG0G zhxyTje0)tR;SncH0OM^ZoDN)N?W!~dXqknR^2*<<5|yhr6V;{*a<$7WB4e9p6!1hN z%QF>#J$kfEb)Lm^{vR%cRM90h47cg*xt`4&(#;7&o9$*X+AufW98`a8s?Ru4S4a_LB^Pcf2vV$m}@Ch zPdS2qGMd>&Q&iUO*epajA-Mr03!k7Lvlc`_Py7OZ@(xI^B0cx}AFmO`?tWv;itjRW zyE&A}D7hj1=*0Qg)+AFDqDBV4hstsi0zFtt%r5!%;`T-&hVWy1>4~7-D3H(YDErXf zIE6ax?w%*TQ4ky|Dv|F1cqvI8#2)hh+DpTlhqCwc;hR#Nw3M$VwvO2lfQb=G{2Zx` z2~CR&`9w%m=k4n#XZ3%Sv!4&1t^oc))h1=O_D^mRN?mqbsOg5b{45uaOVujbDBZIJ zW4FBdFBSxy61uMUPy7~VM#tI>OGfDh*fQ3?yD3sVCUGu$rKM3b{40KaJKK|%->i)n z&q%&n&r`a~69bMb@9LGQDm4SFCiZgBOJ?k!am%CbgUjL0PIAv^Y0*7X1-`FB27K5NiEM-mA2Z-4E0#?j;g z$O$AVI$&fn<#+YE^O@rL6R**C9f#%ZvRt6=R&)6Y_uEu9GoV*EN|DUwymp97FDnV>S*UxES#rqYU)(*w%WY!uV z$LaIZKgG>^}D&DvP>$I4!;>XoVauNrb?W!>pV@Zc5jp<=N~`H7)ko%t!pjr zVx&|P#fSn4ukuGu4O_DCL;~OCKy6IGpZ)D^Tt2c`+zmjcMKRI6cWt zD>C2R=57(dxi0^_`4}MYiSJH4X_2^0le{(c%&EUraJ{3>v86E;m;6LBbI1p^f9uJf zS?3<#zsBPi=X}Pb5d>(^3RFrBYRX0Ane#NvU$pt^O;1cMK7Eq2aFF}@#p0`+ zgN}o#+<$U9L;%tD!tFyARfQ22!`WT-r*Q33HrX;VYJropA4qp zxM>b^wFj~NxjsMxg?_8QpP%{YD;-|@cYSA+S873atqBt|w@O~MKkaO!Azo%;s5zZdW}!0>M{8p+ELC&?@}Ps4#+n@+_>W|${Bf*XnBqXw!J#U`Le|~ zx7|kqM#ZZSj~LLfNCrV;I()u`9jy^PuvCA<$+DATcAVtQ+O}xrtIdB&O{})-f4>>S z*|OXxCf8Url5-`#L=v|qVIhF@)PEyCJ|+Y(FWChLMSeua?>#(!7te?DcJetY#@5`b z9}slx8F&@VnZ$Ya(bohp>jBqcqtbOrAw{sKr_zeVd`~fSj^QR{V*^BPm>!_P)Hcq` z`jZkKfkXFxVZ>!~Wr5C^t_E`i$7Qo$`YA#)(S^QK-_gU= ztk=ug6gt!^M|6gA#*{nX6eqHFcK;eYN@e)O$OrMg(H%pk#mnr)Jz_p~5&soOELFJ| zO>q+WG)KZFgdF!wQV=^(^_ZS#Bt8Q)~!LGHZPb3m#kb zoYmr`m*omf2Rq1YlQhm)`UZBm5U7i~0i*nG$-6x15Ft3&8Q@#!z+zSiZ)sAK_yVL~ z0RV}h;l==lZkoI4R@)#K?NC6S(u1`1<2BRAt1|~2KvPGGk%qS94FZK6YJ+sTyZoW- zDcCHftWnv`fV&2p1<*&fX4sS(Wb-L6$uLJJT;9i_X{wOL`akS&w?2#GtaSG7+mtAl zpBHx}{P*|;A?iTtM-Pc;qixC`?Q=0~-g#K&FelHih1&twU+sZsEv{;M&ER@pwtEdG z4*Ne0VW|Ofx@CLa0cpm6v-rhtt5zW_@UsUF+IAJMJpdATH1I<D>Pgv8aXoFFTW#+Wq2{`E!+3`i&Z0zHbyNQH$ zvmfnjCX*W$1mL5vmws0E+YBT(Gm3sfCs@}w%nqLV>^pyOMcsiX-wJ^JJS(K=(7j0i zLdW&^0;nV6QFYZ)IWJ6rjh}xK`m=5AY7)kr!#fM+fP;;~%);*fY5YK4%tl7(0^#-1 zuxi;EY1MWmH_y^g-A$oMz<=kIspc{I%}ayx;HDVtyJy|Gey{2p9K{djh*y-JdEfLg zX6djxZjx>^9lb(fw%Tm!5P9p9(&^(3%f*}I4|}i0cWZ@)1w>;BU798rsR<21qb8+4(-c0&K8WzmK~NlD?^8=JFve-JqXuFNg(NZ51rW zI`-WQCT5dQ7JwggCE<3lGkGSW7aaBhRu*}kSPKHKAjf-+{r*6=>VF{xOCDa+r&Ud( zJtI_>y~%X!J0-)4pRFtu--kjIFCS9YF^F_nENZTY(5XnB%-iN7e1sWN}*nR0pr2_T8iP)#0Y--_xGB z)XS5iXDQy}cipIQSEKLQJ!HjR7lbqH(@DCl#}Sek6xwoW^Whlc-Ay`!=pQe!5niZ! zgqj?!#eL(LdQ$$grj&Rpsmb_Bg{QmJ3cRNjkLI&j8UJfSI(+Wc4ozq#yXT)eb{B>C z`U5pV_Qhs=ti#wlyhw~#muf|eSCUg+@~3ZJb^N_sPer4%_IzRe1y{_}kC$h&?ov|5 z^?kI-wPMN=uYE=I%vyGGP6hr`%2iyw#OguQZ%;>vsPCuG&;a)U7o+g8R}6M5iyr_Y zX!J@NHFZcj7v$sVRC!lz(7ass)9QPl=oSN-R3FC{hKA3+2I!H~9HXDVLLc5EEB+|` ztF89P;0d-x5AU5_b+{Phz+C^zV_xnYrm^xAUM0` zqhFi0kq&+&BQp#dnYuSzVAes+(`qm~=_fEfsNnl90>>WkX*IL8X~@aYGOYNH%<#mn z90lV239F~LzeL2VC+M%6 zr|)u_-5PqS00@pDGl{C@yh1VoM#pgun!3Q0VAcy?8hY<^`985_a&xou>r{YAxaq{j z8CG4%o6~5a#s(ZHQyq1J$}mr%*@BEEU&S8P{4F7F`v`RL8zH5$t&pN0p(r zQIVJmQl*y$VYX5NwUVx<<2_{(Du&f3qMa*Y*0-x*LdhW1TF@s!^)PNpd4k$Jh~v5f z`;I?weD;{Eq$4t&Luw+YNAG9`&`1I)rg4JwYZ38?M_9m zFtXEqM2dzmn0p8kO7&0A*#yJG7UsjQJ`%&ywm9*dxN$nc`WW!t=@TWUbC@%c zUBlSzA;h9NLSn*+(d9ONo^e!{sNo#WXsDnc+oB|bN0T$CVy8o2RnjgEhrOS^rD~-q z?Fv;mM1E`%?i)1cOvyjR=e+S@f7fb(b~SL?mhR2wINMdCMfnyZeNPqgzRah1^YHEv z(gSV1v%Q$Dy~xDoz33JS11qDfCMl=8!BThtOGuHMw>U*x>P?4pjHe!e*#}5=KTpn9 zg$u-@R{<)gdi%3De$~f8-V7j*qrg^&ZFAZS6?_HAk^@U~qK(_Eq`9RE%1QkPh77x# zN?G?*0=GlE!Ls$0nb;LNvI(;$9kFIXHyw+(?kT8%l<#bn%f=kWCf33(8|z@3&$n7P z{Oc~~abQ4pkw0@oNinhF2-z?d>l&SsbiW7vZPO&WO{$|cIPo|yahS8-4fWN8MYSD7 z`Au7rM?7D+@W*%UH=E2F3ZU?FT286_IUi}^aQKT~3Fno_{X>Sma8}l6IE5?R>9^XK z;*zZ^fiUSZ)~c~YvNfQ1bT)30tr z`SrP>;!$bcgK&rxL|~_ z(4sve9o}@*%P25?9|s3f$mH?vx>g9ndFilgf{nl3L`T5V?NW#n%Xph(>9+3zksu@V z50l*s_5mw@yHknqOC@E->Tsz%p$(@%2rq?wLa|621-h-IzjnX6?Zvfj6QPadx^0ZH zy-*53o(y@j5c#mZw&PTu)|WCw9{4iWxo`2dM_LuWY$%8U=YJVJ7r`M8=EVGDpR(vA zD<;C{kfk0m9QGoRt{eCP4Qn0Z!)Mb`JfHCke-q1?H{ z^ichxc>nYy-gC47UEh*Gy^U@CDcI<|4{b!zy|!Nuew|LjI+mK!4OJO9O4TrAwX1W* zA|R$H`g#d1G4*!oi@y4kuxK~BZdruB?#Cd}T!dVxlSatsTV;+7rbf@602f-d7xU~@ zEqxzopNh+by|`d|!khK04X>&drusw4wx+4=P|J~_S~f&rtb>uqf9$r+Kq(<2I-RUs zIX#for}}r%i(O#3XD_I%JM0G&B*eyRC@STk7Tz`xB$@_)qZt0*D6eiu)Erf|FtH;M z?b*mj-S9){2N%nM;_xl=VIa2(#VYn=8K+E}a9~zO&!>z=H`FidjB7!<7+s;+4BG!v zkXHCIV_VL|R;k(w8hF@^2rCsoO?6u0oA7)3uq@QWugmp<<>BfWW;$`AxPa6!8YDUv zlRz~s+CZMyaT?aNNI`eD?u%&b`n6{KA#(IxivQAO7mtNNZQYZ~9z7~n(ESOClMA(D zT<~@=Z8!gD92x4<62005FqDv?MmBueG1cH&@PPN}d(#+|(Wei`o<87}99DI?Re5*+ zygzVbu5gi1hPF15R{X6v;jfZ5bxvu523q4M@XBa%Js8!BZWUffZlWslzfcz^pk_hXpAI|`Pj)fSZ$T=$V1066V>#js#UD{5MO=*q!D_fVWKOE60M z!I=p$xkbSvpjD@CeKXELukp+r)w4kxB+V#e=2}DRQs102rz_*(XZjx3MQ;~c^%?=$vnrW8r!z6JH2ozHTvhLD0WrIAQ{Nn4Ix(+z9Q?43Cma0ic!>BYAf5s zDF=T;`jP@Xedsj^u|r31e5CKK$-C9+w*aE#Z07*Q^R>^CtoWMnL@);m7%^Kcx0qIi zfmu_e+f=sSiFlThKRN4?wmVjwbMJl;W$pH8$WAiI;pd!!s-RsQPDN|@pGm%4a&pi2 z*vu?3N&D)1gAQPJ=_>`TsJIqE`M@QsI;_YY8iBGBH?wd8a2LhPqhfYf(|*5L6h2Ui z3^fI=2W(k8$>aPhG+ekg#G-!%in6~e?4FY+e@2~~#Q%BYU-CK}m$S}js=90}KrV!t zG9?)rk_g-2W98+pB9uI)l9=QX@j(1JLw-q|=L^wP;Nu*aaIwE&=v$*}VbfwZ>hH&~ z#A*osA>cIcN{g0mvKpkER3&|aZIR>&n5t+PSTi#`9Ey!6ZbduPR&WCo*e8;Z+YS^8 zpasRQn(Z~j@}E*zVdC;a(Q;e&a=cu6%S|`53q%+_6ghhP^4OE-Dp$Z`D?f1zK;qj< z&!Y6qy!~NG*9;x>iKs5lZ#P_wH_iXjZ~99y%NaZ8edc_Zm=?+O>L0Fg25qzM%Ipf* zObm)taJA72+4}&-D`qCxV~_vn-@`7>dUI77DE9utClvt<^oF7v(;A*)e+V#lPg6jFK7YoCjd}#oI z1kFYY+lIcspnWcWcbQ}JM5-0U)|lThF)lt0PmzC$#R9 zHMavqIX+Mt0&e8yJ{eK%aZwCp+cPed_kQz(cUuLs6m|-f{J%fCyAEVaCULsIC^zGf zz$5(Q&#JFT=2YKtj9<%3)A37MPQK>ZMHuVP;)~ubyq;ffcpWH>aNm##aGNRIVB zxZ*B?%uqyiX1}$na|)x45TY-v8~^rqeGSl*t*Xw{AW_2h^D)Fp>-pyJ2R2hoXnMl?I`=Vvk4gbp?FzS;ggho#6z?O-QR@0ps?4Q#DGpStbv z#ftP^=gx9+)6HmWBADTDCrDt%lyK%Jbp~sKZTbf*T>M z*}v~Rh2h8l9?PGeFRRmqF;XIs>0OkKXq&|AcWozHktE*jVg zBkwzgKakIW+s0+BtdSe^C3Nf6gR*OE>NK7#MhcQKIzRa$I~}G4=hrg34tZH`#pzAZ zmNi}TooT2OeU>BAn=1K!OwL8bQ6Jms+L1Ar6qzC$EX38ZJ$TRa+2-_8m5l$pXG(nl z(mVeY;k$ETC(m2W8~*VxY0T52iN>2Yrt-9Ata*;dPMxDe!BeA=|55h(ZE86R9b!5e z2m?8^`p0T!W#3mUI~0SBUp_APHrE)ZVmCU}ZW0u^r&0HSuYJAw=Xn|+JLJ@&RG>ZK z*qP#!rS{PrRA@IjvDIr=dVKgt1!T>np-73OY5g_^NcKHn{nHK63Wl@mzL04DynQ;VrQyMyckxelLDZCE&Hc`m^|RI zAF{pSTD#ZQw0Az>$|wwok(Mv(yi;G=yB92Ea#G0-yE%A5H+@c;s+xb=`ZSbV`8HK& z)Ufz3b0?z%>I{`EOoo0Stzt%Sj1>%zF~Xc6ASK~V-WTYVyEQ8{q$iQjMp4n4`J}Bh2KN)hT^|GJ{#;vZ9AWgPl0wH zx4KA7?zVm%zsm7*(SqFkgr;r6`tvc69-BQ3F?lMPRE5y$fc=-colN^5>ZVUgus&u5 zC&p8@qH$(|pO|L6j;DDl=DtzmkKDye=(X+4niVUW3+fuZF2l}$>MDe zjp^s<49&+i>L(wB8f6W=SfuWBh+XYg28povHmB%c?Jstdl-z6EXJ{Inz-6)qJrX%$ zH5ke;q38iTCoAq6e70sqk%$j6paA!~oFyhMHuD*CqR*R*aL|1Ej?OP%=sNd%(${Q1 z*0Zvcew`fEA5)vnO{Qu7tr&c#YP^CF~g2x-=>;_$c=jXizjspkSbMO+N$o zpQGQYj-`RX^J$kqQ`3gglqxa!(CkCh_8e+@962%%)?FcJLS%=(vg^bvg}u6?5!QY@ zudOe#P)#(fDX;p9_Jv`{7ESsi`$sIjVYc%c(7`^9=~`d7k=?V7Noi#76*ky+;)R{V zR_Y^+rp+jfFqQ;iy`txq_ch=-+pHKIKlBZIDFvaVxG2|na|Fu=Y0z?g7$W#eCb&=@ zcv5b)O=n-^-9Mckb6H+v*uo_b?OgQ)He>zj`CfIcR>q<9;WL?*L2O5j&D zHJS@<9HIgd#$n=^c{;%?KwY3$pIEz7iM-8>M-1K~ZSFiXPL-$0CUQFWkt1EjEB7Y( z^~Yv8-}ejq=u^alUoClq4zcXHD>>UeVCuK~Nqox>Bw#22`7z-RqaCeeUyluOG$+7= z&p%TR_#Z{UqjGc$n^l36RH{Yjz&#O6j#A4uz1LfTbhYbFcmTRe^Ub5E?}mmoA-`ou z_aeea!=H^5WhSSPOZSZmEf?5KqQ;NpNMFpGzo%q`#{+7V+9_RS7?9G z1y4M$m2ZaNF7r0coG!(mI547OQxN>IIvRoe`(n)^P4*ch%4d#+HqTAiQOT@J@dIaL zZf9EESKC}Aw&2PSA)R@D>!|(D@HK;6Z$&I;DLArxIO!0ibNkV#ISHaw4b(o1Gy>3I zOETYEIa8didG?s1b(i+#>4Jr5!sJ@&`O;)ZK3|XGU0yLyvb8vINY$Z6o7VF9dAWt%)?|1lL|~49tk-hoc=eJ8RSjz{C-qw4zx)r~N%4>K9q?pqS6IdjLI%A) zzhL-5d#h&X+p^u6l32Q&vd(mcCpT4ot^<{E2gL`vU`ylTqrNg=*|JeXB_j{DP40Sh zKGXZi+0S&BiUEcx&_kQoDIfYJNLB#feGT7gMhQsfClvT&t=x!|^Z{kTje)nE38Y4N z4f8G=BqHur^ios{UxUXHzhW<7U@0c*^m@|z1#@gvdHYi2u7?a1&^*HwrRpbMh+h+-O&nHany%GR2 z=7ydkP3>4-9hn81^W+8O6=87Df#&gl19q0xRj(z-ChxR3T<|8q5NyJ7cP{q!mOI^w`X5v} zlrR6wdN9o{b!VmYqpftL>#dz%NDYg4VN-f-X{FHhTvi6?6^tCe!qK=wRu%$rEb?5| zQ1P+>dS_*@4l#J93RoPd#DyV$?WwM75@Vu;1jBoINq?z|bo;PfTPnA>u?x8U-WMJy z$`eqcENJx=6jmEXVgHL3tQ_`isGyf!$ad1P&ox7$yOFQwdD;rQ1|d;8VTdO}-){IR)dXfyPI*COWqj>H9utidFbWA6gTy3IHJ>~m8`eK@c#xiDvi{<-vR`5rI)NJ8emhDl$M(LTteq(-aW-uHs-((G1d zrb$9ZaXc)7{e)b$+ewtEL|u=_>x(s$POVs|D$y0J_3@Na0pKI$U&o2<>WwW4FH(fyA+hOwh#P7f>bfCJUgQXr0YyZEZQ3X353?nKw@& z57WO|(23A+`{P!XZd*H>&FmTZ06k12D-;`~1ixygG6``9a{>8I^iQrR2k7H=tMC`$ zam3lQhjZyfVb6~r!*j{Zt6*A_eXuw>Xw^c_57&DE-|IVKK*BwkO>QKNxdxWa?!BMT z5{vWX=A`A%(ePlq6Cqjsk~jaSPs}m80J4RYoC9iSm)R4_vWoz;1nt~Gd4G4kf>qqF7)So! zPNu0GS_ICF>IVUf&0?A{X38P9izQjxuEJ0`tAJ=gzbG7o)WXFb_#6kkiE%8l=cm#PT6GY68Ge8#ff~0{KUoA_n z`Mh4^RZ2rWvw%tpyTx8YxF+(6j_NYMBzEXQA{^vS#z?#%2W|3hGd9Hv37YIAyDQOH z*eMr^+_Bktr1Md($qc(W5UrV7{yqF}*2K+l9VY zx-aMgU_%iB;Pb?_$oo3eSi3U$$cgwk9w93ph{X&H@IkL^RZ_)@<}FFr$AP>AtU;z$ z+J6~!us(d-5ZJ}!(aDbFBN2l&7ks61oHT`zPP4~LK42Q;4!*rtl#YuSDki&L_yErN znU=LDR02)V<2{#%nKe?C#^RAozxC~8zjrDEfzNV^*cmnD%Iu`}ZZ8jzqYiu*_8xRS zPS^Lp^Od}7NvbQlwa!?L}*+3+&b8CJ%ONWw~g(Aiu-8rXS7fB=(6i=DPQTR}jWNw!)jr z#DxeUPgXvv$xpkshJ--h>hcWVMQO#P?akXrR>bMDJw$N4>FrX%iSm%qGAcPNgV_&Cx&dw74qTkqxO+^@;pjEN zJ5r>P7x8nmEmoLaPf_lueOyTqOe zV4__nzsiJ6ep$o!#)iPz+p!IT`>7INdGeYzo_cFd88Z?Jl?m@720pt+rY9g|7DPCs zODoqcc?m|+Y}hF+2mNG{d=oJF5?KrUmTJASWq@gG?_?37g@egBpu{piRqjB)B2H{3 zfl|9?iEDk=tzvO%KN)I+rdGKLuo-X0@7`~y(4(HiELp3NGCw@;Xz(+Wi@Pu}Li@x7+$tPf z?0mggel%xGKL5UqV@Nlkev|;-Cge^sX@!aQz$ZRs6+0?Ruv^X*?{TId5+5eXgIwJ) zH>fmgR&-+&q+`I&21>WT_M99h#tpYP6MB)O`{F&aZ9hY;SM`59ods8vZ@hLVVdw#d zuAv)2X%OjdkOm29knWIXNa>ED8|emzZloJTy5tY2h{?-2XRY@`%v#Uv`}*xYz2Al2 z({4q~i;GG0O9bI@0s`?o`f@h2seds|NjjrC?k0g1&Vf z%)e(v5ARWU5N^Eqh5+quKJwRAipRW{b3aP~E4!zTQQItg^bk+_e)tbE@VRTGlK+D= z+gG_yN7M4WwofCpz1O`UTMP^`-q22Q21$_8p+(@hW~nfTicCkbW6I%Wt~joc;R2~L z3GO|xlN=7BZ(enwlP`Jxv5d~blMWr^Z2PIa|N5r;$CQgOSx8m8Q_(Re+CaApwbB45N6FS-J(tUep|`ygCI0EPSbOQCqy z6W#jx?YRogGgg?j?hcx2_2&rXdc@;Ga}*oC3w?9+FxYS$vP)BRYQKCmgoFRwljnY6 zJBVZoEqy%WEB19OApo)10}8st-kiA#nF}p~f4{sP{CJ>0MY^i9_UomO!{tEIWn_2T z!d_xBed{7+YkfbQdJ%y2h=dJY;RMh=1jxV?fCS zjk8&cbF3}M7H=HV#A*uW=E)5WZD&pe&U|(wh->I^oJ!96RFpIRboPtYT7Xr(k>i&f z(ukFsu=?RP8=vRD@h01pEMY%(YMO+x@Owx*hWg@XoA?K)udc3(tVaW$cz%6-uG+0-egzi z+VykyBMfZDvJ4C_R@b~$dC@Pq zoV~c3TQt2QeO-8UrtGUGQVDc_@w=g*tL$~waArUAVe{+4Oh3aZ{pcI>{`w685tEp! zfPEZ0@QIgZPTbq9#GKpj!H%~2Zv)l1(1&f;bPO~VLA$qQ#M-n41TbJoB>qNc8T+ae&i67)+n2ZuY` zfBt@2UMvlmFOdQDO8rN|WmbKOY>frNcsw5_CKlx6>yeDrklHa^8l>E6)90JA$#gck z9!l9#+vsfmSE2Wh?1Pv_PC4(Jk&Rv|QX%6W4OAf?Eo%>BwVr5md>^S@7#R!{={-}bh%B~2QFG&H~jN)?l;^%4&96nUCDJWJWd#0ZFE~ql`21S;{pD@ztmjL!d|tRGw7h(lFy~pzqnVuD6N3Wz86i|4Rc?$7m-XE2wk{E;a{H z9wPdNWG#j{KzYsYIdpLCL7szW=w-#L^YgPWdNy9FnN>rSnHo zusEKtv-}B<#p^gn&+BfG3`N1*Ewk7}olu4)pQ&oo37mn=R90;C z({rP74u6j1n&ttntOc4h%xt-$z8Dzndi|Bdfhx8yV!)wTqDV}j2&KZ^_krCo3EJkKHtvYCOyY=g% z8NRWX^xG%-)=kSF)l@sNdx9O`SRDtwEb0y`XSv>5NfOmhn^>NZ z6b>sQd&oF>dPfU%&VMx8#y9138Dq%U7I%pr?w)^$ekWr_#cV|FJpeR9hHcf7HS!;l z*R9yHd}>a#758~@`MrtqcW)RMd@r(#Z1HVecNkIQNxcyVcOnNqA$Ubu#b<@dcybW{ z#XTnJ*ojtIO#*QtD{(_@`=9rM&~*WHkdMsLWoR-X1p_r z9qk28#NM@$$>K|=01=iQ^pVVVPj7ew7s%(BN}kD`KGARPDnc@r#J@2Pd+|pQ_jt4U zL0YWgYf0X4v|9l&I7qN2z1*1=UqNL0nfZaLGKz3FM?u#Bv|yi019`yZk&6y919+-cL2rM6&elPIDr$D?sua8aqxh&d#hFLq56A0i%uBh1c^#DE3(5 zX>aA>F5hRL#ONhT3N4C7XU*M2f2TxI(n>>b|$h?0OxMDDLP3>F?bKGk$4iX2%RL;8#{~=4*R=1UMlPJ_C+ia(#{Gj!!~<% z<-zS^YC%YFS|du!i>}4M_N9aOO3Ign&cwcjw=^{?I4zlVXM?UhyxLEKwrD1cu3Y%* zmbbY7$bR~DYhACV=>_py$0ksh#(sFYZIdncK8mp_qe>99cN-;k9@z2F5AGWJ%%g0Q zvl=j$P*)>ujRq9_BQcZJe8$S1W@P9+jm>1E}1(>k|o~eQT-^O*GNx*1qUUe#W^a_L$v%+?t<0tuq=*v2Kseh zU(k0u*cJL7|3Nc-fiEYFHeN6@4IP&Wtxs=wrM$=t(G+wG?&*AhXCnnM>mND!wy4OD z@SDP-N6D~p`ek%2|GJ=j%H08Ylx;oFdt6;VinT9t5RR~DOZ4sjiTz~|#q=+W3M`>N0*CPSQtvcZ0k3hk zxA-Z5YyT-;Khd_lW+fSIz62g$_?DNFJBw&DeGx+5R%#nZq2usb?W@EW=TGw!TE)uU z13%KJQjJywEiyNOX|q7bkVXCC+vQLHj##w^XNwIm1@_wyg+%xeisdC1w?^QKmF>d)Z69YM&0Ao@X^6@9ZpOZVMnPM9<~*w!U= z51fv~Uev|$kRzwWe$DC~f(Mg1iVek13%U2D+o50y{}B-`5Wu(^A?FK!gJpk3L4%ua zm9`=Sb%5YnzU?~j@$$sGjD_%2ym{CQsL*@z-cJtK65gsrDY-6mV zT=m#X^GLVC`6&R3UZw~J;Wc3l*Ph|+-+4-+B6;qSPaOi*1c+_PU3b66cEVBW%3l2I z(M|2I^7Lufj*X-#SbYsxv4sPp_+{T3vWTq#V!u9!J#^B(G>mRs;|Ha(ni;y8Rihfc zg4%2-XG)c6JQyE3o=OhlboeLawkTv`6xbYs8!_xb(J#1BvAor>%=RoH{{E#_C^S%5 zM3nm5XyR3-Y*2N4O#3SWbikY2fHG3=&3T!U?5Jn}-t--^3#}p!kKV=#gN*5vp~Q{- zj7cy)%sz>$q5{zzp>K6~UO>a;39H0AB*uv% zCpjF~8IxGZ>^@RbE}-bdtHXZy8;}SAK3eKXVaH7ohuvZ)8Fdk-l<1-}=caR6tg;j$^luTyfu7#8;x8UU~H zIYX2^-jQ@i!gW)f?D+23>;i1w{pX(g$|eJT<{~SW!R(6{@zsv)CrVZ{iiXX*9O1^; z7Ugu7nTImkm{1v)(F5CMOFD)TXv063Qj?x#y=SJ30Z_6ng8nNfW=1A-mvU2<;w%kI zWuYOnRa6mz&S{+f#2cC3pse#)*h2d&oGx?I)tp1@SHY{WZ&316xU@6DAIsUv?h(}n`k^6T$$g^S1&R&H~$$GcP&r_0tb1)^lLhD zDQ`1$#GdC{;}n#Fel=5Besft}f5=3tAZv{ikE;srIn%!Eg-ozvHvpq#)&n5NZ|GSF zORB(}P4+G8Jjml|($7gWRiw+~uv5#9(X?D4Wzc5P z3rE@=;P#9+?i=TIO?(rlX6$^5@GrG}CK-{b5`>Dsig59=eIA{7`EZ8VF1xI!r6^P` zJ7p>9CN{ge^>HIiXwIC!6(@_TGWw{^A6fIH<7Oqd5#{oG6zu$aUKY9S z8VHfe80`8(SeslcpD|V-FwbT}deA+TENb-92F4AKN36UeS*64<8_H1Q`#?ylKovjbT<~3vth3` zFsUUGs%0GXD^X)O;l;AY7GIGv~R69cSq@H-vTmO z-M;82RV+TB3!UI3(!fK!-ZE#k7%aDT3Ai#G{1vNp=c3=wv^C9Ygi|5K<|I&PvW_T)csPM;h>L7jNpnsVF#{T&UAB6 znCd;+_?U+#Je+ZfgU=FbuC8B<=fWj;c)fGEG8}I_J??vN^jF?92q_qgpn{8kb}Qd zVz{@!EJ=GXPk7TkKErVWLc-TH$0rTCba^=rM!fL{zNaN?4)$twnf+zP?y?Pt`8wvV zKJc(&^-B(rLgCk9=5n(gI2f4CQcyu-7YY4zwt*?aO^s?^K2E{ z3h@O$n=MucA;PHv9$y7+o+$`?og4RJ{wXlF5={N0&*SIzg5+!#ivJw}Kad^&VgBF( zWqL6*@P`0X&x+@&iA@aPj7lb3Wf6#yiQI0HcIib04>6_4z0d7=?mCUhd&iW7^7A`p;Qs&GhC9R`Lpm1m-_9cLH90Ss$4FShlb}YqaVdVB|pXkaluQK|V~U z4JDZxmgF6r%OQc73np4>(Di(Yy)fSm4Vf-L4Y8|lkB2PxT@H~ZvF1=`bn#+R&ZrtM zP#J+ME0!CVTyV066;nDeB24vwWzSwEGGg$PGRYv@&TdU1-qkWT)A?hcL1WtH(|`D5 zW^F>Fo1e7u*LoE9rKQTZmC~3jhp-!0xG(dkc=a~47v{qQhA*SVN2?oBht+mf=5B`R zu0ESKO#B_P4WT-$wAx&t6OIN@VkU6+b$Q-)$cb_7kodGGjQ1F-`-+BZ2mqg@dVVVG z0D19aYcwfCwq9Rm$`aKfqkkM&51hW4gn=>Oe=djeg?osQqsvGCuQFT!!apqdXF!jh zui9S5u*k$@;D}=9h$&2!1WnfHzm`~J$dxQ;7kbRH%#f6%0#ml`n5>R#kC-9>^bI?{ zFFZ-TC28F`@zRDQyf%y?4*jCGdv|#-|L=S`bc_n@lPa~|p>~Gu-9r&{ii}PWha!tF zHJkOVZv2j{so^of3+x38)riLL>sc#}ubMSyKBrwc7VT=zhc8tx{;z(zsf^;KfE1*b(+7r9YPZ+u0xKc!lfFnFB?pl4nNYrLSc===`)|kd#q32B zjN1OEgU^4q13Z@G`L;O1Qtw6@`0*N9ueD!-<@rekZ%E)N_d!xy?ax2fHC6r~i(Gv3 zd-aL+S`kQw_e`E(JZ9%h**}>(_g=fHGmfPH@D(KLbsmTc5WU>5&VL7;|0e~E|C1IR z@|V}*?o{iv835x2Mp8sR&SrTZ17!arMMzCce}_uSN=yV|Ki0<{<6|XdWN0#$YQ9i?`SbNgoI}|`Ff6Ui1D5$&*PmMG^D|8yL56sbK9jbmu|=Brqo4V-FF>BtjhjR9kLw3i&d zRV0DXa+559ejjKHhK-!Bb?({`)dPUH7f)hSk&Ej935z`wh>qkBAY?@I1d++NF8z{t z^QWbZfA)+MP9qj0i(SBMM!;Few(o_jDJ~%<669@#VhByVvezjjZC2A!R2B>aWhebn zsR@c8L59Nu=(wy($(}w0S}CDjIjGT}*y@{9a~CgcG>XJeM&U{+CS0}p+CT^yc7Zzv z$mO0=o+Nrc=3HE+gQo&Wy3tOrE9Pq+p&X^|MYK%v8eaat>m9|cU6R~H@Bm<7ttQ6`sdi9M+kwWS` z6_%<=O~2%SqCwyfjdoXP(vuZBudXVhmamoOAcj1?#;4vpchrRCzu(#5-Dadf0xrEq zd@a7tYQ45FSzpXAR!HT4m zAo^v7F6V#V(>8XIs21=?B+??0E$?5{%2#Ud(LgBCq#6;JCUJWnuDE3P4Vl7o_r;zW z#xN{i^dOICOU?#alKL@T2}~)6e7C|9=$$Jqex)m$xAup-pCvgFEpNfXZ$%wg1)fjvG^leHKZkkk-CKQ3a(H; z;6X}Ai;-1yRZF8>GH|sSTv_7XvpK)Y=FpkETG!xKEf2G4hc5LRqw&1XtW!1cfJAk{ zEz`T`MNS6UW$Z9tI1-l!&AL;2noOReDrd~r*x+qy3MF5}cU0CD{kFI>F}0pqpJChK zFbK5FQ_3?bsXWs^*-O@r^m+R1C5q;dC#I)P^E05v*a%Ih5I!!MoXoXR!vJryd5K(p z0`tP~wr-wrZ``E&TDsP|$EqnriYkJ?l_Z2jj2mby;-J3VV&rVlfa%o#bje&t$S`}! zzS3*{bdR|@nOb>e6|Q7I2~Ll->7>r4HX`s|RJ!%K$;to+64zjc#Ag5<>4_z~Qtzi^B05E7N?mTryJ8j7n|4wnSYD7n{WQoLy3 zsgYIaI+sP~5WFu;h8{}oj(o%G35ZhVu-ztGpY2*i9YD|QrI!FIxq|V`nk_;G)DdHt zY*MluH@zye3a)fZm>?PGtx{$)vfvFlC4QJQzI%ilnYrVXr$|JZ19*K=SOCI~OLn?`Qq- z*;Ynv4ESng-$zYItlp&de5aB>=WVMcbA~t4D}oC6q4XQU@y2DPs}CAJU#p$q(W9dv z>_&0-h;byA01u@qLFL(AmU(22v_CZJS>`iC_Z}l{!r1s3tDIjyKQ}f0+S;R6s`E&+ zK4QvPkP2m7J#>;kTWtr<{C=juotFRHc=BzbXsk zsOQ`oBO&QMjCffS_>+l8fh(vO$UK?jqDmRXDx-xOEb!g zVJ5`Xg=Q5J-I1JhpR12jLlKh?ulmjvngm@Fdum3{x9dIylRt~%m2*g%N)hoIf1kRNqIca$+7Aj0@> z@sS*1S6>F~`nIU;UlutE#HMV_aQ&`PKuT)LT6P*cn$x_3mRyc&{rk44diy<`l#TR! zP3y_Gr}<}mN-5gj5&oggxYLMNHRRv`+Vds)%)o6qCuB2#ZlBTmCgf1b;3YzkXN9t3 z+yl?R4`CEe?jKH>6JGb-{i&_({E10^G*^?f%!aQ&s`J4W!y1a$6(N{yArc$PP(rA< z$HBL3eTF3$Cu^Z74aCKOAq!zZv|w&2P@Dq!w@O$Z5=N2Amvqa4_K@vM%%KfM{I~2`qjQ4x^|FVkX---Rh?U z>qb{calB3L6Kg^J_VMQq;dSl7w)gH`#|Q@gcRIc?+Tpl12ndNcu=74(PdoMjkqlBX zOUJNtC<1*ybL2+7QM_Ph~A%-Pd5fN`c0a66A)0At{ zRIr84*QnIj4c>e;_}7$3FrV1HPdblEB@q3e6YzGN|!hkq+-7QfzmmUBHdl@-(d%H~L z=pI^>t!TVyf?U9Yg^jZhb1$0RG#+a14GC{6foSUxh69e!%C6@qM1w$Spa91BxT_gpMl(InV!#{ zxzadEkcc=ggA%RS<_e*VVh*be zsb6K*=e*MQ%*YJ2cV3dKQQxY7F)A7AOKkj`Z|{$vAmhp$r;_NK%Z5whYC2Dk!3fdf%%%6)E!YNQEF3>DNj2R0AK}tjzS)xqj3=x(5z{+s(TAZaY z)>K&9i8pR^o(x-N?hWDPWB`*#ZCHx-snoJagh}IBe3AHq zL9&UJ70;fvzoYmx8Qvx_sFPs z4$Gd;3+nk9gujZ`x2~a+cxQo^5YCySgn`zOFf-WD80o;wrznk4v{TKc+#ZdZ5}oBy zQY0z07a|Yr116Cp!>V;BKsRwI3llRwk3t+rj>_&RN9xxFsfdjXAy4< zmL7L{0#`$RZ}ucx2w{{h0}Yq!sh)x*S;uGarjiUVSEGA%lgD(+f>?K35VhSAbP3*s&WFFUj4EAKf5~4DSIcr@z(1)!fYmuQ+3aw_x;K0Klcok6qF)7k zvny+TP^$41FU=%1UI&rPQ_d`PTykSLZw3&O!*;2hi83F=4O?Hte3+W10AC<|SKj+a zOY8~oIWnUZ$~)h;4Fhg4xJapg%EP_GSuWhLwP`FG$#l@K`f-X3X!MT}`6@+L_6~-Gd5lyDkIa3%@0q+P6TrQHCseaos{I#vxU$>;TPDr%f3T;{B=lx*YDuo3=ljZbNpk~)y zR=i`&sa=~1v2nk4K^}D`ea8aZ3l(O0a~yPtw)5pzn~Pd>Yb%zW^3}Cfeh;k*=8SNG zM8@W^HyT~IrB66h2p2Qg;_*0ROviX8{$8zpA<|T^wqy=%vyC*% zH<-t2`0#smg#KnEVr%++Ke_ENjL{O{ExoXY4PO7Ypj}*QR%N`{zraB@OG_tcOo@o{uGw@~8ICmVlnGM;B}jYkW#*Sr6fo z;{LOC^~LBzpT?SmAEJ8YRZf3S|ES=`4xMQY2?d0hAJiq#_eiOGjMo;@4KiBKBKXRFI!c&am`mk63t1HL$7^^gBueU2PtZ1>zF_1PCH@Cmh^ zE0T3tGGFoW+gN-2V=aVb@f)ZH$M%?q+NePvvxI`O5t~stACTSL)0=KChaP{~r!YgU zJNrZCpQQfjSo{>~!`J2w2l+_=FKa$ZCa(wayhfJ*C8ZA)l8?=SL9=CtQ(Rd7x&3;* zSh*U0CmctkOjx^xmZZ---n(nXWwb<);J>D?y>vZ&7xH%eJKNyj<1~lTgi^3FdPd6m z#E&m;^{bi8+JQ&%%$;#&6#Zy9-?(zoDPtIzv>|!559=KvXrl4q(zGFHisH=K*Y1(`2T!Mb|Cs^%&ApAHdH~zK68t3xhx&4I7Ut-wB#qt?RKr-JzP+m8o8dXc# zyxRV!fAoVEPdKi(M=iq1HNuT&FLUwECjGASgOUrGzqp{!lH>+NZaTPqN)?HV_K z@{Jbuu&(9y23(wY5c<407NP}Bqp9Pk|2w68{`sTkGum;F3XHGN9#$VYFo_wj==6+CEMv>!z?QJkUg~QDEe=ZY z3i;_)@*g1J_WWY*s#OK&tEXyWHF%ixj#tY^jpgtM;k?Pi!_@E4MBR+bsYxn%8-ILQ{`GsfqO1~+jdG)z z*}TUGYbhFhqA?C3CLo_FtKvdP8UA_dv^~*W)|OBMLZXJSq9)VX-E#B;B3V&FPjJY> z#7{fjAdV(`ey^wVWatZeUK$i${bS_3{rmfjDj;qTnPhci!%#Eo_m(soQ?vMk|PzB#9p9rEGp=JUNA@oX@6y zE9cB;?bW%07{m3!|Axo5DL0_F2=(=2S4LCM7zX6)svX)cIst0EZ-09O*0jnM1?W;h z>WOrRO%#eRkBGv+jZE7wN833L5(QTs%3jw!Hv6VC0D0zJgtIrsi|@n8^xgSE>_4izOw)M>l((OZ6`q}zr6^9#D1<5l z3Wb+z$kwvH`E;I{5#YO1#6P5Paz4#SQi+exonTDKJcXY*`u-4zlE;tdY?6Lk^UL@A zz3ne@5P=IODoxE^Mj10fQUGpKovELt-AafF-6J%qD>4} zd%f)HuepYJg>o5%2gmL2+pm5K1Dao@s6UP5cDtXQ2b%aLE?O4my@kJg-sNa&<_tZ@kS%t5Y*4>y*Fz(7*f*UFPYl zA3|4g|5`+3hV8X>vX)4P)1BqrA0&U>{&6rMCorcBx}6La;ka*$dp-EHUHp3nG$wAM zzRKAc{@DtyaW6dy%3xXXV*igJ{xnSH+0>uE_a6)Q^`8IU0ugb-!(nXmN#~EB+D+3W z;tx5BK&Y9OLgzFC?^Sb#761$9x|?FeY@GGasXd6)A+h?;(fiFwjR+3!F@-(*a6-g1 zD<^T%C%bi$%=Q@esAlD))jLq($&SJZTk7J!@7aO9@Kr&NYFhqZa3@=(a%C2iw)K>#l$ zCVcEV+D3>3l1d8}XZ#8E@cbCWa$W8WqZrV*g9y``$Pj<){-_i0DX#>qCV_5d0MM3| zPg$iA#68uVtKaG!=dS?@y9jU(M6#8;F4YogA`BTfG8}xwM$8}rIFvTy` zjWcg!6VVcnX?2x7>`=F^Ik>sc?%Kv-#*4e!TosLiQ`t?&_U5;_C}PLKP7R6%Qm{gCRT0RHtMyR7%yH>Ie6`SLMYKj zJ(ln^ZR}mg)9CwqN{(MhAbr1m6HR80715UNC`#IJ?T>?poC${k9lSM8M{2)bl@<}s&&YQ0U&&3Gzqvemv6aFDQd7}}y zov2RqYHlj|JdsIx_t@sR7)EUs9AcB|d5_2kjm)jt(LQV~O5@d-@vvtRsI{@6H7 zMt~HWUd6u4dLnA&!6Z7Y-V4dE3zBav!IpXP=S&jb?hj)V?4GKTq)ne&585tO$1wl# zbPeLw{BzNqGPHdXwumQ08BwQVYQi)U4*T&MlH)~C`Z#7TR`@m;#j6g+!^gbSzQ#Ah3UcExxs5Q(Y1`({|nJd^U#noMk?Y(yT_W`2t;Lyb14+VSx&; zO;76WHu}45_CFrzs*oV^vLVTz)GXyNYsO)I{|;f6KlBJ(_#psX^0!FN%=)|P(o|TBRhvYl7(((QJ_I;T$h2Q01E>Wl_qJTpic9q zUfQ?a0*R&QfpLw%SR%eMjD89Lh%^!r`ZU|_0BYANo#PK-LYBc{Lr|r8Xg37{fdX`S0AXPOX1Jd|9KwyZ zv|fvOjRpCmZ$)_=%(CwH%RNG6Jr=#B$hqga-D&+a2mU=A-jxQziNs;H4`5&g?%#PG z&x2*wWVpu!e*$Htjwu7%y+cp=SUP3FO$dN8cKmCSNB}V7HB2%U+Q{KSPvSe~2hnc| z!&?uM(=p9yGNl#)k)6gQ1ANCR#Ps3NK63dfZ0%2Jh@q@lrp{Q;W2<7(B>5#pUYP9G ziCL6CL%1*D(h5M*QiiO}PbMoeFO~oGK_sD^(ea(Vx{YF&tfR6BQKeE+YD-ifF@Q0J zzg~%?_V^W~Qtm~#7B1EUQ~P~%zg?m=J3`(AD4`4>&NP+Rhp4&-zv&F`jY(8RgF1*K z%#IS1l*tyVweO75H2jEXv1Adp(n~Qmt1*PXOM!mjIOP~BR)-LA2MQZGAfIvEEjtBm zCd19+r=*nzi+!41#JkEcy)sxTfD*`(3RMFD8&BiKSe%nm!oy?}CX^5waEJ~-3_~F= z9R?txO6@)ZYw*9M><(8Av-`a)C76O>f~9@rNW%!(D|ctBoYCxLrmat?ee}`UQ(}5h5qIbAx`ih)1{9;M-c4p39^yV&69J_k zktvob5^OsE@IS@|3uOKyClGqHH#j7kNkbjx^XcY+j|~^c92zcnP}c^#TsWZMGX*(B zC*K_?FHhqjO*8dFi;F+o>!$!mngAs;9&-#X@yd(L*laq*wDN$Wr!BJ8*H1qC`m>W8 z3Q#yGJS9|wbDdQPX?@PoCC1xg&7Cg+50Y9WWWOn*;!22%JU!!>QpDvIgqp#z%);`m z9rC+2qFrGe>}Ux4ql`7Iket83p&HWF9mePhC_~X}zUIiZk@s*c^r}H%=Mj~Ov5jZq z!f{f!*+Q5dU2rzbW;~J=*ImGEY5eygl;6dTK@_Msp|V@0LUgebPHsLBH%y1sp-lSm z{V!^7A@_t;Ht48K*pt|A0mo|+=->{ba|b!~RJNs-EIZP`q`{2*RbD+W9jZb4{G~D; z0KsdigD#0e{wl3hnvIRB!Ys+(IC!6O-)RXHv38aXK`Ya6Y0o#5*0FOojLNy8p+=>w z_bExdvV4aRLU3O%II#ubS_$E&FYGGPK@x@BbijpVZ*jLhQ| z3sLWn^NK2s-`9DH@XiNM_LvSS5;I~D-QfTx>ymKKLIyFtqA(EBnW8-~v`U<+5Z+97 zQOyRcDavW$nK6syjp_{w#oDVn!$OY4KjTvAsx9p(MA zTN;1+@g#J2^%4hexm^A9+^lYukm!2H4$AsnSRrnv=uChkmkZczRm-=z_fT3yyn~kj zoq9XE)oR3zWOJou^UyeIGU-3|NdNp%Dirm+^2RUj09&IDf)gFvc;jO&TcFUo-XoGgf zOTRRe;cpT$uO+REuA59V{m8Zw`PI{_jk)X#m>5%HJlL6(Jb-_G;~(OVga+etuY2-| z0y{xOG=I#loJKE@?*+Aq*%Ccvc|gh-LbU>2d>QYBwh%rj@&2GuEC0}`*!V3Ceu!Tr z_j0+Tsq7&oNvT*7M;{Y|I7s#;Cfu3`U4S3*XS^qPD4J;^rzJ#bCXGjNGP93R!zKOb zX5v3Ze`-wnyIvs0pT5TUN%54)Jlb|CgT7ZhL$;S?rL?2*YV>sx?f;r+LIo??oYkNC z^b7rY>jX=Dd~|Hx;9!9Acr9uOYO ziD}EsB&NV~ll;ul%(T&~#Vmlpn%u>v!zf}L#zae+-@MWK{L%MNI|(DdyQ35rE3xrw z%Fs8HG~kPG7BIKyok&II7Uitr1P{R%djlmcE06XAg z)n&^Pp4ghf1N_?9PrbC;;RIb`$QHeQDoITdF+xB7rF&W8=FGi!F)T>2;!V-wuH4Za z9pg)R3Ys916=>gJhHDB&hX`;YWZrk-y)!)10tm3^_N{OypyX=H!{zD2PaePkj!jc? z*#iUy+i<{@?OeSyA6-7UI{*gNH0hI`qYFJ5d!%_Du*6VJiRU)3aW3cBtt*R#O(X8n zGF}QH4w3qZ18C3z9FTYZx96Ap*@o`6=DUVLuq`fN1>f!h-=2YG8R>%Bq?E1+-h}B! z0gMLM=}W%f%HZUqZnaVF2_>B{*APIejw=T~|Jl66VvbF?p>pfDe(e*Et~}6l@xNzUALeY^GU$ECi50F(k%@fcr{ctLrcphOYipq~Av`rRha(58^`aVG>e zAnq>UI4wT}Ky(19^pK2M_D`{TADHvAOm+qr1aiyd!$9vrpRgbyv+S{FK62&UP~E~T zxPyxjc*QT7FxNMk>p&`Q7QXof9qdF0|K}H7F~xp0Vn52tUa7V8e>h;ATmbTH?=QTA zbFg0vaWDAL8F%(A?yu4EF5hZV5CurVFVq3 z?e6dJ@$&QZ_4fDp`R$_;0|N^p{{l{+5Mx4&g9vpf)Zu}lhldXyFp$V#;>3tMC^XP8 zfXAqh=JbgiNs=B&PXr`r5D{aC2Z<3YR*d-I;lqUr5$Y^BVSMJ7~h}F*Bk~hB$X3^eLi&a}5%{?w(G4 zUgEm}5IAi{$cx(uRT}~8|1=b2bxfbO7CZIVhAUWTY0a`#BglaZ!hT7zU8&T7yxNVB zOb~Odu!<`-5Ft$v2oTUhZ!vdj=R@y-)E@YEx zF$4(R z$w)9EG&O=>s~lm24c^rN#4Z-h+6M~co;j^oYKju5pdt}y}%Sj1ljD*6he-d-@?jS_xCp<|LlEAhk>SKL*4pN7bTj}45fWU)sov|>%d z6=$3d6ez&Mvdl(m@w1Wks6b1?#Z+^VIU%W&lE*$b8_T1-EcC_BcKS#NA!r9gmo{i? zuNPgMZ~_h%=&K012MJ^h5(?TFC`5bgWcMi$tv>R<9By?G8=n6GJ1I-Y%xZy?=xfp;04oIJ= z{M$rz?e*7qUC_k9&zu$CylSa6L=*;u8^8da*C^JtK;UiQGiJxIR#0AGSL)-A_%K676J zBeuYaNlOydLV%&D(7SEf3wTS&0vp&Ml`c#n0av&}2+Y+7_kAQ?S*Z(Nd_cY4z2|Hd zfB?OO|5$)AOvM05LyWkl6{r@_Km{sLf?t}ktt!H&0v~`t7NTGQ6xa|~@M8?&%F)3x zn(>V4z(yxfK!5>=%0vZ8NXU>QtW^!LCP)$iN1_C`_o1;$p}R{TQ_=u~*wJP;6P7}Z zK&*pcumKC;2;ijjM~QuqS-SfRAx>BeF?jNmVpyRY5&**)(vWNC5d~IiL#7M(pb1JK zp?j>CJt5i>0%Pz(6sTs68gizIVp9U%O8C2ZK>!3}5Ca`>fC5MbP91}TSS6=P%>}9v zcPVjW$9h5m3ixl1DiYQmPgalytSl1OAco7Ti5aiuk8y=O(jjjateXtWf=J*AvYK>- z|6Xp8owd4TBARl5AT+~i_NtQ*K{$H_FjNVnVa#K$K@4s{B1ORn&G?P+F#rv!P&xILg@uZL zAB&u->Nw8_>_7)d0Lsez;Y?8swPKY(jIOjv0g>I2f=pfA&U)sY6mVpxw!7g~bpw(! z>1!-hG@(KvAO;ZF6$GHf=|dBMJXJ32N}ft3N?6(^yTM6sR)7x>Z&?5p=Hd_mFjtny z)B+!<;BMTh0a}iE*SoHP4GFM7)rP^xz@{UbmRhT7SKBpyxfX795sz;)paI8m|1$dvZP8d8&`xZ1L@Yr9M2y4Sup&n}#}a`8o^u7DO=1`yBCcdk(#-56 zgLl8%>@hi;SBG{%4^vn`KOeC!Y&K7@gKcFKrU$2O(Nes&B&_R@)F9~bl z1x9_K0G#bC2-YwLHymKJOWB}lC*@OVYWKnzj?Cip!#L0sQb{M8<8FCtN1MEA0yB!v zVcwfz&_#kxLXm)TG=iqXPE4z!?6q7)8$hD46@W{ATX)?g8^fEzK_7b!XD9HHqEp)yF2 zNM>V*)Db5-)3K6ztlk0aloXV%^hi#kua_Ds3cn))7KI3c@k)8hEYt&fB?>9I>BpV3 za~?|YGN>>Y%%f+!SLczTjA8I z`rPQ=23UUKM$jnWwgky10GB$ln<)e+nG$w7Sb#p#;N zjn}#3b~auJe4z;0m8Z-70b2-+;R7BP>K@Izd)KgPycn! zG~&p`uv^OyWW6$*xy~x|7X$euVoSwb zM1nE~1Y}>7G1+y1mw^(|p%R8PPd8R@i-Zu}RDwLVcA3LQZ`XAihz`^jHjHmBszm4%XfkbuyFn2Io1>@inxWJ0)rP||2KE1eR;=ydv}96xNMmCNj>OE z4Yf>bW*At;en$8aSrS46(jEq*ST#j!RM?7l1pzG7J$hDpEI5Fv=Y@5ci)JK-<agnz{V`X5KP=*Uq6&= zPnKY=*ni`9g;m30j_@Fz^A4z`dd)bI^rKcav_Br>O%M2hCt`c50aiAaM@}*n=_Fyp zMUfA;6j`B+g+u{uD1pau9D%5OJJC%(fr4#^|ABN^KjGMu`vwW+7-pK3PP#EiJ;VjpJit_zzbl*WfKN`px{2NZW$?zxYZL0VT{z+h7@2x9Kmpr#fWezceg=E6EHdTq)0PK8rNu( z&7p9&V|qn*KR#KRosbEYz<7i*LYt(0PgZNkbcx`%Y!JX;%r<^`^-0}E2OWR_>vt|7 zf_RmnJbjRlNaH4kby$j$Y_2$#H?V&Pxolm)K72MF7}YEgS#AZAxQkV!rCJ3|nbAmE#G=9_CEp$B

1dD=I+ha}p%q$|uebyb)(dJG3@6E!KgB^bx~Doqim#Vw zK3WjoG>oT#e5!MA$;hECBba>3{|-FjMj9|P@}#2;k%l}vo!mrfKgMvr$DT&|sgdwX z(}R7*^rYiOYh$34smh<2cx_9-7Cc9O04ksw8gAtv3}Kp4Q#mcBU^hW92nhwD5jw2H zx~4Z^p$i6_#JX*C*tz+j897^9B0vz} z8nqrEwKAC#9O?w^5L{#2~(w zkh!Dyf{w^hTsZ_iCzkL#zb0FuQuujt_646exh#uJ4tBZg$qfMPmKEH^&L}%7foRh; z8r3OcA9+s>oD*+of#aL6UK|gy>$Sr7baa%vle4=>GJB#{uaLBiCR{rZr>nIQv(I>G zD?E4br!Ox&{|M4cd3=Xg1*@vdRz$e8y>wd(v6@R;thx1xK(1 zrAfsn%V1w%vWY9Xb|q&|JjGNPnkLmJ;;6X=_{O}vBcPy7WhfAgc@T_-Gskh4LFy@g z+{@Fqw1D*s`*WBb{16_zT=rx^kHg0eV2I27Ig1k(c(ERNA+{Nn2pftO`k|oatV77~ zX8!5Opc$p|oT>#-L`Af!mwcr?%giM04xrEv?lvk<@N}ioz}Bot`ed(K zakLa%|I&`?%+H*MkaN4sm6+ry!p^Y~{e-+Doj72@FNsGCZITyEt-Qn#tt-4RDA%tC zZ~~l{Oq3_Es~V*RYtPKacVYmm`J4rvR|65Cx8WO^j?sR&ld(*lz6Ql}%c@{&aJOHO z1P=YU!1;M0MbT0`%XYx5&jd-PrqphrmoKNkzoKt*$s73@WS=&Y@|#8-X};jjl7oZP%$M{1tBPCO%L%b~CDYV^Fpo1m*KB0-_zf zAX>it+oFX4$AbfJc5SID!$g$aS}o7{S$WBn1<#GiwZH~E3BUCsfStPRMwk;oQs0ZFC; zb#pgUL;oC^(4sJ0@5hws6+sa_u27;zlWG{*Z3q#-nCv@sVAUtkR1Huyp z!=vhM;Bjoglt+0>Pg>6qkVPL*0bwn@Lw;t`^<6%O(r7tj<4 z5KB?OI~2z#^?dE|h)iuE1L^$*7;xh&qG$CPbGv;|Bb2Qu*OW>x_mPwwWvU~E1_l-FQ! zj-Vi|33d+fj{Ol$mjW62Kj6A5XkR3k0~FA)+KY;=U=PP2LGTkUb!~|73GV@^LX3{- zV+(iFa1S$xteIn@zPtnK?vXyD9t(_L0gaC~*fVolRFsaK?$@5{jg{+bp+z51=7r||Mk%C*n5wWQdBjz=&A`LFnp4+s^4gCv84Srv#76%Y_v zju2vvlanA2mIVb6njel?pJG`bVx3uIpr4;?Swll^Lp82mT?Q5x0RerwyM4L7eSX2h z!^FkL$H>Wkyvzi+7YGO=BSAqmM?*F)L@q-ltwULwj+q5Z=VO^5nv5S6*+WDhnT_j~ zh7g^TOKuSt1I%>g3J6TuFaZw!{Ba;)S;2w^BTAe|v7*I`7&B_z$g!ixk03)vB)E&f zfB_mBC=fA$0)-ebb;$HU^T7iTHfiegutP@-3L;YQkU)~8|Hz|AlPX;rvS_nD1fUX- z&_G0t9Uh?E+-b9`PMJE8!2CI3f`SDa1`s8t>zGldaEldn*sH|_6)Kt(SwUsR3L7?# z*ziW8u;IcL3JFqdsIlWkf)+`xXQ?u!av$8e6QsF9<`1GoWoDJd3!7H4hRjNU!$OM| z1DWCa71tuk*|wwssa6B9i^JW(eOmHC-n??i2W2LbZLo3V1vYc`%;*%C4zHaCq=--< zLx;g2)*es3y!rF!(~~c166J!GF2{n^*)``*oHTU+)gU2iTkUPBC*XhtHU%J5%}9`f z0!Zk96BPH=XCGK${X~IT4J^O|Kmmeh%v%M1G}kWA|ES=DUP1VEO>fwAbC_ZB|MFcp6&_W2Y@#4!sAr4a%E*40mL=aTe z(3>{Ek-(gAUbI4lJmq}BPGX)h2bc{+h*FLvkTEt$C{Y}c-GLoO)ZIc21t?yXgcfS( zp@^zilmt91uz*S;ycClTSk<%@e)MhSlL-6~;2$stCMxQv=kdvlek>Deb|vf>IX;mEV31tAR30*A8AmW!cR{|1mH2SG&9C1B3RLj*rHL{WnmM_8dv zJfgWnL}Bu{30ORtVdjouS;UzN8&Tju!>6H6^yhbi{_63^AcveNN$owl(gZPxH6Kp) zapjdvF$C40r$m7YpvXAqT#>0X_XpJgk4`}8t6oKD(+)k2XMmtNXn*x6zx=|#U^z6n@rgS8^&nL`Lx!laQdyHac+-T&7k$%(3k)DN?z~4Y zJzb^-1hfdOvRt%-+G`3kSxsxOq0iOtGClS2&US$NXdk!3Yk(n=cKaSqLKn zz__3U4&((5R5$_^`r?-s+CT`FJCnjdj zNKB#<31qdC4B!eTYf159b)W9#WCt-&$pRk2xFvcKWaT4>1P0Iml(kAiu+rYFd~%@) zG{9+U31b&^2OxK;FKc(v4G>xg|3e|Tz>oH8)^9MEzqC!Oe~tJb01JbNa0m%VV*+3{ zyc7$7)qo072*L>vV1a>9@KYA75(ZT;0f| zKmE;!5{VGkBI%ZhhR*GPk~E!{{8a^QcHo>hqj(5*kob z0aA>C@mQ807G$bEK2ZRFe5KT`nrEB@Nr?htz!M31AOkZ|V}4-bP7%COLp3WOJ?q$u zy1FZ$Tq}ZJ<=4j-x*(wUD=1>rwwS_3=CF%Uq&HdzE`}ZqhX6c6MQd5hW7R7PC+GkN zG%7)3YDYjMX#ow~x0@($uOu5zd6l<=HH114k1OSmU1qj_Zq6o4lW2;dNQA#=Il6%kl<(E?on zZ2{QBidpl+m07V>|0Nk3-#nQs$Gc|jmDA8`HTc+9Z2)#`_!I153`wKL_$U#Eq1#{; z+KQU;B?w#Ei?OOXbEBg3veK$w9RczxljWxn2?jWn2H2^_6(3J0S!}F zq5N8CQ59Xo3!mvs+BOFS;Qn-ion?lVhHATxh4;uv{#A2-cHWaoin{mVUQTWT1)nrv ztGwV)lDBN2@p7mIV_Xnf(fAc8ySJ@x%+(k*Oy4j<>2X?nr8M-i*BOV+H}@N)fD05yCo^ZV`d4f%LGD@>c4@qcX0n#p7#FAZ7G_n?(Aoc>E?33KF zXk6nI9U)n&|H%w>dP#yB1OcT#jUC1?He}-#nVDS9wXPNAlrchgK`fb+RkOLyuOQ(p zaox_Ymu;Kze%g~LVbE1umQ9$IMFim!pFA@rz53#U23o^QUbxnTAnb*YcgC|o_3SKm zqs>l`X=oxO`N3c2($Fn!g1%qr14L8!l9{})EmDji*%22#B!LD84iJG3QZlpXy4uwO z;vZbVrVk#b7eDb&ir81x z2^3=Rga!-%RVs(M(B0zfUr0~_8W38gj+aI=!^|aa#gzs$z~*jyJ8RU94V zu=vw6|9}TsHi8m%I`XFX2XFa7)E?>3P2l&5ilCR>sE7+xPy&i0Sa7a>mBR?Y!TT0{ zTL||MO1&^RiDuIa1aL44U6(Ci{9;KuI!fksfa~g#?VJkdS#T)*EP51 z&~V<~n`D*h5=8mIOaF3bKbsjyU)9j+6XhzhUc@S`q%-B{N94m{^u&Hgt*`Lz6fYS^C^o-2m?2zeD`~K5*`h~ zH+qHcM?e5ja3z5xK6Z_F0A2ENleYpYbZQlK4FppNsjviWumxMt1zdmz9H1+_fIdQI z|7$EKdbHPpw5J{Xw+qjedQnAPR;2?hU}i-Fd{2-TQZg4FSbIf>a#N9XQiUHyGb<_R z0mIf47lLgWvTepUM~7lHb@gfaq<%`EU(h#wf01s!@m~Wq1Xh53wgrV>H&6*SBd9S` zUf56C=OxuJ0UZE++wg5iFCz{A?LnwPlmtHQj6)89$wb)KTC_c$%d>&IhQxa#S1V7G)|7b4s z7YXQv;+K7;LrE3&H8l1nLck4#)MtY*Nu1Lc`_)3d(Trqx3$7(EG%#AhxEq+1cS_&` zoMv$_C}{+dH5Nbv9DoDy7!4Sf3yMb~r$PW&6FJOCS(Q~U+E`OwKsuY_22p@n6sQ6; zpf2TgkH=>a%7k34IFY*6f1px>DNz;iAyp3YJuI+;RCN(gN!hDYgm{~JdrL7oB| zj@Kn5)WG9)J;q_U%;AAXVH#mzt;S*-T1G|8D+(w|w<(arw|1%N*nyfNqI{`DK z=o6X(MbLQ%JQ0-FVY|7j{KcZn1lr$@z!)AT4+Q5FeGAq<){L9rqJruGMhby0C*9OXP8fCcp`I9 z4SR6}FtiQPvS6+T1d_u6y3s*3)i0a$hO(v$D1a^@@T6VcHslN;U!0~IW^D$9pJ0KDxnh!k)S7_f_kn?bS2Z2dMuHr zwn!f?sUJQ!6)(uEm58oNMW}+p3@L%AyVs#*rl9VGA!s3A&PJ)e2%FH5hLZDAU@D9~ zW~21@ootCmEdZQLs8`nzHia>bX>&J6kV#4~1$yUr9b}9oq<^v2ki04{eUO>9Ab05~ zsk8TYP7xJ2+lN?6aTag@lS4^hN(Fcq0SEwYuW_x^;4euM2VGzW9dL5LdYNt-poodD zR+}^BlP&}BiK;20c=}{!2CvrEJRI^aR(iFXND?S;{{`m6l9jR(XhoVJ8UtvSAqyY} z-qkBr7d;7Q3u~DrY8kkl^o{4KrMpmGupy4qFb4z(C-tU3hH)mi+5uMpXInxAGxczX zcTZ9QhXdhV<7%@Os<*qKa4R%fD}bMkrgujxYl+JNC%^?=u(W2uA)p(&$qB6P(zXx~?X&NeUYiR9=?)|9IMZ7PmXK5}~`e=DZ$^DAjWkPy~v^ zTfEm)MP5-W6OaNmlfcLN!I|h3C;&81fT-|VMWuOd*}DK&V1bj`W?729c7%95`3t`* z5XuKzlQVtT049WV7(|e1XmABisx>dAjXl*Gj~0J$c(`&Uhoiexy|AzjYYp>x0C#O08RL zkLqcA8%C%u{941ghBYt+OwwVw(2)A*{|xK1u%%>yl^kh?d260`$jUsPAUHR@YX}k;+8|%(r2j zuLQ4x#2eMnXtb)OKNSF#OmxjV9_;MG2E8@e+659=3#*uq zajB290VTz(!NE3)?7} z$y^+5D3hpEM4B>vZEpmrLWsM$!_Jk88|g=!(}!n~-LaDm1h;@7uN9n@<*A$2*}qMM zdA$@ z(8b>S+5Qc47Rd{-12kZ8{}pi^)7UGb)#Tg~P{8-f7NK2)JQHMu>MkR|xKywgz0s;= zXErvl0waI`aH)?ikQc`?TPN`1>qFiLJJ3H2+ISFd&fo$CxUt^!HTB{$C5;%ejv+~Xep<1WS}d3RyK zrQk)u;Wg_KNY39}zUg625@YmGqt zZDIx|j?De)~$ZlH_Hnhosq+HZFqWfJhAR`eP!OY>Te$IuKw!pFtx|h zPf$(6rvW{@7H$3^AKp=MuH`|+3_dV!#p2jv6HqNqoj*1~S3?5_uNae9?$9*RPf0uORGMV$BbSo zJ3j4t3?=Va|E(ED&?isFuD$cH%^n0G-;QZAFAwumH1j|4MnfSGQVaG(==RBFdpxip z)3w|9KJ?XO7BsCE@@?t3bKXqk^iR(VSwjQ(MU_za@Ic@LupC6ofC7)>ctd_+IWN#0 zZ`e!E44J8XV_EuirI|>9@__H(H#-&XQFB!hJ089}NHG)?6AH(I#tjV% z8Uq83v7fT9)uyu8+1i(pku7}$;E$6Q7d{6{Kt(|-?KUg#?MfpS0R;Cg;f}Q-76=C; z5Y*d7@RGGw1+z`l=B>p5eSJ`bs73G_wS$`kIQa9&fdD^_GGW3Wp zOOpsh>ho;Cf&~qZiP*_=5Ftaq3?V7DXn-Y_NRujE%Cu?IYyk#n(1qmCjvYc{2x{;o zr?F$qnlXYXQ_@UL7oDnQr7gsT3nNA}S;wwjJ1X-Kgm4t@9>hse9Z~{JIPKcQFB2a2 z|D%zkN01{&E}l%evgOOy62G(;;9H1iH*+fB+4HAWL&HQUcm^>f=GU-e%VxUG=4c8r zup$yxY{C;k3UV$J%R@q6NRl3*l{VWl!wdd=6j@iqt`I6g@)-W?)cHQWb^Rj%bzb2{Wi#a9ZFr0BG+irg5ZY8A*n48O>6Jbr{IDNPNoe=5=f;> zA*UtMn+OvuBU}UhX;9ofX&KfaQVg|V4gzwmvjP=&Wrx58e2Ie~BrSx{!eGdaSKf#S z*{9H9>pkWkk3<$}q%}T1_=tWt`S;%hJ^7@A2Obc1enod}+{t|CBoT zf?97m?KE0&9BSaf{_H~d zp^!#8Vxrp+09p!ZMwtw5h4>QGFcYMZrJ|CSYHEDg#Q8{sWA1X5P>CcXs~|fKw*YGd zSmYXhN1f^lHsRd(mJfQSsKgxEDe>Y=2L_rWp*ha!E3cF)x2R+7MKk_cKKk&=ELT&q|0M)Sz=N2h z1&G_t!Cj$^iRK3Nl4TUjQTFT z4&SYK-HC;Bi!NmDoXFD_9?Z;#6kRR!;?(NR*~G(wUF--xytUoCE`>~Lw|OVn6v~cv z{vhYHAL?U$mBf4traRHMHo&s3C2V7?GzX0Qb{}HK8ZJcKA3!tfd z^bCHHNq_kB0B?*Twct1daY-VdEV=<0@O`f{fLhy2B=|D(jZ71;bC31}NJ9D~iY!u@ z3ay~Diz!j*g}``~Rz%Q@hoGl~IP6lA-lakTVI_w7yWb3x;Xr6qi-VOQl%NO`zSezk zTH|ZU6VZpQ*ljR}Sd>l4q>?6s0q%uVdetHLM}esgKvw|Fq8b}SDFX0degcA?RbnU% zfeq&h@WR~{<;6V;E)g*LINrCAI7lfbE+gr);t1EsNC#CbX$8}nr(X5L7#M+!s<~A@ zZr8|8!Y47}1BZkLCXA{e!IWk4)Ta!lfEtPr6N_9PHTVNzNC-$i&i< zz)VV#9ulFc^s6eWq|)Sm!aq#5(ujgANHC}Q8uZM>9_|`IPW)A-f1ySgzIZ?ohhmId z4FGrRJ6|qS^{iTA@RnF3S@{eZPY@>ZmC~f9KF_0=N*JXkxfocPz$mz<86gov3C=Ud z5lY4E^Py|8&v$ZqL`B=A^GLDCI}Od0R|=~)tfjX=(c(8a*Dmw zW7{A~QTy>`_v>{Hsb9X$h3ARkD8t8F?;&#!JM^O&X}5 z{RmM;*I8*;bn6w2C00sf*;9hYW5p%O(@hr4W~g3Dc- z5*I(lyLcCB%y|^3<1%w*+Eh~47*xw{J?Beclq3cuvK3I%v_js1@kRuNg9Zde zYP+)*xJSgTM10eDVSO^MV>4UE^9u1d2VVs%|3>IpV;|e$7T0NyG|{Fm2CAFE*{rt3 zC|q$?Okp~)*Ttt8;UzYFU?2xmGxs>01~64H@|FuX;EW;Ru2*CuTbV6WG*r^^>%toM z24^?hiU#m_I9k-gx3qL!h2M7NR3wVXEN*iaUE-H_4Pa(s!q6aQHR4qM!U(A~;&J6n z=r3g%q(*Vq8~ZiTPdV+&1Iv((4@c<d_Czy9J|Rr~{#bYEw`u+yg7!2sCdFvKFSb)&h%Yqo9lc zAqduQZLMrCC5jW-h!78?Qfd(oBDz-j{{=^BxL1}|``n&TZeIqVi>rt;jHo%RtaR(9 zcO`kX?_Kt#=L6~sQybgNUg$GW_K>|KI-2NaS-+QqxClLi2Q$MnhkA!DZZ?|LfeuGH z$FbRcCtTUe)tfPM^MH4wW^%Klx1G0b?^vK90KOH)znimg0?%A?z(RD42cEvD{FAI7 zUs=tm<#1AW`_#`R@sxZ4g_8e5p`h&ev4ei@`aVMege|!^2P80oLAc%#-?8pcAOVS( z+2iYbUs8=c-c!3FLOuBN-MROk2F7m}}?*W}K4PJscFeux)peFsKZ1P|V- zBfRIm%_r0*1$LnIcNf&gk_Iir{|~3OVn^ij=4Q~)+j~oyNT3BM(9hp_j;)&L$5OdE z4%*xPcrET-a|9qeG*%Cdnei^^6f*qbW6*#d+i>HKP$KPX-{ERCPXWECyfWi$N6qh; z^Y1z{=+&#B(R24@!8$$f$M5O%kslh-KI65S&&HA!{qI+JhMV{`SBne3;RHA@Zr2`X?B?4Abh2eN6*nHL$0-q5PJfr~= zpaTjhPFojmP_kH};wIbn|97+y0!+nyCwPG^c0vmyej8{L;?g8@XHMsbdS`?JM$uWb zvx9o)Blc!z@P`ZI5;^zx01WT|SmA18L3Xed6%3IavSx;brWu409x;YTViE%$P=rpm zGgZ-m93psb!h3sRX}33pGsSjEk`Eim10N^{O|pp#fHF5B6`*)$cSdRVa(WRWhG%3W zHo`VCr-L|GWh`+%0Z24?g97ytE)phzpoJ-zB3Ca+P?Z;lPB%PI(k`oVBXP!uKxQXM zhFviuco@P0Qxc5Q_d+P=fV&7<(2y$+u}L>*cW#GVvUq50c6W(!X82-erD$hG7lEL~ zgqjChD5H&y=pnr)|1;0va1vl6;gO1-F?+7)f01ZlKUg5PjF z+Bb=K6Oa!zj{EjwZsl0ohmK|@h7r<^cXkCclR|9BA4-`5o_G_^@Qx5z95qpN4p$>G z@lI0MlUeCOJBgE76HC}Y5kr}e`52Y+hbjMo8=gXuCfSx3DLBRWA$%bdK@*N0d1c_2 zFZVT9(+G!d*_I0EXqK~t+9;JR_l-JfkjYh$Q}>FL5@ZGOlViDi4;PA0*$n*AAEAL0 z^C%X$0FUD0mt&SIAU|CHI$Z>6evfAy{HO zmJ)MmcbAl?RI9QtV|jWVPfZ6X$xnUDX2AhfW3k11TLd6TEPD*)G;)kzEc zIDXq!kMD??%%CB{(UeW{nH~aW5qo!;kOgSML0LUxA}o$x4|^Rp9bIgz)i zoXVM!u~InphM2-RoD$_7DBvc~)t7#Wn;Wp4Z}|(Uu?&P6c1_5RsrPbBWo%o?R@v#8 zJlUF`S9U`=ncIeENXde1D0sZM48h@vVWE`lsg3WcF#klKBRX97=|1d45a_6eq{e~^ z;CstJ|1P;Xv6(s%I*ts9KR!>U6P!UVedH zd&s32s8r8z1?Zyi2z|53YDU`df-8tvNowCI;SS;qfGUzOSM!g z%8q?H07m(#pDCl~iJo#r8Yn}f=h-1`Du1<_g)v5gcuInj>XpC3tjgmO*%z-gFraPOuV*>~GvKSanUcdp zIBmiR5m>Cx@EOsz7fVGR*HoYTRHw+do#7E7OO>*mx_kO)t?|dGZqkyyNTUEE2!@I+ z4TLa@N|^K*fA6Vt=qj{{RQZ>qM!!v{2i)-D#7ph<2|4SNgJ_D{5z)yQBgop`_}y zd@HdVu($o%0}o5K$`myzuzBDZoNv2E|JGaD5Hk`&3`k&`e>tUk%eTiHzJANRH3lVw znWWC(daMzK>X$o)g1Fk%U5krlxJ$p4%Cy}%xtFlIe)o60OP2B%o3Y8Q|Is^o)?}fJ z1p+`lJW;wb>a&>XnLvAf&8BnwyShkwL`n6dn?}3ZX}h8Dw6KtE=tpdsi?yb9YGaC$ z!)vC-TfD_9z7UJ1f6Gw;TO1`7xsEx#jAUyC!5z)RFS)T%PddX9`@%46|GcFNm}=^E z!&+*qm$_==I6Wr9FIK-8VZ|Z5v}LHjauT%{+-#RCfi7#5wwjGgD4R>#tw|^=Hxs%Z zkqj6zx^nfvpBce-{HOxQqZW+8uFJaX8px+PyZ4b9f{at|H#*FHVo#L=!OT0;( z#4_Bk6^oJQ^$_|H03nd9^UK3_<3vd|l51JSyn3qqI&{7BL#6S*_PesR;$*ufyP0g) zWKCSzwr$(CZJU#8vTLfznDzACd!K!tAI`b|iqCyr@9XuNsEnTEWDG0EupZ=MSLpEE zB`w^Pt_Z1a4wK7k$wGlNANcU{m3Xx`LoR=BFtKFR*si3T`#T!;3WsRT?6}q6P21$Q z749iF)rVYBQ&rpbK7)_Usi zv4b#b*L%tparD5gmS3B2RXeVPn*MZxe+t=}7gNuk5x~7f(5%7`wJLOCJEI1a1YmhZ})vXhucg9cO*@Cb|m2#T2{#_H3v%s1v{p79r_sOa>DIG}%ovwny|HySh!VhUU&a^H5h?IRa<1pG0Ntc2@NrVAxzz)<3;c||}_ zc9%E3MaeGEs$^#4+u63L%3)kXD zUSJ8nzkT)5Kv1oHW&#>h{7o7geC7Qt+S_S-?WWt#mMZ>2Vv=#@N#mSCYWXV4SKP$C z8+NF?<{rX65bDkW^YudE9buSaRpQtA`o`LwqNI#*0-k}Ejq=l)nhX&KxGlr)4n}Y& z5@;-!W`i!g6l0t<>#mISrxz9ZYvmFZRIj}NTJ z$3>SnG+aH`yGA8&?ab1LJQ=N@zSXXS7EJkMUIjTeP>VHBgLF};8Q$zZB{RlQp$ zlH0#>Pu)bV&U&kp!-?zik&JC#9k^1y4rnd*V8XydvuKOET)Sh6tn1?Muaqf-?MYsL z%F@cyA6``=Tdx}rCzn?Ea#hIK`N3;g+ziD(+$T&tzG5v6^cu<&TS$*n<5y+`o@6Nh zerM7?s#bQLZ;e~dyDD~%WVORukjSinbK)!vqpv$R`LjxvWA;e)LEeW(M_Z>J8~4|Z zpb-BlT=ACC_m8V0*xU9tfrMTS7TzZ?$Tui7*f%0FD*AuCW63G0|A8WWCbqeGnPG)t z&|yr_Kzu|jR(@i%`g-IhWP;YV_KsF|0`^buSbxt@cUR|FYs+MFQv)%d6e}hsISRf2 za9sdu6AH)#geHSJ+yRD`lmwoGi~g62a0e0i?DP8m^6%~64FWWtVLllaPzn8JwEibA z!Xc?dba)_{Sj15+@_c#0763(qLl?7xEJQkqys{));wNMk9;@@I{n2C)Tqc*zDA50C zjsy-ee{DG-seHPK&u}oCI?!U$5=9~M&>?0s#RmVo%28`g)tDW+GK$bI8lAylTJ+2r zvjrW0C#Xkhc>hB2Jap)t^QN)3y5D^dSP;imH@bX~<-jlugZwbDBy^_O)Nj{}b5e%6GM1ZRTH=Tm)%~AY!n(jIs&hXPoHg z`;n21cJtJlmV&be=nd0AD0j-;j5K7<$8p{$9KSWJMrbTQ1b9zYE^9ubvE`=Io4)pBG+opFADCs9!q-OzZ)?GjsBY3TN>`jg?kVLh)AN`3k@#W@)SqDn)j_<8$P}Y#^HHcGwk0 zOIef{&Fh-zFMme2WRjdCA=?l^E~8x#ilY8Mn9{!85OR z7`^hBk+BodD zR_7*_<5Gx(u1^-t&n!Y_ze(AXBC?GA<44_ye9NmKwP6?xetK1{7?CX1j5;im+7K!? zm(LI9#R|{;Nnx zkHw(kiVj-l#S3of=f+^e_1?+Flj(@TYQD+gXO)|Q!ido6!N|qSM|M`)eBp{%)!y4b z{cvC3ZxWonYjf6xaI))YnrhiV@I}?0X4dR>Z_eUWN3?2mjHHVzd)8Sf5W9e$Iongk zT3=5olB<8D@8uNq`a8R{I1)HiqdGsm|6FOV^0AM#h!}l^pd&S~PX`bh4hAleO<7ZU z&70anG@+Es1LiCA&bG|ROiiWmvFc}6s|)f*{iO(emqLGiBk#8^7q@)2iXk(B2UFPR zPl}rsD0}ShHxtM114Gl73~?Ob+vn}EJcHmf4G%kLV5CgGN~7m-NsTP)(Xnfv%T4xT z^(+LRDYX=>D^VMw;Nn9%`H<$~ua1v$h3O&%MDhp9 z7Pf!QQKAd{0j-IqH@;fXYY{R5u zwW6b#m?9m;;^dDC6>`>KvR~!mHFFV%+KR6mGRG5$=H#>*WAvL?A7VXU)$7wSi}Ta1 z%chY=uBzvfbz~%HXKGoo30OEJ)hoH+Ra1`?8QR*OlS)4DnW*z4{Ka|lGvT6Ffnx> zGfCflzZ7r~nr@`m&fw*$;VL(nVPBTEfKX?kuIyOzA}E@b38>t!9K<%0;edhWLrp_Z z1^Sm%wYF3Oy@Kk{$j0>IXbt+FmnpLL3!+H^*2Hw1YwcJYDyenW>*z@Pv2E3m3o)Q5 z)Y7b_9xsVdER=j7o!V(HD41iBq=eM%Xr<=$GSLZ?74{#e48f>PKR@o+rBQde`&05+ zB9O{;l(bsDdewvEB}Y!w;U^^btewpRp|dzGy=GPXAva)WWs7c8e>%{oVk5`ZwZ2nTlPjBm&U%|HISoL2 zPMcyUh73mLA^N~h?FIc=lSYf4v{~!^sdvKv_L5N$n+10H9)7FL;Fv%Tcv@|($*VFM zA(N_PJq*IgwEMC|9D%LFWMw7pi(ezMvczo1$(P8q?o7u-*`w+v zEKrD*F$A#&`=?qx1-Tqz?;9znHIXIK8{yDAblV!zjIm=j;nH|(6j`Rt@=&E@{ec)q z+lj)H?cDk1uC2^?(XdO}=?8-1p4VJk?^H`@Os;m0(OI!7RaqJ8O#7bk$`S`xxH&j z`Pi!I|81+-IpUoOHkH=hf1ro@RTHHON?5?tH{Wf{dd&IMzx@V(tOCi?^ag1dss`nG z()%fR+I6RpkJGINM?FsOE7S zRQD*9^r-ez|CY6=-gcWEYR4U}Xid0KQg<&cHy`rmXzK?9MHQeAt%y+&X~MWk-J`pH zizJjdOBEcF2nNdXu4?MBseoqe@hSDUbVx+fFZ`s!kfOoQ)E*s%Dj03Lvh6BVqI!62 z+|74nKF@|2J{~C!PpCdfDDW|vL@H$xFBDT69KWh-MgMpS0XU}JipeiECxWrVL~)XMBYX$M>^>{D zukOK*sh>Sb$A zp5`Gice$Q!A&0nz5bg|VC0HyEerM`G^q%})RNN9o7ZmW!zvX8T8MhOxH2+ zrQM+2-Rvx)C#4GTJOg%cNU``FsWB7*i*Y2LY4guy05SP~*TQV-A4_ZIYiHqq+uWrz zJeP|kZ`w2drU%~~tFQuKIYPc!;-V$-7K^9t3QM$kjp{^Dgk8f( zz%JMhDh0`C!Eb=c>?%_Jba+9m`5faUiya5+(U`ou`N5tgHcNhbdGl`9oy6QK%uP+Q zk0AKz0K%g_&D?oZ?dsZ674i^Y$gx67@!k8#LKrdJcURq<#`8X2{GzaIwJK6@( z0#+owht^65EDJhi^7Y}-EM${3?|~sGN=5B>GAghP*QRJQKA_A^xT6XB!ke`9JPOo{lYs&a~x z>kb%z-gy1~a#JOv0PYP`vBiy@EC*WL8A0MIe6>Tvbt$W)**}7k?ubOrYs0hJ&p6P` zS^?yMB(YC4i3u%ATV1AfiIc08trPz%i2Z#$%&W70vC#lQM|Een^-Z`FX-XudwXBUt zi)6tD7q7roGMdQKO*5-&@=GIrc*;~nOZ;my&S~b{T|f{1C(50aqsj`#!o3VJuL?0w z;U}1Mw+xFnD(qWUvp-^v|Es}{Rq4#9BZ$6<0y=)ns~YnyJ8wMyh(HmQx4PY{fC!j2 zG+ywxtEE}i%_TEyqm>(_%6M)5`@bQSAIh=-YgCOTj5W6YZ9~~#m4*L8nw10H)6&~K zyPO}6+m0-2*?Az=$V8hsZ6f&x!@Y_t>SGfaIy{E$L&)Qjk=j2posARacnjhphU4ld zjOjhexkjKke)+#FwAyrWTmNK2wl+f9(t|`!-Be07dBQ-*>N_tlFibD-lj*yks;XKy z#+j-HOr&;A_88y=)>x!DTBL1Gg_&9Q?oDOhS_F1eIt#8=e(fVsGvE60e8GWeut>h34sdA}|ls<%e{_d6JGTr?z zN8Wfp`*9q&OQZYCWMw7gWVu4P-yiy&sxnneYJO>kE3aCv@d)B?WkkFnWBC*9Vh=`$ z4-N|yciv)Dv0%1Y*A1Cyf7ay>wCou=<`X9BE$Y3L&_db{D6rO?It?VHUH$s36dR86 zwaM~ZhZEA-7&U<)6KU7_#w-+BS0t9~W~uBaftnT_EsOJl`{>fJ?9qSS)2uGX@(ISD?!qPsxOQ>fo!{F%-Gro~zPeWan6E#fOw)+b-;hk=wBRR}!|HbAo zB9W>d_EI&nCRiqi#6UnIb@2*h77yR49PIEe%D&~JddMJrN3IG$Nu-<}>0U`fr~~E; z6gRceaN?I84ZehSs65sE^2Sm;jmYon6wu|QV_QoLReSy=Zw!HhM1~WvwEWv;?a9HF z8i&EA-8cg|+XA7Bk7@2JQz!q`B5zJ=FxT94WI^RiL4(LR4a$Of^o$X5&XyAqCQ<%% z25>+H4idewv!)sCBhD9o!IN&W;-v&$dnX=G-+UdswNN?4mmQ_> zo-cTnm0A$t6`r9wEzuEdAmj*^J=YaV}>YS21oS3rs;y9ff_jZ61I*}ss`=Wvjk${fqBgoE)X zcX!x&HoG2$kBm1)8S<}O-PwR5JpQ8nCdxHj2vlhz&+S|9t&in&`F_)|`sal0^%@cw ztFqY|n-Y}m*_bW*in$q?3HZ)=!^sV!%uEmOjXJ?iEO{?nN?R|u#h11XcizIJltn|| zOj^FVd%~qWo5NZ9r8k|{ju%0E!?|xvzXW>e_ZjO!mzFOl|q|m)5kU21v48PH;j*$G-Vf|_*H0&B9!uOIG z0+oyM^bl|madjz$jo~*-9-()-f3+VI<5&T_Qex`gj&<7ZAFhza{+@fx=yQE^eXtyM zoS?hSqvs}@n>KQFSbb$YEIX=63kkUk0Fnb*xw}1)3+Z_eD`(1fk`}FEugzxHzir)o zM^>cY*rK02*to)Ts-?g1?$7u34=|pUVVW$5Jh&^wJCz6D`RMO(1z!c`oEnmyM)Y2W z#5f`caB3EH-ZL$%Ya4bu`c4=9#z6HLn?IAloB7K{#2?SUnoq~IV#=F-uAnGz=pu2- zqUBm_78qQot8yV~XPS;=RabWLP$n3A$GIVJy=spgekDVnC;x!G6LNhQRC^g|gSV@U zXh(9eCwdoAvtL&D==0~+EMSKr7)0PlBER)L%;4AW%O%5#>l5PrHKrOmnThe5>#Uf1 z!<{lc>G58hKkfM48vn9OGd55n=O#PX8FQBCd9$m*$9Bxw^9=E;gv+k2Kg3-@; zeX(uAYoIVu^VzcZH)LSBn+sE;nGLC2O=A0#&ue1+XhsizPy2djt4-}!wV6NBaZG7iRdbfadG*+rM)Of$S!h`N;rl1kQp|TxP z&%ST3Fdwz+eqR=Gs2FAu8%(K8yDH+xixp#%_C*cff;9CYL-5?XRGx$~Gicvzm6C0p z^QJ#&Jv#m6Z#s11-YHsaBqj75XW0xUWjwNQ5w5;?FRZ2&!34~zu7U`isljA5B@l%I z15+i{5@jBfmFMFyMMD_l2X!zvXT86QHQTRcRW+@U6m{tk>0^bjF&xzC0xlCrtp4Ol zi)=JH z`vG<>&@>bFFBoeE{@`N9G~IR+j*}~f#WNvcD12lic(dz~&l}tO6{|lz&l^a;U86LM z0wA$20lHKv)r$!9`N54_gAloF`E9V41bR$JT;ow+2kN6z^P!YL1?*@A{%PZ6!P@j> zT&QgL;XQYiRa3h>bvq~tj8iwG*cOrP>Fp}|0Nkk zRmvqPw!_n336G{41|eKYi>p2k2#Y!18_p{Vyx6~fWm-XEMrSFEc>GYeu8Vlopk@`# zVyB^-eEJ=J-lJg<^G$~Hm&#aBf(YxkEB9qKM6@XJ^$=6|5ARUFqlPQ))^9@@UMh0tqM^M&oX!daaNDsc}yiGE7 zhv&`*>KJ>$1BKma0F7e)OoXY0LGlsvjJs_{QH$T&nI8 zCvQ_}mbSMb7`T!?Dj?$!Cqq_Ti_?z7Hzb0CkHrq_QqDvqs>IVRA{UEM%KkE}g=DX) zxS!Ox zfxkPuf>#C3eW^Aj$^2Doh9j9$!D#y3c)KB%il=irl*=(chY&I&kW9o>yX!6H+3>b2 z5aZMkMU}*nN4fScM;52eFdkApFz3qjPf|W|39V!Y@vL+{1{O=8GfoGSr2gRdlQ%KO z)v}03qEqbp{Pe(Mnv_=<3K60`piX!RvV%#n3DnEh)af`|>d~Y#j6ismJC{7C=WJ%Y zgR#lDl)QI5I_RC0qFiZQobujr1WUn-(DT&>qIqXhN3AI70663$TTX z${2;V5a7KyXL=Tr!)9Wx(>XdD&BH+;9Rw?;HP-3KEM|!TLxayfxe%*>o|Vj+L!`kq zrvC#B8y7*E!lRxU>nvcRr4U_F0Do3(C?rnbB~8hoqg8KvW$xYtT}jn4;x8Vl$j6%Q z4|z!z?j{_XtQ1qJR^}-16C4H8Kpqj9V2m)fLd9v)+~(m?oa=?S?5`^yEw9(sIQaQt-%U-;<&>PQW#88N!PQHn%gOTHd0j;W0 zy^lliJR0P8i1VF)`k4kOZf?o~{_M#AWl#ofA5D@ItDq6~dl{RHyikzN_N9JkD66G=A zOm!b7v3;m5TA=^B(zG&!WOlQgK4t#3>rvo*d0Op$|4UNjR>|VuXxS)S_ot2>9cFAs zhFt_-^T|zL&66l~(dnI(+zs5h=TS*)&jlU)0E(2>Y#!P0#mV+%K8;RO3J-~`pU`gmc8TH-&60xdtI5;RI{QsvB|I`Hh-xH>~PqAxLJT)Y0D zd-dh#gh{cl_v3A4dnh!nuMZ3cz|!ve^f;;a02-?!}{YczYT7oE+(f@c|Gf(#2IgiT^Vg(-E*JHlH(jCT& z;dEfcOHfxFf)nMqEYK1aBQ#8#gj#3fzCyvq#L+Q*s^kXfKGeD&sIvJM# z)rbQ}&9a?WEKYJTXCh8=y&uoaB^R!q_VYfWQ=mLg;>y#)XvYlDr`MIoR?>Tv)t;YM)swGURyVI$R+%;JR9@6}PkuQK=z(Rp ztPeVpxojAxo{DdnNT7)i;Cc|0c$+gT!HsY`&y%)^`)?to0jbK{yWd`>V3Zq=Jk14JMi#%+#2ifdD^Xd@c};{ z#_{^TobsPLzg|*!`M%vqzWBc1Gw}L-JfnH|{d@o0?gs`GFMuJXgyd`L{NWFm0hr@L z=uGti=++Am6jB4Cg7txTy7MsX;{y;j^+BZfb8w^Blj-uXkzs19&W9(sK3pYye8( zQnt7HX*0IJ8MD#U9A$JfmMVWUSEi}C+A3yjzcr=n-|!>oe7Q&wUQP&~bHP9Faxogd z`G}Rjg-_G865N#wv5w9e0@0^P-_I8k$uXHInZ41dixrTx6Er8#$D|YER(W@Ji2NEmkyDORD{JlCF-1OSuE{RHzR%{&38M zE~Y^MXeK!>mT5kir-~h6td`@IKwc&aBmf{3*fiQ#4wFBv9RO`WsWR5}R&vMms~szxi5fnaJ;bsasn4xwE+0%5+|<(5$Hvrp zF}C~@8QKkO>@E64m6irp8$F@^b@M(~t{;|KeW}BZAeTyyps6H6#K^{lFB3zMi^KV( zIHBevRuq4_*0pmvscK;kemZ2#emX1r;3Qbo{2+gUV@&`WWH(^Bd0F5~rC2XcZiJ&t zx%%G5MMa?+0)(gRe(LzcFxifs1$*}z4EuB6P)AL0g6zS;M*1i@wX~zv^g(57aD2y) zn|vMy;}Pmd>e!Jhp)Gn`H>DA1`Ce<_cLEc7ZoGzOEH+S)=iWDgwJAv3N@?=!-~UiU zMua?AqTP(pl7*gU>{A)DPXqucjD`@dz3jPX)8_COFLVC?nsTnP17WbVq44nlXuz0L z2&J|DH^_!GGDe6A8P|nyV&{A)y;FV?&v~EYzmTv1(D$&{Wv6ea(K$M%Ox)ZfLhG!F z4^^hA_3giC=>8-MBLA3B(4xy*X=raunMIh^30|A}>CD>oisYPRpE8)dZbuONcOIeac{C9$JnFagEXZ3} zc&#s%i9NX@9x5Xf6hUx^$%v)-NVfHAEr@&pi~opl@bcX;HbSNBK-+Riq>LEAT=9<2YCbmYww($a|N>0z^C?$dsk@n z(HayLzYF?<;K{`APxDvc=H%Pc?vUWMj1KYr{3G`+%Q{5Mjrw!2IKR{Cn?Ag8%KY&ijjIoBMsj_keR9@GC|f&qy8%#I?cq zi@7+@2|ZNDyDCD&lkZ@tl{w#(@BR=s--loi`vP8 zOTxmmLjXYj@b3Qi8h)tdem89pH{1cpH@+8=zSEKrI^345qgHp0Kix_J7-7(S^-$N6 z0hpS8$Si&g&;IWxek^!FU!`DCX#Kd#{qDxVe%#}M$o8-dcmdx}gJ|LXuG$vJEw{P!l-WC{nImg> zTaUY-;d&#@0|L3sPb6#$+Fa)(JX6eVGgiauo`4anp5CzbZsqR3Q$5{i-4D4ulX1gC z%dJ-=fCr&?*gK((1u(B@JtqQvsRMDJqKMNR zC{7$l%Y7yAVm8*I|F!#0!oy(GLIJemVJ2b(X#-Y3G4L5Nz~^`j_yiQ*1gwZa;B%1Z zcpU9%9QL>`?rDNJZLE^NGbLPTGi}tgMwAhck2Z}%6|Hk2ZFsS(tL3;CIcZ=GC}f%2 zf&3ZTaNg(pgpVRAr07ec#7ji}v;7SWv21$q@6%*y+GwgL2i5WM#g}9`cjrz#N2Rq?h38=VGYAj@jG<;64P8_lyrYX&8vS}&3y;ry zn2Wzw6dp}FZkq$^t^?_l!_XQyJ$5}^ts>o5%cTVb8)^}f8UdZ^;jNnQ!pjXoj-H9; zmSnePPgfsWBn=Ug;p8^zWOy8KyKg2$6Q|YYf*%jr9+6p80VqJo?52Y>?DxSmhxMCC zOzp@3u4YV1JD8zEN!Vv+N<$21WDIM$M82dyY5E@F#%@*QD4wP$y(I6^IvsJxntKG3 zMC2++r;&zNH5rbp#);C0j&96Vc^?U-C>Na?LA(b?F>!*Hf;~ zlBvrbsmpWEI`Y4kluk9y@Vz}NqTo%W%t$kA_a@&+#47W_!iAcdaL~?3 zq>+r`-_8E9mMG~_;+S4yP*&oI7wFLL)%^rb^J*{BQD`<<$hhH^j#p&8QK~T+;YXc> zz5)p~4+*@{Bb$dK69RZ-mTB&VXC1pB<2u9BL>jxn2;|!)mO$`Wgcdy;CzOgO;W(S8 zgHltcJtib!VPmcb>UC5Gvju3J+bAuuq~FdbAfFzqbZ9@Ys9yQ;V^W~ zK(ym{Yx=I!bmi*$7q%&RrFr|Yxy?L0AS~R4$A~7?hVE9!<-xE~ylnc>&>0l2^5!0e z7ZG4?-o2U$YSnF^tMHYm;4`n-lxR`9098abMUR;mJ;@PpnHi3@0MP*f{Oy4Rkj}2a zrPT1sNU&x3I7pD72}sa^$>0{)+K6Fg?{Hc_sL|-ZV&U29MfU6!OkXZ6Y41SOfnuL& zwFbbcD%N;zsMn0U;p-w>jpF2XbX!m3Q_2FJmx`Q)nw)nHMwNDC*3)`++iY~wY(ydo zK_J#AQ?t0DGIS*H+l6U*m79BRRJDhJyfjF)M5`dOx;k=CUCJgJbtg;Q%^LrxH@QfJ zt6tdM^0(}j0@I(uMoMfRbbu}}wo9d9(>VQmk6{sAVNX>*A+kN5v-*&%aqd#e{P?jV zLAEZ(C2^HTLsS*|IDrmTp5v|>Wv`}k0Ulxj;jyDV5o_*mUi$9tgS6E>O>mxDS)M-O zV0T#S)(E72Z%-o`4Jjct`fGS7BK3Xs4hKbh`ji7% zvd6dvtes#Yc+4=ZtossZF`ukj!ncMP3fe)_VU?hE|4# z{sNj-M~RN2@rl|M=2lo|q^C+p@geqwe!oMksZkx6OFN6paTDEfCw?P0224SLDOf@q z|7c*;=RpI*n1^>i(&c36R$J54Q2$ns3YQH6arF6i0Q}KyY>XniBufPwdV61~|V1kB*o$gQs+*tW- z*!h;yFC3**jdANPwGPg9xnVW`V6=ZDc<}N+05c2Agzk}JAefrgH-WE+F_U`HcC)3P zx7mj95_5A$KV^HCFqyC--rRpKs0Xe(0dw@V$rb~U#p}qd1(ju#eHJ(ZG|+qWxpNk* zuF!l;SJYF{5lb;4+$=pLEa6bH&QzAmvn%ARe#O5Us1PlfVyrkO=wl@;>7a;KJ}#Ta%w=Bbx5LU_imz)?6MD|fRp>2v-7f=_ z-P2MkX`|ZQn3l^we%?Hr73sRtBH7oin$>Onj4|D)e_XVWQTOFpZ`H-gnOT}0F^e2n z$r)G&*=+0dtQVD#(F>~XY-3yMX{Kg-R;R6x)NFRetU86ZEUrM>MYl9jV|Y;N{bs_y z(Ea_~gSAJ5=_}`9#BW|?y)!<;9Jy`opEJA21&rKU*Znd<<&C60WXa0=H66?`4`(&L~x_-7>KD4Hi1zVn~T{473?vy z0{ybB0yoVAat6F-+!^G5`Uz+(iXD87JrKIz$5xQQG+C1AwX$|Okh|WhvB9K(7_jBC z@XXp2)7y2X)`GZk8^>y=?bq_t~>oz~P(S=l^$L zU;0Z#f4PoMb5dPB%vau>c~!aL5XbgNl;b2Y7JUt6!+B@hEB7oe=g8vtNI-J3pl6l; zUuF)n{%T zoyaC!Zz5jpq`bIl!O%)L1h`&g`iks8Vxk>eagi}=E1c_&f-m43Pn(s`CWNoH7l8x0 z=fkl~oDFMormq1%D@rfd$uTMVT2peaAr|kxIPUzy_`A&ZH#c|n<{u*u$thjmUttB( zZw6n!{vio6AAH&Yk?SDH=>-&gb`T&AIg3_-F?`~|tkHu*B`9c54{l)+K$G0-w++Z8=ksQl%o9nL}0dfDEA0vaX>Mh@*JV zTY>1}oMcQlA|FBT?bd4C!Q@~v$7`a3C&c;hIj2?&8Y1KZ$g+Jfg`6e!W%yc8VB%8o zXXgsy2agJd{%AV;-{vWmrjxm|*H=MCcfcx44`nY(7e=%Bm?G0flEBM4Sfg!P_cO7L zXV=~751Img*v3N-SaAwqR%r6*t)&HImR>!4S^GWPWYu@f|N8i6mns6aRW``vA|fj+ z4l!rL8OA!|-$i$CuaENfpNqQhzDlf_r%`6ZdH>_;Us7aC|~43 zd$u14j+!K6XGS}a$f!T03~+mscdeHvo=APDTFVVWm`B?+LjADE$ozHa`tzBW;%SYg zX(S}{Txx`$4-z&9!VeSkQAC8`q2Ym_`$+F`oUm2a2_+H;=zh}#B7~9y57bVW(o~Rd zsY#~wH=6J?AEC2o6BKt&gDfbI3iE_O_%B953+WZaxxuq7W(DEQ;3LZ94(NxUIl87l zvC`}D5s4D3MGzBG}#P=&t(>}ccvpwk|O@4!8(*FTm2xhI~8?-jl6q!mb_%UkZ!Z;2e1r{K$mN&mboY!{SUj4xn z8s*%KvO{GzulQD0u)MH?&t{99xBakHoE|u@=X`PnKgEr2W4g(2TkW`k4>5ZVXT|W{0dpro1&bs$((_Y7m>8M(C(B&dO&kLS~ zv-RC=GioZQ5v0ubW%roey0XcpGYR?awvOa`!>y%(i?KWjb?yEkq2C8nR~E^X`t`_E zt@p)*-yfF0zT#TC79WW{>PE6d~=F!G$kh{~hf8F<=|$&Bwg_9 zQ1I(f8GU<2FM-t_5ydYzfI8LqUO;<-%LEUA(C!}qG=l*F|AO?uBDAc5deK~ejnUC` zsRDL*YaG^Jfi-wiqHu#>X-kuK!EGLEtIqIaK3(Nx*coApu;HnSpbasI+LE@u( zSoGw&vRb~!#0la~wq&-k+mTh3>=Ty{kWhmDST0g(_ejESz0pB!5tp~ZUmBU_P*#m8 zTou4h(7Q3rLIea+cZgs~SvyM?Cin|U;tIpWtHlAt&$vINM44;utBIy8MXNf~s>o&P z<_QTk1@K!>O%uvYeUOlE?^`m1lbzi!!DY~G87gHvDJ5+H#=YlC+&&zcCgH1frHIVA zKvOnzvB4>$&BG+xik1k=6q4^wTEZLkEa_<|HVi^pT(id`O~LzD!Xb}zVurIhhBimB zDg@Hq#L`~?7xRe1mSgK?PDxq~5iRH8Kfbf(6hYcl7L9|hdTwk< z9@CcV%@{)|uFfS*%&uJ(dc@l)T`Ui^9!2;&?SQlfDBn{)ho1(7`*-T~m*Gx+%@_kp zZ4mFn$Iz7JvgWAw7Q=Y;AVkJAsJ04O$L2#xj~m$d&b5(%N)u8iFAc$&dRf>R^jJ)C z1Cjh^OSPCW`y|LOXcG|Tt07nl;AAQpO2I38s}2fjIv&nReRSVnnKumQ=f&SJc1H|h z&(enE%;Ha-7>hl zO9<}n&fxAIB)CIxhYaoncM=E=5j;ThhRb*BR^3zQKXmWzdiHwON_$0b$N04xi271N za#)bYK~=Ly6-TCKXYmoyk||S!UCe2^{16T+q+b26TR{hwR#mBe2wX6in!8md+2@dD zPPJn);rR?vs+;;gW(TO5Zgq74&T3vG(Is%bam-4bP;Zgz68^{%AGK4{U&ffdYr|k! zZh%M-e-=PxyR3)OL1;wjvp_{>D&HZ}yaW-&RQ0j=nI#+w2wLabyDNEJ5(!dvXy@l( zq4{&*toos`>TZ5PS9GpvnG+fRmEkVUX5~5e=E?)W3U|b^gop15=oF}~Mw6i24FhzN zR)A1Cy{r2+qVBsV&|&s(6N4AT(|9^Y!VfrM+&K_iY_BMb0~IfkuLnDdGfw)B zN6}(xsJl1gU(+JrR)?>1odPMf=V_sJ`67^oy~^t!&US832#1l!IFY$uXOt?CIG2x} z0FIS*;+cZg?KUY-8yCf25|+_vxMO8dlI@WISOdFfHAWLHRW;ejVW z-uC+qqwtLArV6VL4XUwsH?hXnyVd7Wtc%T>zL~FSkESQIDE6TvQ$cChB-QW@`dF!z zHtao=EwK}qobe9!aw{@NpRhLyIy5aSw?dRJXT5*qbR{8(aMtnf`Snu!r?KNJnUMJ{ zdCRJv`Tqc}%d53a9^ra)4mMJ6J=8EKe8rA@`wubk;ej3m!J0$>VqAc@ruXS@R8M38 zXJ@eWJ*qK{ryD?4mtSrq&42Sm>m~+g*UrnUT42ALab$@xR5qBtE5L(}QA|JVGL~>{ z{WVH!=!`kdZM7SFx@DaZzEV5Ub({Rps5d7>^c-M`iby&1I5l&qZ=<|^%ra<@*{@9y zvm4G%`P)N+2Bb;?B3A&=2tRvLr`i5GU=+Uu&`*GY?m%K12Vn)@$_XpBN!wD0?&`7j zo?yWDW!M%8AQTDq!;N^I3x0jb_#xLrygQ=#IudIQhgIHJHqS*K&H7bV)Y~qa?uxet z_YqHvBm>q2q`pD_WktuzyXXXH_UXxIW~v z0DdH#n%h$=HkQ8}?z8F=Q4v;c@D5wY1rcXNXC3#09*Y(i5L$tHn&afQ03|xLnwm79 z6J&q86zT|$d6VOjN|Lf*p4#_di@;MAn_&C^#eqYVlh;x+J0o0&-iq@?MeXTT@d${o zn)zmEwJ-$rUI#u#JzFU5CHPm!QL-kQ;l&=88J@UnaOiu^k|_UJ2j%B_cTU1J%B0*c zJ&+qIER*K9_JQ;~0Js#p7}P;h*Wg=43e3QOJ2xy-Fe~yhAhy)Q3_mMuEsiA82j10q`>34Z@8@)#Kw!w{7Po7?Dnnrs4gzktqOHR%b>6(z?v{>2s>1d>B$n8UurQ3TSRh4UVH z%Zn=YzClTwdCn6mG|}{kbfQdF^&X2?kH00OeC_pzvaqs1^10q=lZ>I}Ayp#I=f4?w z*D_sLv0^Pg5G~U~l?<+w(5PgKB_17a71%Z8a#B03SaPJ+ZEkgrV&v#CCj}itg+vf)Ru!L7@Ht5`>7h_{WjnK8yK5!eAf}X#bB3t|+e!OW zN;F$(`>c224L0Kej*j)ZMoL_Qwky32oGdEL;W~A6gqGQAW<$iWfN0sk*F+*zbd>RA+4mS+O_(Dx&GBjtEv_&AIVyb-P5Rrm@FDIJ+ZaUj6ZR zV}f4iw}}OH;FO@K1Hh7rt%UZu#CB|YK+O;XlsBGcL6uYzuo~-ewNob@&^X&5-Fm{Kk{w}7Da_3&~NUaH_E&wa!1{kNI zs{D@3)oWF%_p{A&;^r=^K5uk4_gts&{9TVipxNMr$#5*HrNgIxl3q=~8zo%^^eoBa zK|t=$ySkvhtVk8LERE$OEHj1-e9O~!1?=Q4nUM= zhMnG%DVBW-u*^L0lj#G&Wgo3w%=sFay1BNvx4;W+kp4HIVCz|0+`X4w#F+r;z2x4) ziUdg}xzZ{+Q>S@8M7B|LJ5zOKNQv9?;P&)C;U)~hS1MRt$9$(PxFOf0LoHY+e1zEU zL1eWSSav0d`jX`%*~p8~ocy7~6-J`&k%*E?n0ch{tQ1p!aohXhqGA6bk%>Tqls7wI zJ^;9&w_*M%*ti);^LxZV#F+x#ke%2jM>1;=5Gm0N9N(@Ax<|zU%)SktS=$D4BlCw1 zC#Nrx8NFS$C*Xd~6=at^?^ZnDbwY*y0tjiK{LSH?*gaJZrk(AbKdp`THB`Lh(C52{ z{7JPOw?H)6-VWUMSh(Y?xu8&kq|vQ9k`fQc2biomJPXd7emPER zMd!u5RQtMQO2~6|iAq@Vau*1O1Y6v(l7jqoKla%Xj16N7OOSpYWg*Y*HyL+vboZ1k zEbt=snLAdX%nhIbfalf$-AtaNy^%#E!}^ zngf5f8#k<_WmQgnr@#719!Ol|DN19nU@$n_RUq-OxI5c=7|rFG?*&PNs`P$hvv<+F z9-#jX?wggO5tyg*gHHR$;?sZx3Q@bnYEN?)X!D#@azTfN!A1eGZ!s1S`<|%_fZ3nN z*Ju&xxU9QDL`cg^yRa#0CuZbk^4I#+;rM0WV2V7#hY% zN50er`*g!C)Z*_FUGo|nt!zW@sB-G^Jr*72R9!}w9zj@Xo?pmt^?zBn{4Y)(?(ZT02bz6$^Ai zTW=0q@;5gFzcU1I7STURQ5WVL^hmqsB!xA(o&^n4K-LR#yLZ0xX>mmF2eaA@R;06F zWliNj{x=dpV~g{^^bU0s;Tw}VFkUwoerz((IB1tF>^Y&B8Btd1AM2TO>k4t-er>n- z230n%ce9!*R&zL}s1XH|!492lsbNCRJ3(!7X>$CGe$QjabCd}Gd$njYl5fuaUbF^( zMLFZdoV=`d=L z0)G8LhW%1p)B%F1J*q+dyZa1>wJ#_^!3{HenrCyI^>7KZq=|w^_ita$i%#=uJQQ8B zjd52C^FgAxBQzZuDA?nHJ9V_C!Qbi&zVuuZeh%&nDi*&4pF#(8A7u(Re{sQ!_BW*8 zwk9=v0gwNYxm^DqYby81&v^~r*<6t=8ntGH9T5ovhFu75w|<1EEF1Ix{FXr(64k%< zg@b+^PO$KE$sj(;y#@U5Yk53~4Hw{v_$B>IDnxUbf8k<`#D~}%_#L}w&^AfSF86KO zX4*w+1uGiO7x2U>$Cq=zabop%w~|Zwp$^2a_I8s))dFyvY=4J(25`Hr-{KQyXQ3q_ff-9g;@|^;5Lj}KUnG~Yct~;xkTx44?(WVl zo(n9C0m9tUBP8mHX}cl#AtBY=?)7E;F(HsQTx}B3eIxxN#)Tb_#(CKMdPwO1jo6-F zod3V0-~O%5@AtnS9-sdF-dK+jDI>y{OD1WsXhprdBC6nn(4=kvl*UP$LN!#6F;z_lvu<=Q|;Z+4DC@`h{DkcmkH@KIp_p*hS(na z#y{5TxT=(kmRDcwgHW)^?74wTNu-4R z+TDo;QE`NpU^|y)nueHIFeuOGBDGOuTt!Vwmbf8RVDi~NnDEe{sxmHypB+-w{#jkc zT@aIT&8d2H;iENiLB9I}+>F-UMA}jD8~4;Cn;9iaqP@IfLC`JttId|1lZEmFFX%^@ z#MujCYv7kNacGRHlGs}a8b2lp(ASe5sz<3+E@KRtHcS!$l79VK)Afv73`oorZ--|H zRw8-wLm`K#Djrvh*D(%_hieh?9kk0b7%}ZMCEC5D!^(8pE?rc%s#9Kz0PzY$HVDHz zd))v*bdPIGxAs734dzG#;gH*RAl>_xOGO%4mmtg7k_OT&H=$sO01E1^=_w&MC_;8w{p!_%-% zTEEPlP%FEAVXr(W+_GJ#H8 z4<|2nwyPx~s?@Mt$>FrDY=(m|oIBRvVq6NZ2h&DuZB$?Oik%4+4(sI^($SQH&3L@W z3_gXDk-4UtlZ`W2@>$B#OKul0Hw#I&h{Qn?I_1hf5|4Y^g|OCnXj98R`X-~Mb&uwU z*577nOYw%FYGI_YFz9w95-GfntzxjVZA76po>g)~^H26SEIXPTxngQ;7tA+i{=B4V z70WO3k21TuY1mLk%^`r7aM2C+bu^wCl}HaG8$`y?N_#T2ck?Eom+HDjykE+eVLG67 zI)(zrYH!1syCQK5rb6y$tm9;G+lAx6P118*EGCuojBUSn*iURlEzlMFT1_M6;9fZV zmFVdaR~ir#%kapEEVvm$%kaPy|H#0Z@`HUf_BAt)DZfS+KK+59RO5#AZ|eYvn&#`_ z>*2_pMgDC~2ht8xU9P^qLzXuFF6lX&cP~UX%&&$y$wRr)9Y1CR_bq?*?%v?z-z|Xw z*8d*pzXXWP-YFnjG0xr!L|NdL9qu#up^@F3AC&4Jo&m)-jGfWaB2G~pd8m}sX&V*` zHg;nP_%PLW?*ZujQs02z4-^Y&hKm6ed%$TPBZhWFiORyL`%k|2I)@}hW7smFdu^?r z?hF#|u{e%gK60F!6UrSMdirQq{2ohll73ah^EXSi>wMhk>xF(f9-IrbMmp zpK@dJF1(hTemFQ(F{z)_D;?oJ%;c}SNCnCjIx1-n!>W+S5a%YtT*VEkWs8$P)Eu^7 zXf|#pj~))@t+G};cx~G@`qTcZQ*rR4tbz$Wfx;Q-pH*;Zg{qCHq>;e$m@}>?{PjbQ z0>VJs)&R4DplqDE|6d0{3$n*ZYk!6%D;F;~mj@z1)h=%E@8y!`~tt436Qo%BO`q^dfXgsDyAJ6(F8n zZ&u~J*RY}`4#ffvp~KjbiH86^sb9>4s?AgI`%C|0~A$*Lsps8}>45TB=KA>u%3Qo?n(t+X+W-xV>j7nn1h!RL>N06l9}9TE3A z3T|Ji!ok&8|0)C!yr-NPjU{KXPI)do#COQ>cEA$jZokr|XyzyLe{vH>Xa=Cz0B7E@os~0VkB^)c@zSfVq=XQ_?DEl8MbF zmiEMd_1>Ua(#Q;DqKajPLk>KeF!x5X9MeR3B*U*Tj-49!%Vg5{4Se_y7#F{iij`l35u93>C^M z1=pDbxpDQV(S6j)SzxdZqKCOQ7VfjD0bo-99kBs_ap&_)ZqV^ zbIk(9(j}ghLgHS)=I8b!%l2&Niqp*48VYb5OBn;T)?{QHpHwT|0e0T}fsC>;79saR zZW!Gy%Z69Hj-m>!NFJbJi^PuAVgp9*Vk+7-Ow@#Srf3w;n{`|}B6cC8{D`H}^Bu%6 z@2k&l_Se~5eujZ2#Y4IUGrUQzXIek?JU8mwD1|z`dRN}?l0>)6`K53f@mP0 z5(%y%;+GTrOg01~?2shfFgs+0b~dk;0oyS(F64P?wa^;YAhY|H0;!Bt<2Hqm^EYa7 z43sa6Pjsr7&xF*J^JuX?S@uE-gvs5eatxMOzPMl%`R?S= z?&}}*T(VCy?;uRX)Ex0i^Qe|+s+f4mvVTf%trZrG=D?_`?C_01Z5U9t?M(;wubh1o z$Jf0HMJlT&2uAWCO(Zq zx8%$M;%JGToXl(>jIn^9i8>FnW)M3acSgxp2^gE<4u@a}3&s(nqf z#}*;%8KFQIH?;23_-yHf$8P3r#Cz=xjU+{1WiaWVZ{ z=S)fn{6$9ZM$W?&iAw7i@eZfk3BxaHw_3h|Kd>q`N_8^i>LjG$P@;hZU|Ej4ERUNE z2M|E#y^OCGXSYr>16aK0?wPm9#p{Qm0%)W}>j zUJEo<06<2Ve^S7&>^ek9I_$xki=)i@uYqXTzHn@*ExDnfo=`NCZIl*JRun|a%KZ$K zZ|0J_<>I0P8Pamf;}cs9feY?MQ4NXFHf(TPFd6;gl@%k_UUrc29JPrtt;*SV?-+*H zLB!1j>kAAgQEU$OxWi?(%#)ZE$9SG->^&aImEp-W+5xNpR}nm3VXJp|hgf}kkq{bC zG(_J%0%o$|sGpmdPpYi;@ap}wSY>t8dqtmy6@oh{3^#5Vb((CH3}9k{ZIoL$^1v*} zTxn;OZ%mg-1fWQHotn|f?2tjI+e$`Eo33Yz)*_3QO3dRQr$k*Q$rUbni57hT*WEk8 znHMBJjPM3{asJV^nvP3+lapF26n1+oY&xp(-iK2!%TSh1?i(+$I2|;0|2d&TPX6OE z0~i;iW@-HG1i{K`_!@#QviPo|%J0MikHXS(qJ^S#?Tt;33CSvyYZZDShlw{O^pZiX zDiNg0P<4sN!V7?v5EJIM!;=-H+SbWV@d4c2 zusSB9$TPQwmV5$X%#>@;v6lg6R7!@v9_6qth6P80zAAmR-fVb;aW+U^6K0M2+JFIM zeUC$3#%G*a5W|{!xFVx+m2rGRukS7Qw9Zv>XJ|f5`oYdFO$lc=M+A&(EYV6Lzra;^ zMD#2~`oSlRC4#hR(s^IRSTkQUz64D_J}+-5{+T~o#9Ik1!z=LwiA$RfwCdozI^e;yQ6Aoa3?NK!N~|mDCo#7l29u za`a7Yl>pE~PuDU1!ec9Kw6gE{aW{rkI*WO#cX^`uc2bPMKQ^!;Qim7_2akY>5h_b< zs~;*E$Nul^y%8`qTxKG}^HnQGKCV7_8o30*gft?OcgS{{M`-CmU@Mzo6tCuMN9C=b z@n}Ag48+Qu-16HJzy?V6A-4*-887n9TXS7wGrq9sh$K>r!IY4=pfjt5v>0o~S>)bc zzsLX8oiDLT3)%$bPuAoU`*(qzA$j|*8S;eu2sUC(3&IuC=_?g^MZjS%C4&D$Ker$@ z8PCto)(cXsZscnS(#u4II@jXED@)i4hqmS?$ScaPy70~`1%jJWmk&P9q&_- z$|_7#Y8R|TciC8i%HntF98&4iJaqF@UAh2p!#;(*mr@H|C* z0(^BtVHgL1W6ldbY75<;K}{kJ+?B>BT8ZMh;OAye!?yyaks-8UqG18h=ve9v&M57n z)p*3xRdXMy@6KlbzwhmKiX~~w5|&CFo|4gfrrCAtZ9XBr9?f+ea#3- z!C;a)lVaP6(O6pfmORaBpQg?@4Z}ii7lXdt>wflNef3oYZ8O@N6Y=d)TwV`y4G`14 zTxS)6@PQUaX$qU!X7U&EdMI!q21$08+Dt_>rJtm% z8!QQytsyoP-oHr8ewpy!dr@(yK6j8EkK`v+<@X6=@pT;HDpev`8kSOE<#^ngHZwNj zh(25-cX%5E0nEMqGh2DCIX3y;r^z(b1x@KXT#y(Z=6we)H6zmEKDi&iGoesHaSx9pS)ZzV^A2CnSTyfN5z|Z};VbBuN@iL{sfzk(oeA zpWepATLOS_nQuD$Y`t1BZ!}k*p5JYV{YLM{RQwc`_!MD*_^R^m*WYiA8dg^BiZYaf z?5lY{gqsRe>I&Ho;1ZgdgfDAnuqBtj+!w#4)(~8ck0S9Hx72h|D zGLvS#3@x>`IID~RI+|JbRvKMfEUlkE?rvE~E(9wV8=3Z*1Rp1#5}TN|xVn-t3uBP% z)4C%8L1WfLgFriBtnc`tLHN83CInGbY92@BH~>JbG&oGrR>S?opIV!aNVsksqbZz; z9}aXAPz!t^pJKmJUppjk;$j{&YESP&7(y{qz9=*}&VEKej7!{eX#Xl3l3ifBrxJer z=I6QOmxEqcmsSsf>LskWx59pO(n0OtRCB~vuW|8d6V-;9X%Q!Ltu#3_;qz@?OaBal zwJG%l_x=9?+-NF#;TT-={t^ED!Mf6Z^9pF4LZAELu^7%>62FWKxrOm-nzXmWwMa|u zDh*sm<&oa1>YOUc8wxLwDo;;$Dfd z>WL|`a$*1ZKrt^-{LB4k6*^$bz2}?X+FEWQG|(I*<4~yyX4V1OP~yNOQu8-zCOt@5 zqu>;EAf#-BKw_>iC#XSFzKYwmEQjggmf0s0wC~D*zQ&Mv!nUlr%*Z|{Xu%Mp@mNX= zoz06KE4iZmTxk~E*Dd*{hx0lvUM*

JKMz_S<=}w8JN6tEhB_9ga^>4LY?}jq5rt zy^5DUmS}u*bGU`oQ*iY=vn$l>|46=Gk-s_I`Fhm~J`MYK(js$x?ABs_{XNNGY=(c1 zj^TOER;x2Nk7gDbx-aP~22!$8e6ft8g#by!qs3Xp3Eb%DSmPjRX|Rxp5HJu3hKQ$O z#-tD=rHJF>XN5puu+W_J%9=FRWH+~%G;w}l2yIAgQek0QZZEicd}4Cy|Cb`nj;-aa zY|e&;{%=CN@oj5vef`_mY1Y}<;s2xv^FaO@W3Gn>R!9{~b5=h{wHHz!U8UHGAxDRc zSQibO{Of|jq(lPL&F0{lvMD4N)c|9WlBq>B2loJDg^3BWVX;t$%U8FB6!zl!2aH=;^yIY z*yb{k)YzT%XF!8?$GHT(j*InXXw(8>1VRAR(YX30nPS@o{hwwOu6k`2Bn2ary+22} zf)gFsAl((H?C`o0Q%gDnDdRhm29&RBHy^5y&Oe3Wjd-JnsQp+lG3yV-CDJh9cOe_C zP_b^lNkhXglF=oy-wQ|OJ<8NYV=FHaFxFa{69SFe?njf_*6hbnigwJ$stp`($4O+9 zTE;e|`_m;*-KL zNYn>ReDc?Gs<1b6UOVDk(DL{%2$39YsMa%aW?ijTGh|d%aOKBYOx_UAw*UpAs7os zs^%3rj_0+N%JfoT4azE{v29VbK31BNZ>_b(+bSc!0_?|pdt^$?rh``JIGwZiyzP{$ z`ljz}@OTOGa|-*N#~6_n^#pDh@zt`1ZGhwHVyA(Hz=t2DiG%J4;{F%WC>0eLI1e>&2NZ)oyTNO1BuK1{RY}{QP%R+bV z5l<=la5ae=^LIIRqKa}qlBV_hcC;4}AFXgv!1y;)VZRv5dGU+FwrMyNcDq1snRxSx zcQ9?7$?(O~n%&{xzUas=s}yO64s#y^@!OBDt{E)2Z`$xz#2DM@S=kio*Lu)}qxP9f z75DIo$bqp*`X7}00y1Rexb7)mTndsiXWi;P}1Vq7E7|Io0MY@yh^C7 z{Zdglnf;S6BEi0$j<_RsU|h~2cswC_y`7o-t;NS=KkvEpl^iZ*(zIAOWr1xHxGNz( z8Q`V}mRwo@!@ft-KC2DW-`7=-vr(h+bU7kTs=DMBKmu)p@J?b!~iY zB((H3ESs&5FzW4wGzUGMbJ?(%{iam#_>s8Kj{IYa_<2zZsAzC>91v?7*QTuOW1p)6+iB3 zTe=4uD7bF@X1&^ zF9V&PQHhUS<(faQup&wb*|MzWdk>>~aJCZ=kx&I?=e~jcV60S>v#>#pS`%Zp|M!&t zL#v8k9Dr#DFMqLB-1lPx6>*K93YIw1Z7KoqyCa}(nj=Ys zn~{_&!%_XlJLZY?N{ehX?WZ;nqm_EI$?o3+m(jCg>9Up@a>c2eyTN?Z^z*YWZ%0aulcllVt#ZBrnZFV zHD=zf&OB=vxt`Jl%fIt3`$~3_@I?KUh>TWEh#FD!QOE1;wdUUA!}y|*&FfI##F~D+ zh5^{teM;c+`%2BK5QT8{7wHs8kh||FWFc^U{Y$a$uVBAkSzTZ4YIyRU3FnxO2vlfm zhr*TIXnUFep1d*qFA-7poZL|aMRRP4J#{;GIf*yPtL$*hrh>-hdEfU)sJwRsEoHs3 zi7+foUnRzFa8GqYS^x7)z`RG(P4OR7=y_7jLhP%>vaXv`MUB9v*H4<2U72UEk^`43 z)$i(5cF#1r0>$XJ#Nl7PGT{s`!<8JYu*Sw<-_Y&K$&9nsm;da`EN0?kPFvn*K7>AY zF+%c$51sAZ<1fSnCa*W1CU*aMv6wl4I78f)F?VzJqEPRLeKfn*{HxkEowf{WlBMCx z-z%8FOQ?8e`1ZJV8GvOF#LaovtT{0m5bXSWch z{&#HW?*o=(Vsz#kixbulk1f*P@gdc2TCr%;rM{dW>>bqZAHniQf(l;dbmP`95|VNWL(n7&^2Qoylh zBM=-&7GsWW3*mu>6AOov))13+g5?3;R1e{z3*lmL2Z}fg62ovIXt=G`vt=`?BlO7L z)&jC*r*X0Bx~>o=7HxLY5m~xw|Gm=<^x)Fs8_CpVpLPXl(6>!Rx$A07>7w>XAiMHs8;`k`giXjZ^M_$ zs!uy}Pz`fX>xp;I39#q4cf^J_&Sfl&IPT|YY^|U7Ie&y1G@KUAp8GyzOy9J~Mx*bR zHGwD4kJQIA7DYY=#h2TUq6Dli2*f{7_)F;D@ZcA@4sGBD%#>T;aDx>D{kmB+47%dH z{Jm48*vpQs+sYgU`6XP}6LGjB>`K**6ntt<0YKsx+3MT7}AYZdkd2kiZOFiyzOuCPN+S;!$ zgA#p1WQARs>@?mRh7|a^J)s#h`)OV?h49(G6U&Qy@G}>RwIGUv$eTw{KBiM|hC2Zx z2)ol?RizW=g_ECI3$ACpW{p8#Ll8>43Faae6;jEoqCkRf-^VQm!RZCWju-&c8vXRz z=n%1^Napwm;>j$Q?g(Xn*J#0PbCz^1vUfM*VWMbk_x|=j?@-+VV3A9(qdShyq=&>y z%5cg}(#QD2QN*)dHu|KeqgJpTskan~)`4NHCNw2T={dO~H&!(_t|it-_9W)}gSfMB zgyU(jt(I6&XAmqWWq2Zw$4>*k9@n)@j3ACAH_U~1sfXv~2gWD$#d*JC^t0@I&xZso z5P-4aOyx@n?dY1b%>X)c)PgequDC=mA&pw0ykp^@D8<0t$-qID;9z+lTse!<_!Ljl z*mGfayCJWX^n3@y@WJZ*ScjCT+PF}o!Z5PDNTcEdrC6ERm>h@vIRgtpvXIwIZkSVM z#62!L-p0DGLlSPb7X%HVj=VI4D! z^9W07{!kzvg0bal9N_k2Et3!)u8#U4wlfSw{)|!8Y{Z1f+Bgo4k2dkrlFw)6=v^}H z<0bLFlYQJLdUG$4sN-DSAs=&B#vNFJ6Kk3sR}s$7u_NS>z35~Kgi==Z3r;&Kbl#AoB;de-Bd(}OY+-p4-_4Nv9%;s+Zxzwhb>QX}$f zx+P~c3o5oWX1D{+*u*ZYQ<>7c>&=jthF2$pf?gCiI+qf)$3c($v&pqjR9bHlCHyLP#E5cve6w`y7Lwu~+%L&|D|Cj5aa8Dq*; z42Dg7hCik&4+BH34$3q6&6zW&TWvZH{)eL1bSN!HoNF(`_{4QKy3L(+|Hx(ok_60Q?LmI zyG~Ds7zsF~H1|L_s7oj|&M;^*?zv0R;JqK3#$Zov*8{-+g!o$vc4cpOO&Lq*0vQ3k zEMB2IQpI*jF{SfFv!hp&0*>0*+tb~f7_C(MQi@o4>`Z0NP7Cj?nW=K_^LoSF>B!#a zfY)h0)2mm|QDZ_3W3?p5Kxp-)ZNC?X1V*k;IQhsr*$|rXZMS9;$xo>mHqo2-3N#OC zH!YYbNHgl%u9OR$YpwdWUUtdqtQfwgAlBTH8uDpKX^s`>MI?GjY&CNjW z(_4rsv7fO@mdmq~M{bA95dWZ|kI@9?M^|6H&g;RWM5TAugR@npyPd|vIWFg-&Yhi3 z!`|$hoo#x7ImT&Fjc#2_=4ZROQe)QHkCLm=H#YC6dmXO=suG|RymDM{vLVrw^P}4%r_`#3oSW;v~b9%HY6qw zffkpz8B-JB6E@Q@PUhEr3W#z7Ri641xYK7X`%NOdeGA#fY50nG%IX~x>mLh{XWocD z@5+g~`wFUfzNA_}{5X5Vx+O*?X{^Pc}tezq^mX)iY(FyIoI zvoL8hH?reS)nKTR2O|10lZh9)cVgr=^|F&x^5o|R>2$S!O8rx7&K(e}JWKkKecH)n z%wl`W$*E69q0g@_XvlADFd-?z!DkVzH@RW#*KOb|YjNggTz+j5CI0UHZ`3KBWl{7m1O@m-vMV9H&zv2e0$mUaDo zP$8}4#+!lX*qFD;a9 zj4!_APm7Rod-IY=*}QgCk=fnq#pk&p6FCnYs;@XgAAe$(--yoLQ+>%={emwfmZ!T- zvOe?8W$<#&xQlUU|HsbI+jtVna-^QbMZf#d(wEgpo$vp(Xxf}>z5m*dBL9!L>F4+P z<%$9Hm*=0(X>ftqmvvUBPy8!c@HyVe?%CF-{-lNbb0rp=oo1@VjFc?QxvitM#esH5 zmDA`N2{&}Z;EbJWm#3I1^86~JWHGh8ZM2{TMQhi8fsxo#a*f_8$zoa*Q2-%dC_m#? z1m3tgoUQ~cZ%~+f-XKzZAgXSy*J%A}?>%M}pbR6?Fa1y<<`#@!@0veveF!_}E<@rP8D?RRy0SY1x2 z*r87sv$)BRe`ZyRG(Mf0F5D;2E1)m@3%bXAJ4C;30{PFR6`LgHC?`D3sa@~U~bys}2UG}Q^Fp6&eCzt654U*nJXKLyQ$OD|d94KmotwEFpI zU*GR@&1Z4#^2=0eUKuLfk>kY9iN?yPS?jC$QE09kH=_HfuE`f)8^l~s0njiB#S{rO z`Cc(47$))YQD9-=Wa3a~=ThfnWv1g4WfW&=ieZ2uEY*;Z`Vjnv27H!}4J`PbtsT$! z2IT$ZnAq5K!vur`JUsF|qGB`DqWL-R3ziFuGt#jr{>Ru-r0k{aY<&5$QM9&xQku1x zy>NLcdUHF$L-6oGM=*?}Lju642fuO5KSrVnR2WWjk42zhQ&iYrs+7nfFgV!UA1-L+ zQeKH@W979lG^bFZ*!E9mSc5aU!W&meml-HQmJH83Rx~o7qXWTw#>d#WI~@4Yf3Xk(Y2fO)SC=b|k^$$-#W{|3tX#oA15RwbEMsiBB2nubibpUg8l=TJW}GbP^s>Io z3|{td*bErP;M(kk&X8JRNaTQ8Gn2RN9D~%?TpE2+P|1P#_SIB{6TOaFT<#gZ9Qorc z^w=Rsmuvg=1_n{!gMB3Br{=-CNdFfZas` zdN(EjZv^c|!4%Hjao}&kq~5_dQ%oKLI5by~WCN&XLsC=saKftRZ!Hzh!&Q^(0fzN$ zqxt*+6*66EN36G4^Rz8H=~tujbfd!p-pOTFHGJI_Z**|TwgQI ze<)QaxBKE6NY=cZf$1oFrY=v_x$@-S*gM>M@x6WX+dnaroa>0=tC6mNwAN!Lr{IDt zxr>I|EvAp*l>O#7WKG+~sa5Zrr!mO7i{yQqI*VFuf||PB>IbVr+4KyrmYCWB*EBc< zTu;;}s}fxwx3g^ej~d;1W=ISp-&(egA@x~tpG|7X2>%Xd!zwEhjdE&r`kSpd+^Fhx zF>qtJr5{q`AJpH0X)~PC_+H=}EH90O(v2-3HjBSGAz``U7-tlO!IZ-)Ci9gcuXK}T z>2 zr}k@}AVBhLh1jME(rLkg2l-@vRpS$qPm7LTZCijBdi6D(1^87>%%3a4Z5oupEeUrgM+Vwh|8ACt_=5K|M6PX5MFJ!h@L^lk|19Rs0yP3J(S zP`B~Qvs;DYxdjxNG@g*3G=*15g-Ov3 zhXTi8NkFBagpuT%JQrbTWHc>i>%E@;nhLX)2>!jlgNg52`{si7l{Ttb`EAk+PMk=Z ze2)gl{4=$kMHC-e%MgyCj8V8$-*5+{r6VrsUyn{sNFs-|@B*{S39--g9i_EZ@suOL zcS_Fye3IQGYu1=vs!DQ3(jwDD1EOFI5uEOR46_98;1+#r|G;W1BMcqd_5&~OtyF|R zVfkmRaZa}lJ{D}Kr;{^2zi&K)9d~(b+=azA3?=>KxBQB@j4EekvH8opim7hV7i=Kz zVs6o^1fQY{(vPQd8WA3e{227lq;qXuOPVyvYnP)8WDAkF11I?Eb*V84RcNT<6C#yq z7wrEgH|KdL9oio7P-ZnJ$?}lE%rT9PBrrcSe2qL&Vw*vpC!D<@!lksLe$LmVjcpJH zG0HL`{Aw%5EU4AC1H|SqEmby|RO0^u%GE*VRT*(;z_mQu_jIkDQQg3mlTcB>vQQkM zJV%NwlI_32pc@XRoKIP#CD6ED84?Auzx`^e2!}*!ra;`ngX?m1+V7S!7j!l8XLpUq zefG@8J{o)zXDtnGWoeYbe3&VaN*jXgrU2`p&RLjXXr+{W9UXw zN^lsuyKCr%p+iJKN*a+=lnw<21Vjur`#s)c|Ah5vt@~crb)GT4phukc@yqz{h>LHl zez^@RJ;h zwaQgg&_-NRWTouaX?0bwG4h!4^S=`e=$}E_78Sg>Vr$Ehu6}~yFdyH1<3LDP#rx4u z)RthDV&hlbfLt3(s{ZPiL&s{nZ_^Ig_*c?PsJ^G#toRryRSWpfrHr($>T9=ToMR-# zqsxu>$hXyH5z%BnN7BLkd}yU=gtPy3bE6s2RH4AO5`F@ZRhj6E_w0FUn+b01i=IbB zSg&{gYY8yoi~?u?T)>E)r=M|}(F!WFR??k$>DM;h zTzzp%M4zM7Br|ESZW`C8m2oD#e2Ti;w6&5xakkbB3hpr_6Ss=-lgoXrA`iLkip$(5 zxlPswHN;PtITQYq+m%Z1GYn=nDYN^1grE^2{aoB$QB1W(KYpIGJbNX{_HjxtI3RHN z+$r=a$Ch!vbAM-3Un-a2lxlF_SU{+MOUp*HyN{c>-l(jt^$z|Am9CH3-YWF3&O9vT z#)ClsW_6O^-%xwLn7{FocZr_1@_n~x?sus!R zgB29)A>GB0FqhG7BEHnZgNd5Kz5jQOjc;l% zPi&#gB8gM-M` z8ef(xrxQ-lXIzJ|Ui2}I^NK3ao$IMFF3!qNh~jaya&7dN{7C#`S5_4&UJgX!s#bZs zO24n<6&gQMlAtBdx+o^J{pWowmP?g0nwi4aT~~><_=ZDo6p+>nyKM*l2Ko;jhJ|&7 zKATbxGZu+9)}}>6t9oHI@xa*l0Me;M?z$H*IhD2p5P$?wB#vtYiJjhTzQnube>^MS#*7pxQ znLZjV=!V0^{p@fpI#Mk~2!@_Q0N-MwgyW*P%%Z4h0=A%0+()Rs z_d#)ik(5}HpFR3mV}s_X813VL?={B9K^CJ40kV=2YSg|rQxUfXBueHEG^XVCOU`0a z&hWfs;%kFiazjMTJ$dVK`WH@br&>W$x=cdq=lH@hMEaSFfr2~$ksnzyIx&fG>DU4o zn+2^Ti@O(hV)&M#wOO?0m5&yoShyl$ z@SZieAcy!}=$3&9y$~=<9Y}(}!A!6;L0JP2rOGq13AZiJhQs{Xvc;tHu<@F&f`bL$ zGFeE8{>>t|MoT_q?dDDRea#TuBeZD_MmU_Aq|z>tbl#LTROtQ;{%$+v5h}Y1TU{Ij zn(p)!E?-7*-TPtguR-biw@=f573?JxHeUqpyZLHq1giK4$l<2jsTb|mr+tx3+K0Jy zyb+7=rRpHRmkI&t^91oRR~QO8Bgy@Ec>HM6{rNnzxMnHzh~w-?PXzJb6HI15HX8<) z9qX;I$t|Esr+x^6*@ItVOX;x$rBYl$ze<8a^Y*2K1q$7CVhHlh6MYgzoyR1@ltpA5 za4iVJT{lpWrb#RJj*MdzMgh+>m)BA=Dkjf!KaY zo~j($I}1@G5i}NzHw7R@;x??nGBQGv<2?)Vh~p)RWQ2fn$OGLZ%S4!kgngAmV$aRx^wrpL!qcSc5@G&aWkwNShmhRw{E#j5#)6oYy@WYq&4&Ez} zzQ5=Ebt%`Ssdz*w=TuZO*^k%?q`)`ei~}0;Qc)@cdA|n~gH@3mS&D|{`I=q&jifS| zAJ#3D^?t0t${o&9gL+1GdZxm}ghM(ep8UU;oK?aNWfk>#VfBWz`FSV?G!zln?euoK3=EUD)HxTvPQby_Q6x4!9p zcu1Z4pTazmqGmLW3=s+vSC>6_W1cAasK@V7Hb)L|9Uww0zBH%eQxaS!(Svsxa2TiY zqTZ5}t>xXh+MD+5G)l0$f2c!4^Hq_Ei+j~aAjT`8neC)1GK`@0yvjGIybD=A9YK%g35MK80n1QJ#P$bRkIWnngjbjiwcne2D=%fxMtbY8yg z(tO#ZU))43+pX2aCYY^d%z*8UXA5F$71|W}{>w9?w(N@qn@U*Ejb(GwHZHkgxdgh2 zw^O7MiN9z6SdIX*f6*jS*;_zcZ{WtZ-_YaDfWfuu6J?9L48x>R=+wpMrv1*Y&$Z-) zSH!Y|eD})rezX+vnMLm_3j?5uLSZS}fD;)a!n@|P0gS*GPrm53IIF%6`g@F^X4OGI z{!i&@U^qUpY*vF7wiAxkaO&(yX2VYQSi;=>0@!SRzbv};9pQ3K&k7^sVF&J>6j*PH#_;;gtNtYXHq>wzCNJY=c(G~tt+NOze_qc( z)_77gA82$UIR^z9tiNLQ|JsH3=Vc?ZsXP8(5yD`>|)VulgDN7cKyafCTn1&sqWtvg~ZxLe`c#w$N$|JdmY> zwO0!&Yd>mcI4=C~g45SMmQyEhKzp*G2mb2MLY>@nE&EIu$NgeOwOQ2B+vSosV0q@C z4~v{^aY1}bVbDZC#8QJ!Q)aCuh0W3fmY0Mm?ic^$%aj?;xtaUsCExD(Pl{}ORls=X zkd$zVr~BC^po;9@fNpkBOYd76uemijQFCQe+ANq_w58ce-+9G&inGMvA&_+#jQ-=s zZ!^dC{LQ%zn^Vb5FC*r>q^v=|vtDMqFE-`^1(X^qJ~%)P6Cg_oMtrTvH&53X5!`V5px$357Fg3s;;Ea9jxFfL9eQDR;{ zl;G97ZT#7@=dW9l%p#`)6)Fqg`9C(ntw#?A?BBMeoh_i`x5PBpLv~hWaz%|fb2#Z9llNP zOjR+HlH~~`M0MlCaLHz4>Kq!tL@NRYZO12Pyhj-AymU$UYlA0@1w7GSdF{PYue0uJ zwD5HO+LtPY>>!|5$fM-Q+iZ2>hF3sZ8!C7a&`jdaX)Oy zSuk~A{$o7A9x$H*@MVzwzC>#orYl;X_8P1gu&6=FFPdznA}<6dgd+E2i1%d`BxB2t z4@*DUagQYYJ(?&zPD$H*q+k{<3gAI)oCzOzc5N7Z3NfLpfY?Ia`YUE?tSXYi+APhXYJtqVq}xPp#1XgJ2){X~`a#NXiM1_5U1k(aGx{c_*ugbqa@YJ2px=nvKv-OzS?(^0+)@{9Z+1W#pF=B0jmj4o$ zv-v`^f|+XdFEebuzffToR%)I1gC%vbw2OSTpgZr~I+5$w5k4QE_nelugTGp;|aDy>=r&LbhYS4&==qh$r}7 zVK5Q{7CwaeVu|qk1F!GuEgxeWA3mM2C_3~ZyJe+Q^tW<_dF$t_40>w;|Grqe zNz?dKPV!H3_AaC4i{TG9FaYP3vBZJTxAdIc@D~RrrvPT5(ERDl#`0WndsAVJ4}qt*L7yA#7=_YH4m_7A69x^#LP*gD?AD z4@acLj67g$|1V;@5Iz59Wp!og|9i(?|345yTI%-6m#-rUr;}?Jm$BckZ+@P{%`A`q zxSE4dj-fiVsPCJjv3fO1;~6Z`bfRK~LQ&&siMW&wr~1BphV0J&l#+BP`N>J}WyM75 zmHjHY^xG*LEknMTG#59ionf%U1+BKfn|Bzry0|4HXVrK)+`AscV+&)MqFgDw@0-4U zq_Ua5eze+#tU3WFwr)+i`s+8+J1^EYp+yMdlDOLs;+QBL^cT;+vURkg_T)XHk`ef9 zVe%>^$Cuglan;oCoSc_2%|#>3%ivGp!m zH{Gb;u&J73$Uk$cd2!&Qrl~#>Bjq>G4$WV|NuZQ>_eW)dpwLK;>$if8y}=Pcn06Li zDgHX1_@34%<~AhsW08*lO$>Q-)q>4{$74`ax8(Qj;Ru?n7Z6hpIBKy=&BUU;)D($w zBn!g)_xDS|>MV&r#F^@4al>}t zZH8ZC74M>2K%aMGEd5cWH=|cskKOW_lhfSF*lv2t95RuNQVijk>WqUk%g!@~IR*!M zlQZdL%o$c^<~MXGgUK29HnMf>SL_N5=5g#RQcwejc^?BUa-*uhtr7Z63>NA(y$NLF zyN_pGx^Xx1seDTa6sSfh);t>u;tHrCeT#2X1VfEWJ+_Q*c=o|Uvk5tIEB+P|a<=Vg z^H{NntIV6j_^7}Bw3|JI}0hR(2?&DW8! zypHUx7{>Ox)3N;8Tj-x}g%?GQkEc~=UY#$J)k(u&@AdUGE>-@69=_FN^Xh8(wL8$2 zMxN_}9pEG0rG4p-=sy@##XfG8+;C8-4!N+EQ<_nA0GWcR+$ zlOy$Lv%0s1-Qd_tD=Xu(-GppUri%*`r+X!>Z(-rZ07T z4@u>M`Vgs!7#d;&n-l3_RM53*hs9Q3^8X&oBE9>l4oKeOU zys-rFX)g@&UI?Ei%_Hs$8dUREvi{AMxwGCOXQ+e1eYcn9irN(fj_|o{el3H=<|}wX zpG4>sC*>>rY+Q724LV}8{B0PFpcqRs(C?@>@ zDl^RBzYqjc1aV3&;U!4{(6ck;8OOEQ8RUPRaR96kqESsdoX5Ufj zdu$nP0J!0*PgUzU%)FjJ$Qv@&AAk z%H++bS-*8|x#d=NxbzKhwsbUtxeGA6d}X5~So#;o-5}Re?-+!)tp}T$mHN~YPi~G< z6H-juj{qgl%6{xqYaiCB@%LNtbcP3q_FwLFHhr*0`{TGigN@&%aT*SLTEF0 z+LH;jFy!qAUoH*Xr}WL&U##rl`LyJ(JI9E2@wsc3FY>q?$Q4raWDKjH-*Cv-NzXl% z=x%%>dSt@4Hm^JS1Ij<_>b6e1xSiqEU>iH-p~`BI-fR>j+}N`>tGb-B!NhfD^yM_Q zmxNaw-3vjTUMu{PntR!U>(-9aeDP+*N~yI)8~n|mpnm1hg;2?u^`bjQtp8-vx62JSk&d+@5{f`y}enj}N0c7U`UTw_*gO@*i zijX)Qx&Q`1xE#HxY@D+B_EuQw+AWyF0px}qD4^4?SmDz;U*1T9{}_w1Ws!)mm9H0V zGKTvJ6vm%4Y_5uwP3Z+CW!yKg>DjkClgb|Q`AS3s|kT1r-jjr2|U@~Ldq|;qRTbCPYZCwe1j?S+9168is#V}@$I%U&++t$ z>XAiNEG3f^A|{1;v2vol^5#jE%Hfxq?LmcG{K$88jSqw3*V$$g3>F1#%rkS;EL zAO8C@^Zm5=b3g)OW0*h;1$e;~qKZW+VnKY{&!f#kI^zNok33|@{QI|I?kv8(OW;v8 zuL7z_bA&g6IuqRlg-KpeWqf2G0*}rGBEUh+erw6wqcN8)k*P?)VHR$B^WvnI2$1I* zCJ_@#9Yf9)%q5N*T@xeNmDX|#fF=Zl9R|-!;s#(*BpOih?dQ12kU>(Ao68H|XHneh z@{Vt!N;!FOe=-)hg4pXr{fvU{o<(jgp;=sP%h&<@?O|pyHgD11k`FJtcJIz3GW+!q z1veiA45_@HaC2j)-e=u@bszJa1C?X01Fd&e*aqwBL*|cAm|K*(J~)aiidqQpcg?F& zEe=x`4itJAW*{F{BlPlERYqAI)zJ({X8O3KAu?MEF3uw%K(G|)KGs(dNLHR_@Q5}6 zYJh)O!JfTn4#`V6z#-Co2cp5GD)%KSU_fbosoks5!@-Fo&WVThY6kU*F}{`EJz>>a}S#7MO|`3lzbsdq)FnwkSbaT8#WlA2FL&q;+j~S#+f5C(XLm7wkie< zzTUYaR0NY5|}LAQ(D9*i4K%DrUy6y`G1r%G`M(I-tcl9Z5O34JgoBu9e|idc*dp>`WJ$<0iN z8ispV^?<>2R>d`}y`p5{+<*{(Bz-OLn-lz7KV?iD0X?9kaJ5)WD*tjVvmWc6cMjpN zMQcsv4^GmZ-UiRpKoA>{m^Fw3O!z#jmQ75RDg!0eOjKw{%IwZs2p;B#jfO zjXwC+91})`_p>&sB@v^X`EuBF{HDRTH-!Z98sfHX<9AN1QDTr~jF@qqeaV-bj_+>6E(*-u$FLW~osUMo{l z{E(Tb5Oy)jup8%h3B!?%f^5~+jxJUd2Q;&r;642n_lQEv+P#>*-#b5p{Yyu7$Q`hbcM0IOZgg;@t+c!csRpF z8o+%{MoI(lZj^rQ3oQ}jccfvO78NAHv6C(U=Ifift0khQ2?WmXlhkBl=gh#?$XHb& zkohf23srTI*ZL)_sNvZ4@{5(?U6){2L&kaO=ftX{2gS1xt}zxQ4$ncpEH_1hwWq5g zd^OskLG3caF(WU$slx`GDMy6cDZi>d*~Sdel^&COc~X$=0nGFlL$~5U1nB0L?2<m3&O8<@5BY}jfBYNrwKM#&6ySQGN2($GX|abPM=yha z)6F)SMFV)H!Q`{6F5?g3AcQvv4lwLhDKsqcqL+SkbRQFs!{)z9yQrnY-AKCPUMdh> zD(Tt(3EKiYZ?Q(@7$aJ(8Pd(0y5)PT()(UC{vHtB82INfY(zjT^RiPQ<2gzaS3;(% zWU6i06ROIS^YX(>P3nUJ|2r$||zZnW4vn#gSGtAR*@i zT;sPYM3Wv&{K+YM!^|@e_G*=u{6)YU_fZA<=aIPsQoW9{Cy5B{bUytqVht$8AZoS_ z!YCAT-P7`Fu`8f{n2oaAAtmA~HS^9zDXhLwJgKUbHb)%^r9CYiRp(R_@-9AA0=$R0_uZ0>WLT=4uyD6m@rx7!7^(mr;!{!y z@F{vUmbF@hg@8H5QJU6SbK8!YfC4F3AR{UC&U4(DaKL;JwfNH~^>#c0Z{m;n#7E_c z;gpzbhM1pU+cc!dOV<;BNKIDLPx_y}RDw^MB9db32(mUsl@4ZnlSltmD90#{eqbRb zF5;)Pl1({fcAVxSaK$YIvdP;MpB26tq}FRZFs11aI}#J6pGir#D$PSOv%=%4>joRF zgSAuGWGAv=q(CkN_8gX@)i|s2HF3dgP|l-TZE9{ivM;wVPlrdw6YHtF}&Ka1uNv{KznyH`Ug zIQ?u{^WWPIn37XQc~$Y@z(XNGWhKE?Nd#q`A@@?p+jVBK9~i|`U>>rxX11<3=E9NAa7;?^ znev6tki{}&v;AF}O|r#5A&)YOp6clJxCOj#0?WWvS$&Nrr(2(vrY)RLDoKG5@EO01 zS@VL~ytC&Ek^?bGWqi`>>9qItN)zjOY_kb}iFcNKcozeX`xDK%mw$gqBdL{t-O>*KjkJibcH;@tR&3P z*`$t<;IRskM|XKU(DUtx!xpDXKh`!^q+;i|2vL4E<+u0{%n8(XyBz$X+Gr4EZB<42 zXN!?^zjmfzPd@Fy`%_NzCsuEg+q>YJgfbWwrNlFNwZ3-g_PI>6(G>GpkQA%3xDhTl zEckC%(R+I=VH@w;%C0aTz>JyL_Eop7_~Z#)0HRPi zzkcSm-$Q{s6j{k14Rh|pz9sct;5`g9<%4GQ`59EJdU zua-gw?OHY8kKLZiIf@L6%umg|Cl@@z%766SnfmoSlL2EHm4&wUep}DaNG=3G&u5&B zykg?eYGFEJa-Ux<{K#5W0l}^~={^4#3d98zL9}~HEWm#@PGmo|k!Xzkh$~Y}!*K(o zy&UY^rQI|i_@cV}<&9UC+hC`C;B$BDk=~&_1YP5j7g$1Tj}I~T_f@sv`N3cLQwiiA zC<$;qnHN>~C5rIAJsLtdPwcH?L%V6v{vnf_*m6FB`OTBkXb1Yp5IuCH1Cv>4Y2}ta z*ocr|xS1JA#+C+chtmbL_D0_hO|@`S!a)_(6GET-2Ze-XX3`XqV88Pbqm;%!Hp{BA zjRA|0Q;jYZS1a-7)Xy603Kgy{PcH5qE{0PsWEj-i^CkpHKkJ5#E7Hv=K4?GYKVzg$ z*@b@ok$!jrK^1)g?0?9@uE&}FdOR_ZRQ`MF+IqLB#y4%3^X(JAZ4ir%+z zqVOQ&xR&E=&WEP)%v*r@=i;wcACpq}lLc=m;B1{?KN_vSy)L+ckb*wcy9xk`>})rR z6i#hEom>#zCk3~q9%}Awhy5%r$of>@D%&H4zMqMC`Z&&RBC_TpnZmP}`)P4scO?v_ z&ZnpvtI8*#E+HY#7tg0;YAUFt#Ft>Iq9Q0!qAo732%}~JMsPBq=gEhUqKqUGvXouU9! zeZ2chl~|H05oZbaN;G9t6KiLq;oI(}wKn9Nq%-G*D8PSgOKCPUJuOz*mS)}f)Z1tS zD&x|-a|5^7h4MH-fxEzlj0`=M=Jmc9cZxa{g(_dnNMm}paqZzm?sZSV+8idmMroDH z!ri4l+kox7*^-x;-oba-FLSFei3F~d`tQkvWyXy{hAP>H>AdoVj_WAhxB&(bTiRZ29e_`XJ1%!U6&m3K!Jh;3me{f;YmXQJ#i(w1alEw z7G1_s$A~+oTD+cQQemewMP{;bJY4QjqAKz@954UQJjnz1I-5j#67cywJSva;eDT1G z28z$^Lmf+TSSY$(ctl8YEIQ)sKhe+F*2aGhAr}^ce^lZ$H(T=A#7im-rgImIQr{Dh z`8vS;o7~;G?R`)_xx|iBIlICaa|qSi7j9l6MJn?#SmpE>vPn~kn`h=srttEePJE4L zysrA+{RAC{JdBP&7uF#vmhKYvqKq>L5-DRdn$7+I<-p^LcNS6MW~9r&UpVEWD? z^JnX)nsL6TB1u|{o3AL`R6gV*djec!{$*`^z`0n=K9a{VI2UX=RggP!gPx%l$FpQH z!o%GMJxqI_V{}F!_|+KhEs9O1>uK`_@=+ZHh`}4uLR0@6R&k|!^k@A0w_<4W+RYRU ziJorFm@#(3L(#aKOW^nQ`j1O7*H$Ul&DLxa5PCjXnsoPuMb%2R5F;25Zb=m@7QZsT zqM)RUG1uPOMp^YFT@$8>tfvPcUI5yz`nvNKe?1AIwoPzK!MVRLZh8E+(pjhAniz1LP06HcV zENRbuL>JLF8sGqccD{Ga4c`Qu{M)Zvt{`TUNEw-;KbK)DyHEC)Sw;0@u~9^xkAyPQzTD zzWV^&OZ3a3+nC}giztWlH5z7)+Q@|SO!zO!7}Y)$g#G*x6{jd-z4SD*D`nq>6R!w* zr)x{E!Q=I19LyZ@&bNZnT=kCKNca_-e-q{KJ)xW{#2lyE9w}VmY+Mm_M7skF1yz(a zJL56hCfSh`}~0`;MiZhSs(#yOq=my@fZJV%$$)TsjZ&ZVZQf4 zg0KYbsKk$e2MzRY<=-YnO5$^jW`uES#$XwHaAp_upFj;(*BxI40o4BnuXQ2M#*w_0 zD&buLk|Y4hIgut((Ca!Navem7hT#11&*enzU=pN>18I$-=`2b?^!g$~AX61f>CJ~A z8LCZ2%_^}0*hRdT-J2xJow?|MBE8p70P!>_*7N~D1wS8A4RS%aF24oirZB%I??a)t ztc9FJ^bxpF5W$T!i@TPbL(wjx*s*=P7ny_bIWY*)WQD|Xwlj~-b7$?_a+ z$3mzHq+kRAjie`PD-utRAJVZr&7m`lq8G1(#koX9SZZV_{P?gZX@Iz{8-J_V4$SBuP* zDm|ERyvD5?S-QTPgY_cpexwgBeBFQOYBT(j4Z;F@2w|drSvWS#(N3_ms0tTVIXb%m zBX%-uNUn^HsTbwCTLHULV`6H)!4H5a1M4%rQ*ef9Y&_lJhcy z)=-kIxrz4;t-PV;T2@}y7x42mPz*PtKY0m8oD7mV=}ENf8roIGcH=+Ks*)EG5K?(j zD?(+~zA=7M*(-21=hvn(u&4XM)s(V2=E#79SBRDLcb;L4N9d2@Q_-K%urs2Aw%4BU-ADC~=ZSa0X1cLujegvDh`j&?K z$fusnytlD7p7c^q6AJi_8yNQOr%@}CC=#U*fR*)A!;=$!{t%s!tMH8?!;`suMCAG? z55?PzqKU=a^XsuwL}b`~R|&*$(NuDwxZMb9^U=LoVGVFGU5r9v4a83rBq*uDx8~nn zr+(ULFZ0s_ZVD;B^a$UV#XucORUxG)13wo}MWH~|$v`bpcP_WUZ-x=$5|6J~tq2wY z_={vFKO-V9jp@3A06$1wfHs%I0Jbg?x3x%~cE9sFz#SIMfHBrG!6lA*p@GOLll;&AAN-Pk0ej z7xZHN@n0@b>#`x|vUhtyLdA}nfG-_4)=u%%z4|5Br~w^GtJFG*8gV^rG^wqZ6DoOaZ3j@dhcV=P)I3`z|?c@BMSX4UOtv zIxnZRc~a0(0>|_)`0IMw8Mo7iHL}YDDJ==^a41l? za?hvIIQ_+~&op}`4@G9I}hl!PJl;zp=agBjc`rzVkQiHA^YLsfl54it+s z`_BJpA54Bo5poq`a>B!iBjH^|`%5^+|4`OpLjtJ^a{oo^y9f3u#BU-a1nr}P8mPwo z&5U}ukL&XbVj{kA7hD`ibX;&;O)rU*WW*K{9%rhtD>Y2TkwZX-HBpW zQ?m2nph}3!65O_$_c4&-e58gtkUU8e1 znwo9W16m;zr8EM|G;wvS;_1M15bgCKb)*}Ejsz9r_c)b3M z(vA4FTqX%f(d2|Cg>3AxmZ2w3I|K<76Mp3SHb7}uR;%yP8f%n9UDnvLd5~B-q08zH6I0 zvZuXRo5(tZ$#{yS?z0&F+-m>pBg+V-qvy&PMG`>}@n-pPi!~Wy5Eu4jrd_~O#0Nu5 z|0dri5m8Hib`gMbAWV_fwXg;c$j1w=81N^H2 z`TO?xXZCmyw0e0C`e?T@j>=CG=o*DlJzG*GJ(OF;&wUsZoQqQNf|{pkv%>-{`la!l z9Ajh$>at+Igxsm=?Ez_4z)zPc%G>wQr&W-K4tCI($v=zsvzH0`KqLzS5canH`m!C~ zgfW@K{3sXzDMx+>Fk1H*;rKBsAK-q{cscTL9!;RjIUxU+RX{I8kXiZ{>Ooe~LG-f2 znr7E^vSp$SLJXnuD0Cz&Ov8_~t`McK6jE0v@*gZHdcUjrURdRMCZ+Zgq^7&nkyk%k z7*P5%?^2~^{@2jwJGZB@?v`?Bs4;XLQ@{Am*w<@go}yxxYlvj z(t7fVAQe%qi5?7sPlD-vy60{48fX#jo{EV@ViAM}wxZX;`X)8Hs`m z?zjO}Wzkcq(xeQ$6RoEX_jH|$Z?Y_2=Cx~+=;LCtGe)~!#Jm&MKWKa_Cep>*6>>T` z+(Ty@Hm>`?bhx68H`ciM(VM34p&-I;|0Wz^AfSkd(%n~~Mu3IuDYNR_N&P8d+b(YK zo}5g&XR||wr$b?beiv4)`c-oZjJ8>Z<{~4mu{ve5n-IjgFJ@7^U^t{=J9^fwPV=g* z)k2iBM?x<1?Uj4#f(D2R`>xCyXtDi{2L~~ar60?p<0e%JzV2xA?boa9&vI$6$K=1g zCj8kkS_COT|B8L=H4w)W`Juf~{g5HK(CDWS@E3v}U#*DQlJE`*q25y(xyl$6SN^H4 zvoc%Bb3LY@@)Y0uzN@P~=k+v@YK~1u15e)*tZ0uFcMTWZu4U}W;^K%&8 zhss7f%1#|t*$D&rf@fDl896Y)li?{fm!7TL>#Hwt>D3)+{I2w70_5VFDJf~PBbPkR z$3x0VEkqsPZm`!)-$j$hN(9pOHIKCO1igQ|8mlD_qyW5eIwp3kWcbxP(EQsPt|D!=C226YQ7TVJKFlGEgajWC z_?a;|l#V@H^CA5Lto59W)u`{B+4zw1u>q0hUpgL?N^865@%*f6aBVGz+rx)9Mkmlz zq8^gs2Y=#m58So##}jdj=~?Fp`E=~frwI;|dqq{XHu>W}6`@08Y{OG*^lTWAYoxTl^tt-(&5VgpFl<%k zWl;TxEoUO)U#Y8wF;sc-i~mZgxJL0EzHIgr?fXsWl6B)bJBDZe@&B)~EqmTq#6k3T zx16M?{r!^a9~1x33-~1KF-~e&PK4jCR!(8*BF{IfvN@OEUtOqh!X*-Nh0WSBb4BM0 zU|E=$%(8om?1Lpz#(f2!R2r&%+Jm<<^Y2K{PpJSvK7lhR7NWffH9$Nx=LrBf+Z)Xv z)2MA(`kpUhGnuR&cQXd9+B68AVqD+(L=dlxi>=ToPjZhYmaH~} z4035HSB#UyuSCU^g72d;sbNub#%gO;7$H?MLP}|ioJ?dzMY&vM*ctorwSf?(3G)^ zu)cqP{Ov&D*^GVK)~89LdaLvEA*&t9@8$p-c+8u0>8Eu=EA9Hm653-@3^r91bDD(T zZ&GC>RTA)@On&9tka}`}-M$oUXVXp2L%`TSj9sAuB{Byo6h3Ve&o|@Yx*lxrQ$Zoh0&p}CcN&t7grbE+LCY4_`uP!&BL1%}x^j{m=OA&E1N|FS=(>>KwD z{j{I@b`@#)S2ObOQsnjK>vtBz`|FV)92A&Z=pUAxFyCmG8T8H6C%+C;|E+B_lJ154 zq2q_iZwsb6Ddo3|&xn~JFc2C|tS_vAPact+lA02kk(rg9lbe-R5J5mGEK5j?<^*xx z2R*g|OLY}#!99%euLY6C(oDgF zOf`_m>d2E^3728mF)9vPZ^Z95Y&ize6AnB!&*i0RHYe0uF|C=-J)?VuLl%aDWMZod z(tRqoHFM4l>pi+J7k``ZTXa^3_o*tHf$hL3B43MUr^6q|%fG#hLo^+6E$h-Qzw3Bfu9RjT-%xDIS4Al~XPv38h zEI@8*QPPH~9i;drqkBKnq2^%TLZy0z8t*2N!VLN-gU$?j|DvXW)6O;We1zP$V@Z|9 zS|<~MTW>?AqnYJRofs;IgFlxPA%O+~$>I2fByw&-DEEf;)lCS+HYl^pl5(l%dydC3(oJ(9i3u`>{1sOMiJ|$C2B1nxXDT}l{8Eg?5rAF@` zO$MR~q(noh>rn`yeWv8*j^*1anD7K3bR>DK6?Q(FyUslvh7jhz7z2r-LF!Kux%EjA zDTwb-b&-7&A_(-tN!F$!V8zU>kmF3wGVE7P!TqxqcTpJWcJmKg_*F`$o#XEH>Y@eV zP8@>)JBF4xB`9W8oSXZdMn#FHuUk8WhTwRN@KF%AFn1T}sM`oCnBJqA2afj43&VnI zSG@BxArOyF$r#6 zR7O>e>d%p{VI=n)%h8U};y@v1QMBaIx_*n4du+6x+)B@Kx+S~s?@KxS&FtL1cl7H{ zF`sDJAxdPa7?nX|u_(Ygs|$<;^hmZlQ)jGsjczCAF#{cNyK0_Hc-IwtnZc_9aU7qD zO)Gpu`g{N1ADPyWQ*l9gDtl5z?vbdWdpxqK>@@voAN>>OQ-r!q5;CvgOwgqboNYbP zRa^Q?)s=ddZb1SjhL590s2pxY-Ls7&v%~`AK1D27x^&k?Jw;kZ+ppds_!kZmBBM5S z*6+@lJBW}0b()Hs^caAa->zZs%lVJYu1!-LF5pnU6+&V%@GzdB{TAD_R!6=RKEfU+ zRTQ`-2j$(=cl9r6ED7}4X~N^i&{WeQDqP&?7eY;M;X9>3DFT8U$KdNKp`bDjKw|x|EVki%o#vy8 z(-sf;Qv*}ZQLaAHjOz4>#rvs@=NUsOZZQ#OosRn3@oe_=M#(pxnZn z4mUVxU=x{J#wFwa1`L7i(F)-9ni-3wZk!M?h^{5aKAX3*V&h&z@#uRMOo7M}MoHu7 zM+#ZUt^e_8%Qn}@7U;Sa;}1;tk+ZjAX{$BWix$M9hojO{F?fHBK%@hAf^5=8IS+En zQKUQh_lU>7#xop`@4=(mkBmv`hX3U2JyDuv-12QhG3ESCIUo<-`HH26!6o~Kp}ZkX( z(PH;W$Z!pMcL(BlmZ0dlj`p!db7+%NKTKV41C*9EY?a?winCj`x_sj<`2w^V!U+h( z(gF?34B-chU5Di_9vBB%Kc@A(Wc_oIc0(#O375nK&-xL}7xmZScEi#}+Ubw!;xzXd z8#5c8zb{;oOW0zcPLN=w-`KxeJ%tw+#9PhoU9WU+J6P>HC9@UnOtSsbw=8@4cl{~;T~QBWiiI;@cWykEY0-Mif#={4 z-MFX3Id@2b1%AF=ZxLRL62&K*ewWM-ezdh9;RF^x3thMoiDs&`0`)EEH<$2`H6T7` zXz>WNai(}GpQ8eUuiRk%G6+8S4eZ{gE6?evGy{`WUHT%WAj}lhw6H0kM|9g1DVpzJ@@M&&~;UN#r!-PA)9&B!MrBO z0i4-VGGJ;~MfFxXLzXT~I7AF}#DCxs9F|yBr+`mUhIukgq{qWXGB=(Y+KpJ(0+7Ua z9E^&jbjH5yu*TnmmM6s3H=D0CH7fe**&W{<+lC3+Jx)7wb_L)ic9F-+o4C<{QAgfq zAE)+qL?fQzf0Z@zF;C?3*%*x>>NC_;Qve*X(%d$EO?noDw_luZOzqEZ0gcxHYb)9;28wf#{s6_W#3Uh)}0?ZS7}Bou6f2CYUpWu z2)i@8es=)`@6%VF_yR0Nxvep@&>XL+cqP1CUnuWCN5~KS= zttzJJECMe<9E`SRef$s$2IqL`vL+%{MuNs#&@3zMc*1!NH+L^N4Wf#+j=b6*XBsc4Nshc$ih4A3SP%uPp_J0(|RI^ zw$qUbADWML65pewA#kYRDZVODe?Lt7SWJC4g?-7H#)eWn2x8X!HZ0zTq%h-Bl~0ml z@}(eCbfQ>1tgi3#GehL{oow8Be)y8*d2G`d3Rbyi6eGb1{r98<7#?m`Z=i8xoOKWK zCj}sxriMWP1QO)FLzQK_jAhSm5?UZSweTlyiFdzeED)0v@?8~=a!y=%JNB8r6yzq~ zy9CKC=GyBdAJ=A4#3#cV1x8Zb`2o!5p&E^0*XxP}UD5dn<{%6vb^0*H?}EhYE$H!$ z*)QcrC_FB&3&y9xC?JwsJFPAOmv`$S;06G%DZLU(L^Ac2vTbflhB-E1!74jqR!PA- z0(7XA|E2j{A$qSJhJMg-tUogQeNR_fC%x%_rsK$EJtAETZR`gvx;85G?~CjW8QM=* zbX7Po^z2F@l&`@T&yR)Z6r-(5P<9D1I~Uwh(+sA~1_-1+y^8_RGyzJAL|jfVh)2mz7>8R4AudIx;DwNz|flOsH&I-QkVxa8D3`2 zx7xKed4xya_%Q*c!Um@mVDIP`)Rh6SMY}FSO*YdiH5C*hGOSW*Z106(+_k<4SA3-~#>OjO#ZaR}Ie~Lo z&LAkqBG3yC4dJzCrUC{aW&O?t0ymQ@P?%6k2Cs95|LWsuKoAQ8m|~BgO*)UsB|x?| z>PTKKP03m-7%McJlj~i)G0pYXBOG{UOc@9gf1%Rvqe2sfj*%1- zZGRHzTd>rR1TY0jQv(GJ*nzSQ)ZJo{_2-d!^36n$y3{7YBF?sw0+RO$BcQQ^qwaFP zkWR!jI5QyO6X42^Gocc?A=Ve&Qdb3b~uobp?099b`#~o zCha2F12;>yh>XY@J``XoN*QbIavki7wyQeobq_XTZbdQMhBNz>+p$;!;GNx=R@pzR z<^^>v5SnoEehWQYD;N(}p(!je1gd{1vdVH)!!A?ss4VM38g zC-CEk(0!q>nqi;~k@AWoaMna^{atL}SQtmqC`U7#JBpZ?lcmf9q}FxljZ-+0GQakY zE>>2ZLSpf6Q~VDzpGFRhtz&Yp?C@586ubPF@&a5kWm|-@qvM240yam5)Ust&jsZ$u z)ovE+|CZ5L4*9+0>*tYkDA;(g>3eAmib2|B3{z2SiC-YumO!sO)ZhKG)Bz;-7*xLI z&kG$g@t>zs zu@xxdgQX^l$;HnKm$>4j#ows3wsp;1JtFN=_I9Yw3g$g2Icc?^(fKF_@Fa7Rw4Q=v zm@+UxeJoIK=;<%p-rm}|ZeDW7$=#(O@|9CD`@+=N=$3X%`-zr3nk?&WM9EBR?{WqV zKC)wp>XKg>_4*UT^GI++e*nW)Zz1S+8DBr?0j1%GZ;VLl8mp-(QWmH!JfLZkz#!)K z%ak3S78sO&zqon+>N59wIOaIbb=4a87a4VV{GyR&v3YyKY(z(ZM;?zvR2lHsH)j7U z;Xyp+x6H3M4X39P67+nvG5(=zjJHEKV>5L~8X3})MiR7}SJ&Y26GKj&>>i*Bp~y6@txApc zQ;?Z{c@aJFzt)pAK@7RO;EA^dyPKoWP+L2lYE&yb-&C?@^wlB2fV;1L-_EipFALYJ zR|+!utbaG|WY2qC)GZAQ?7O@SpBEldx=@4mLx$1L%nNXs@ePMvajQ^bjcc?87x2s# zS73A<$8SPbMeml%^)r0N#oTXD5q`_PkGW1`kRR-0_cZ3-`y#=|FE#jI+q!E?AR*JN zB1b&;M|ey;e40Hl-hhS)#Gftu9rFUsm%S?TN#+io4f$`H>wqEvQ%$w7Pip^lgEEHe zMI4{6Hgz)^{x)sSc$V;TvxtXQHPEcK)~rvnFH`uxw%e;VD(eGyZMsf?z2|{=rkI42TlPWIOg=ns-Sz`_lxSj1jn+Pv2qp~s=0|PBByNr#E z;FGIBm!5raXqt9#fR=s~^kP(ypv**rY|5>#ZE9$~9e0&}>(eg0co8l$J2x}KP9{IS zyaFu@4ZOus)6uZCZ@kd68o*H3n^kAK1z-hIu9|rUJqN}W5xY=L(PCdl0mGJg@A|zls19(MB8|oLe!cpwA;hYMNWfim(*NDb(`12`z~HeikUU;KEc=63eLW0493 zyf>{jG}ojV_+r1+9dhr@^WPQ$gFYIm@*nzUs_y9(*egk+K2Y<>rx*%pG>%^_cJGv)Yv+;< z6Q>PaQ-GGI(f$@(SAXl)69Y{Eb-UY3Lu$GSX${&w@rGxT=Ve4*^w-|PEVZF|Vh(mp z6`xIUIa6HWke|h?0q!jdSx^dJ<*Uya8u@IbYBOKB2j*HVc%lARpU~iqw2E?-@2<;R zYQwxO^w1ztQRXR@5}7anxMzYlGVbp|7v2 z{p9B~m4xLNnVC6TS_B(eT57{BI5Z|LLYOpOSreb*Qjw`~;U%K7y@bnSyMVQ3(PHZb z3Pc-%Gf zn-+pW{p*Xn^wG)M&SaN1zDcA+DhYN$!`qT7Xq@F{xX!FG$ z9PQ;UV)5B>l;H}0gUx#fcQoJp9M8X#DjfqT3~V77 znKZT3+gQG{XwoCR>tF~WI6peA)AdEujeM8f`t-8Ks?sh=hKUR<`ucSPo`7f;bNQ#p zucnv>A>_O9aR49>62rK)zZ>e?t#uD&8cMj9!2U)gZ4Z}Z4^;gy4&@(ITMqg9wnnV? z&j-)#kARW4B!E(Ff`^1r?1PwvhA;0Dj$lyr)1j47SxT-l@sk8b{+Db>UF1*w4uCDo zm?8E+Ng1`1Bs|Lyn+C@&1C5D=Mz+sBYPFE)j)Rphqh9KFcS7X->S#jA@d->zwKta- zFn^8ee;o{@=@{>Ou_sI}mmSDD5#!}dD=RXxoU_`i`Pl5nw*g!QlDnn`x54mj`h^|Z z5MzITKi|sC+q)zuegn>Ld8V{3*!YpJuD6;D>XAlW0!e=FjUX)6FfU?!R&6?+fAq=$ zmU8^}4*bSTC6=Rp#vwe==SCH~W1X==Q6vAc(hCE_#KT&`u@MYS%HXM0AFY=n0+EIIS=MSEUU`BE}6moY?g_@I8D2072pBl#PTPrZ8QVa znvDGytRwpGAJ7cfxWNMfr#cwWe~iX-E}q~~#p$Rart`Cod z+6RZH|YjYF0m2ILWR*l*5gmSK@ zd#-r@x@;(qNTLh4@E5ZhuA_?9zT$2{mnWfQVxNWjgO;SRMjFsdKk@eL%0>TxAznv^ z+rqgQ$n+J(Y1l?tVa4C#e9rvE<^%e*l_k)R4AzIoQ~Ww`>Wp>;ShI*Rd7SBZDw1?Q z+I*m>2%2PFMLdY|LqY{>_b-PpvS+2f-Q4+Afu^z9c}R5xswg=_D7g!Dv8k6E;;PI_ zvBo!cyj#Y5WeRB2EpEhE)rEfPW75-@q@G6HJRN-Bx|##9fcQy_j64(D>VG-;q%jGh zMSg|(@eW3&OXv;fx3=4kYPDxapwbiuf?jb{Ct(#?_QPOop9)%gzKTP^`0iT z4-?SUv)Z%cqZg1L*M9F}=h>dwlw=pUipyAlIcGM%Pn?Vvt%Mj^Pj!`8ig$7U(C0aV z1DO)NCnZ>1qhf~r3|TJO?@H^=EcyAZG8vOVeLG!}Bd=ClL|VB_o3>SIo$Ed4iImD^ zq^U$^pKY^xC=DJ2+p<2>Xx7Wfasx??`v-jRLUOb3WLVbjXns54jvnBmirQP} z@%IRT$Sx1ck(LX~svIUDlZ@x9LK8~8wejqNwzONX7s25y9vggtb;3+hdy&bSzB!2Y`lV>+h4? zFFPU@9h0k4W4}B6PSXWo{0Gp`ohWU$C@uw_ms8h<4=tNCT>lX)M6mJQdBH|d18wt#jwcc|Ap4N#NDqiRPwt!v7i3>vYusxM7336hsImO;VV` zfv`LnrGE5oH!12Uy#=B8uTue8rl4%46ZXY*91tSa!fXFc=Wqw$((g8;mp}!(0bB%V zP6KrG^4jA=ft#+k5_M!EX}GY~B7upk4e*6Sh5nhu41RGK@rrDS-~tLI>;xF4T`Gl+ z-KJX4j?|1mhbAl9ModLU(C|^j?`blHGilAY%9g6yz`C^-*Az@c4ge zyhhVjr=9L%EVMRQI;L9S(kw}BAg?G-7e|6H5GfbWbRvt~HP(4;`4ct5X`*F4IDhIX z+W1{_Eg#xVd~o37a^ayp0}Y`--r6gSEVV%uO5@7!z}7vDU|t`sA}oIdRE`%ix*=80 zag0-O>C0XvNEMx*%5UWZEP4D2O~tQThv%B$RbKWB8@8v*AT-|Ck!XAeQIc7T<^h;o zVgjCcIgOrzXMPO?}i?+y=l?X>k`S0B!%#E0$vT-r%6WhaHC@LFKLBC1lnatVbZscin`zgSBc2 zKbQ@finI2oHOjy)L$lI+J<@#UfZqoitcA`eQ;dRJxUvfF$L}lAA)2zRRigPyQfmR# z<3i#FGATrJ>SY*4r23{^?od2vJ+YdN3}#dWaxYg;oym^p>6k+EJ}%Pg3IS{|d~2OG zpKahBygn{k^x;H#6QMlA2wE8eB{P-W_b3K)=2~ljzIAE4@}PQ*vOm+PKJ}glOC5p} zN5PFTC`=BA4VWGu+H{C2MfcaGy;HJkN#>m^{2N}MHYU8_%yeHnr9e~Nw+)gMPhm&~ zE`XvP+U_}t`ZopAd6t)C|6+CkKu%wRJ`BSiC10vi)<(sjH)bD$OhudI*_oaJIYZz3 z?)NkuK)OqZ+RNb0WlB8tK(@+OJ3@IgnjPZ%L#-uM%z`9F1VX~Law4cRKlxEQs6kgi>2_es%8TWNXdO$O2U&RhC-*t#buXnw<>vpGI*16TAb{>1k@~ z$A)kUK|s-B?ZORaB2XCtQ?6JQuH^9Bw|Pl^oe)QYIYl5en^>;dp0`G&k6ffi3e#9j z$Ok7v!^vzy!FSnS(l6NE9oqq_kQ54s@tvOG*O~e1RRY;_{<078!i%Po{d5 zOi+{#ur-uu6MlwJ@v=dcUWpL-9D4XTdfy3fi^-a4`nV3L&YOb~__TC{iAj-S{}j|j zv`03kN8T4Id1gy0726*dcf?7!+ey5H1FC7LwYOu%n@5@P;Jdr586qM{OKKpUbo1Zk zc=$MFU|(RQdShn@PkO4gNXG49bj4tAO)$rea}H0jQH`aRY#-^bxO!Y&RzPMJq2uaa zN{9M#4!4?CD&t;n4>Awm;+=S+?=YZNr}DW!+_Pfpc)#vpd@p4I`^W;mWFEyHiBI162 z?V~L=x|>WPd&PVnk^!?PQjh>{jdA1p5p zKUV03cdl@~GX)4uQQxa8`{Majyq*GmJLv)#cP}7I{_3!b%ye-eRn$AmGG;!{4;C^1 z&6JEt2FLMeuHqo3_%w892vZPLXs7mekg*mKx@vldHm2vHb&<)^LQ0o-wZ_Z_haGe0XXi3lS!H+ z@fxSsRZ^^u&Dx9(G~pfj{s7H;7zl-JK+`bQu=b8eU3k0}59 zY+K_J$6?;XSXIwJ^R(G9lCga(EJ_^0|L}zb`!%os3UJ|ECJ-$Ei%WTsl{f2N)kG7Y znULKpv*=gZx}}LY^)V0i^Q!SBwb#+Yk_JZT{Sa}J7*rc`R&Gml+u`e7i8niOV%wpM zLU~;SNe%g>PRqaFv`ed9NL>5!S9B!;FP4S+ZPLS~mV91Pf$5}}nK>;`-uc#yBODF> z`{j(n;(Fd6{F28p{*wlVm^SwW?5BCgl_>p*M*a@3aCljWf$t@e5usS9!e?}9i$H$q z-pTBqL;w#B9vHbY&DL41g5`fi(vj)BZ?Kmj8hn00pco?q^hpqryhJg{{qH@oI_j77 z`u}umrm@w+V4a7ss4M4ZlLD{`U$sug zy0j<4uED~uAY%7lL2b#JT12oZ03v#ZCNxJmu};8us?(?LI! zXCgxaIC6zo2flexK-MyQc6~C(p#x6h%|vM|)wYM(VXSJ?t89B9 z@a;e34mlp6`y^K47$tL`0VQIY-di^iU2xeBR}_Ay2P)?bDl6OH6)~gIWmpuj*^54;-RCzc--mDoq|CHxUeI zX<4vbmzU3y$FC+tBKwO9E+ov9oU80i3T?pA5|Ezf%Tj{h4F^CxBN7ETd-J`T&O85qmj-+}%VFjOVDsZuIXJ%>;YmYO}5F!{VpyIdl zR`-m7c+WA_6mIK-+fv~9f{;VX7*%d3=?=qI)-03-xHR^@coo5Xw#nhXGORKcOl zPLUc(Jtk^$C<`k~BTK87R_m6n#B{l_0nh5S1S84It}yuY~%` zI*pC9%U^Voi`>h=3HX9$=8fK5v^cj%v8fe@K3hB#(xKj1Y-Nmgv035Mdeav^98XXuMQTFwaHv(4+Z2Yq@s=l;T?ufO>8v#?6}@VSr^ z`fR53f|M%nnAb?cC_aF12EPr}Ykjc^IsVdU?aAGzgfQtXhVR^vuY&XY7kz4Xr;|JHkmlSx zzzovY`{IIi$vSA;*gOk5Q*ELJlPSguO;{gEFnwkRYs^3mgPuIxZ>Ks+wCQkLd$K+9 zF(Jr#!_jLT7J07Y#N5gJ*le#dHrf5ASf|EQ*+Qmf_--;*oTyGHVVY<16suu1@#ZS2 zC?N#;p)+q@l_V#oCm+ZspOq0SNM&ZljeH`iwsX{D@N(O8Wr?>d^Svw8k+deN-(U<& z7;H{Wb`a*Per|0ES~obhR{c=v^3C}kf?m|j#~s>T5zkSOz2kiv;m`nP8xt(-mgDvJ z)O^!i=Efg}RQ0Y=0n!G&xsY#qk z$dH;p{9xq>0ZZa6>cOJMdp5j*(MJFk9Sh!Rb!ui{A_uO?znvU>@6j8}1`RTM4Of$a z>N&rXEpN2=dI89{S^6UVR{RcqhmiXapKt7)Ib(uh?@(Q}D&J zfgU&M!3k#OT1DwYf{=9CdJ838SlN$Bh2|w|7sZCLM%s)F@$o%{?jLu9(&|9ROXaM0 zQl{`<`J#`1mM_i=>-rW1RiEZ_$^RVB*?~4HQ35|`{s`&w2jsH(9c^ut;jTI8Smq04 zcNoTWkyz$0fXX}XUc2l78ItO6RRR2kbSN_(KMyWxiYx%g6Vj=?$VGus9G1544d*os zN~GJsLVm5(H>ONVdA;ypZ8%ss5>Pf)^jcqlopxhZl2tBh<-Sw>BZ%VXh_$7PgidA~ z^>swn%MLz;ABLC0Y0Z8qtI{omYLJr@^*(n>#=~o{%7w9G+Q)CU4O?qpBDz*BZsIIK z=6CeP+-Pz6@^v49^^3_wI%m>v_5^mWk)+h%&!#`~kAPx6C_gzu4ckvTHE;+z9i`Z4 zu#X90jWVM@)L%b=%??3|WCe*?laMXVCJxG$IrbOPp2Dmg2SwCWmMz|jf#Phh zJ_-lN&ik^x!L{QY7{L>3+0=RU!$!*>YH$F+A!FOeXRz;?*m@H-*j98 z*D##%sqHvdl>a=JjX3$rp})e)`PZV>Hy|T2ZnYxuJ!-m_Oi}2E}W; z_e@I5X5tAnJ`8vs3Tpia9a1KiTEs1vfoBGwSBuHGKlG6=L}c;wOg0*o=8=TNhpJ^l zZvIG=jGDipS(T^t_v83WD#{0lt;kKSjw)y(R zLlv>f6bik`SFaTlVt;mMZup8a7S9ZcRY))-K8(K^#cMc&e2{BKXk2jr_Q9@-nPDnY zfrrDG@c<4H?I0hR4vGK@Ig+b_o0AP)nex~zJO8#W9{vFv!b^ThKz?MfN;_-+vG8Uu zIqugAHomTC6toBb|tcDMI*qdYeG5G!m zmS;!V;!gSV!5sR`ls5E=xy&4vj0Bdx@44gM@$?k6a30Cfb|6#!-BydJ?JNxdwJOF4 z2OoVc%&hPvpRE@}PB`doZP z2*A&`6%duo=B;_G@icV4N-_mU6@^VB^G{`y_%DTKiEn6~C?Pq+B%p zCVD5a<-~p9&N5Fx2&{TxX?%4=Ng(%^{(cNbfx`+z8rOjG<0y>;1KW7yd!!k)_b&x) z^_XZ52=LTvxAy&iAxzo(<2eKooTXTdr#jy{|dyddAaaCLkQJrFOf?n71WSBYERBP7MD>XMIxluP+5ViC@v;bWQcJp>u~EHoz^YceunjjBs{E1MKz zWcWztKFy2N9UIZD@A#^FW0>$UdG0a!UV=FoAX{e)!eq z7D#3R2aW@#`vG%;abB8n=|o9zEp1PJ9Oq)->S7#~rkq6seD|Kea)|JqdcBx153>-@ znL4K>5K04eJupJ=1EsDJpUCUJI}AXCc@W}?!x#j(p_gaMQ{tY)!$e#m6~L~6-e2_; z#pwj`pG+CxaM=@2JnKe0X9^1WGw6D#I-dfIM;%BoB0+c%S9C-v{#{baOVWi8=K<7^ zLqWLn34eNA^$!!(Qlv9M7MhGnGW^^H`Gqx0*CGB3QP`>IQsz~iaKsv&85O;Gl!wa! zmz%7NX0lZZWwB`kJa|U;c5!wX6+PM2KbJWQjmMcC-snT-aoeU(VSqIQz?#ljCbDhw zyY#9&ySg-=L73r_0VJ)2qn_mrGk{6Y*jlik?S(yAAE-|< zVCYnyKFXifH-6TFBTUhviGY=F##@$Y+g3MYk|Wa&a{f!Bf4^(~8DMG<&*38vKP6s2 z0m`a2n0O`K4ug1{3Ew_NApRxf>cJB}^P|6qimQJ?mRVa`u`v3AG z^%}6y=_^r&%I&P5>y{fqdtLK62>T}l^zU))80>x%RU&LORL zUj7i;!#KGeM8piHoSt!N%jo(J=2_aReLVNT%Lx0T7~bw!0_v=N(yh~U^&I&l<9S2l zJTQ)PPKP_zQ5Ie^tr&Y(fBPMZn~Y^xT$x`&ZB0}e?=p=?L)qPFYI`I&PsyhVpx7Ml zGuW%pY89IT7I-QPq#@kv((%>5$erTA1X zrB-ThUI}*qHxz`zHR%?$<y@mq zvAG`2ZuNgkR(~+uzh)4>-Shdq5`;>$pDdGl_@rinnZC~EouVwBkKcvu-(`%KXau>S zZR-R)U4X24)W2LRHfk@n{ABX)6SZ9b+Y1vJl2V#3Q1?u_hA5PElhugqq*TFQ%~Jm` z0`pVBNk#Whz>KttT`B3_$>g@5%AlL6Ovdkp-iF=QRQ513>~_^JUNf4;afUNePjyC?LS-srgeZKJ1spP8V_Frisk?h4`Xcb6l3=Us)buR zyp8H%G`K*6anClE8111}!5*zL=_T4HRCL=4bn9r7Zsqpp$~GT`oxHCCOXUE=w>lb` zR->Z5$}!am2UQ>X83H!le{BpV%X4W%YsD}(j+N2sBmkx1Jr2z-oDCD6oXAj8dN!4# zmEydgfv0VfhXem^q%b?FS38sOdT(rEgeHoie*Os#TD<3Ag9q9W}Ptx}up~|O%+p;9R>LW}j zak$z~Sa*%l6IUs7OaQjLSB{Q=JW4}_@(0@K5Z_GNZ< z6?1&UeSKH`{nNR50Cmx>{p<_9)-fq;1cx z)xgG`Tm+-XgX`%8i!GasS@ z0W@+?ZHaW}s0SwlkC@gTS&gDv#1ek;YE1c#;559cDn<$iN5s?2z8Z$HX?3CTu9W15 z@=XOwrJ)Xen)bNM&h1Jjb-wy93IYGAg#PI11h@ex77O7t^3p7fJQ%U~DBx@?I}g50 ztB7&=tZR6yn%`bm;Fvq#Oax8qw(qGLE99vF=6v@hz>U(G8QQq z22voD4$^FPqT?1AQM!eNZ zci`bf&YjRaoKtz&bmH=yrtb6^ayp?%ek}xp=l)JHncku_7?CckqT+G2??92^lT1sup^$5b1{vV<7J=c zBBcq8>N&N{&T@4mUklO4ki(DeK3`geZ(r*;ml|)L4~$1miMF$^)Ogi zx@j$4W~}TkMo`vq<&H1A;$!2!aa!v|;EgN4V670{a<Q{ezs9bIzC9M|P7b4=N z|EB7$@@?!qveMKN{?B4s;6w6O&-5?a#_v0820;k0K2rW3#H1FK63Ym|0_JzNWU)eC zB#O{QB4euT+FvKwZxaeW1na=NKdiNfKk<*xhtWnF2d`o5!3VR?YEw@W7}^Ax#|3$6 z17%B)X+U(>E2+raTH@NBia&|?qsRHGZ)3jdG9+I^_7|!!LlCtVlo+Pg-Qm33;stM# z+JN$k#KC|aiuJs3ktYlKzg9n^rf;Qn21Ka+XqSF_K<^>qtH(&C&+eUEgK6?GzQ5`#4yD~3JKCCTUDue}I#B#vOT+ebe5fucu4B>2wmO!`%buqSzCwN7QkOVjmvWwy4gfyuR8#704ipEGO@W ze4NX#J`|JPEMIa}wB>&1d^Y^&@ujnHuAiqX_TBR_3Qjh*Iv`#s5M)Tc{OWLr&2SMY zLctdy`{)*roi=veetj8Z?fX4Ej7hKZgVX+K(Q($Jag%Dw zXS$yqII9BMr^iKNIBv&<`jfON&56M4x>2HCN)Kq>{27gxeWv(QDeqlj@q@-3+ zsida-70|X$Os7%DM7@Q%jRy#fyWe?VqOGT`t!wapN8A<0_Q~zhr;q<%JT~=zlChDo zx$*VKK*-3}OJExeX2Pdqh}Sr*lM|DZKmGWrOe^~$H!JOXDm>*^(%*z%mmq4|9~yVd z#9@qrU!*6DvUwPM^*Q!*T_!UFgolI1o8OkE4>GCbPw<>iQ7_ZF@wIU0%bivAAu%WOH#FSdJWgbK$)%DV)K|zDBQBp0yCrO%UQW zS9rlBB{YsergS9_O(1Q>cav+JzLY03`<;{@Rwp5UE!AP-`H>{h{rz3M*PDi$Cg1;* zdQ@TSEC4a8P+6jx%1YA{3nK*c&1Tlhw} zgs$p<{GeEX!qbW5iu`$bd*cv@@EIvE)slw8B|U$%%=NK}$F_gP?g6uGufaDGLcg)I zqvyqNfw*s6Etc%t^&DL>kiJ{O>Ty+NsdP=IlYbSEX!)DjL*EO||LB?Q&~q%$4i?I6 z-x=g(3vK)Unr?5?v!*;DRQ&Gc?Yup@roi%pd~%VYaWIb2Qha&M%Jud zMmI!wvIiG)gqu{;NKnO{#ZfBLz@=p7pjSUV(8@tA2dT!z?`P74Dimi0i80;0OO07r zO;KiY!kAd6P2gyl!hx_tuDl(7T+&3{h<|*6m-V^qvc=o8@i+{7lLGn*Y(Y&gk4Qou zxwYnKBZoe_tMMxDN%M+^d0kY4CVnng8F*92H}^9@ zK!!~LEvssV<%R@fG3J|Z%nyo7NAON^45KU(ceuJcI2nF$K78GkkEZYFCH}xZm>B#1 zBTQqPOuuR+#u7M|y=`;p{1_Fx>G9=e|EMRZNMjqUG7)Ik{np-uJ7tw}g8-mnzglU- zLn@!|H{TpNM-yLeu#N(zh%);0P$u-%GJ#Kj3qykS#V7Q$V1OLX;LgyJn(VI~a6Vp5 zsFQS!uCsf@H|Hxc_hEZsIloCOV{rq3cZ8$)fx3cB`9h>eZM(&ek-gcp5(z&Ev%yiz zkqIfyR@~nsX9VT!wGS{FQ^>IAP^+^fx^C@^DT$9DiL|%he-Se$;=w@dTmyqet)2yj z2+6!!8dB^$pckbfafuiFSHz?!NcVs_Bng@mdp3>0(;FSnEK~PS%%&0(AYXpiTuekZ zFVG>vTJ||E&8&n_U%dQGB-&@!Rwsr^F-sAWJew&21FeqX$Ki^v+-GD_kLa8Qu0H_r zA{cmN{v_#VIm<#00@hLOXZzQdE8j$}lcdk~v&1}{$2()SNdx-=v3^F4%Gb)6K~++5 zr1+boNj)r#s^Hs2t;SEj2|SoA5|ciZem>0dje3=Ap3KDxo(k2) zuZwXnTnM#hP+M^nYrBREmp6pmmxch`qO<&K z>fyuiHa6HOH`wUf=#*}8bmQnoy3x^%14e_4PU!}fE>Y_!tBW<+Z^id^$37-94Du=peMs!u?8)B7!>O2b z6T1(-kcMr%e3@YVK;r;ul!ff!pw&fVGRb5MzQH*co`<4sOAGwaX}Ix zlh4|wg;ep$&26+u%Qkt^)Up`q>s7znpb*(pfWMP1&dXo!YLB)VDZNYePkG*X&5tEY z?U0p`FVkfh_2^F2;`wA7DKY=UAV+88Vd0L#CtwejM29ijFvBR7`yx1+ViB>?ma zwVD{+=~Lyk>iZI#+j-d}mjz|^mXZh3-No{03O85B?9^ww^o?hHue1`cvtCUCKJdpn zXTUd3-NVG~H*?t0GK#Qu!-Y53nks(PM`xNf%vf^CrTm@4J^0zR6DiX8kgDPi$k4|8 z2!QU(vFU|eVqbhDT2Yf5pS^=0DzfuXICC)Gy6C-o`|s}hKbENLz~j5mQ~A8nX@TTO zG%z0gY`qW8v9yIetT;2e?M&;&F>cgf8?h*(7mGI2EBr2wKEhL54vyU|3{&N!RG;i~ zRk06dDwFG3{p8%LoPQJ&W%MsaZyJsR6dRl3jnvPHm2-jV@O0qxaJpsYyPsu7>C`kH$PxO_p2C4Wr>>GUvuf7`8WJ9088{7Oy}kX z)T`bXU0A$-TG9cUX|s9eX1<#^`C+GIQIny<FcC~;rmR9KaX3{zH*Jtetkm;)7SN@f^%X8F-G>H#sn5HCGl_@BM z%JF9}4ql|yyMO_n0r3=9<6lk}Ce?07rba0?W=G2t!t2!#^=e0zT9Nwih82`X5@8}0 z7^tp1I0&Pq`6Eh0mb<^xKuPe13LlS_I`YYR@HUb`a4LdjBjlEp&aFOMK4*v)-Xkpx zT(fe*CeYd`Dn8tn zk8qc_Vu&EDdw(Orh`JHH2@zF4wQqVPiY*bc-@A$}x&0wTDi$Wzo<CDT)hHt6Snb|^eJB*Tr{|;Nvt>eZ!`^$HB6ygp9`A&8C zJ`~|Tr`*mDbpBDxvf*{_d${RplNx0T*t%Vk9B)Ib8^Fe-tCt6eA|pih4JL|Y8oMri z>_?<-yQCYYKvCZDM&D&5Ru~(4gd~0nJG%xu@&`*>+Xqc^x7LOLT(kAJzy4%Jno5}ao;_h*Qi`3>26}sB6vV{fv0tGn7T8)84K6~kQcii zZf!;%av0{)l-U$IWgT%5NQ55mYL6AwKDDf2!^D&7C-?Q9;A)9Vmu<5M+}5FU|Y zT+j6^A*Jff9R>6E%=LTZ;gHjrk_5HKpC**;GW2@F%Ic#;Tq(*>X`?+L4R~51mH%(7 zK%?L_SC~KQ*#0h58fXfzM8q5F<|yfbu85sVOpZ1sGNO&qJjakW=ncM|%k=hCiV2O3 z#lF0E5p>}8fPbCr8!7jg3u4#LaUa%VC!le(RkvrLiZO03Tyg*mfSo4kwhd1f9bfFv zaP=SS0T96}KIL`$Xer|=^@5KBpMlyy(?v6C2+ zj{J4)`m`#~hTktmq>{U4?P`kVcT4jR=7-IsHa+tnA4qcADPLh8DjU%9ABjHs9-_M# zkG#-3i8RDB-rEXjDy;UQGrxEOy=5wYrl+kaE-%>1YsSZ>VkR$mN{?gKg#8tV5H?@g zRUWTXozbgvJe+UrgIUq?DPydx9J_C2dm}r=C%QjPRawW)Ot_Q(GBuM`@X>_pP=4Wj zh=Vg@Q6m+#+k~yg3QWx=`T<1Sb-Ac$%7In?nm#1)$$E54ovQn3QLXob*Cn-s)~I}2 z6i9<V*$!8 zQ-ytd8h7G#lX}t_l9C0dyfZtZPGQk_aHhAqCeMKfISx~@RGE3?6wpumx4mjPPJJ-i z7f({KQ^|X9&Bp&my6;WCpq_%1rvj>=G}MP?x3i;)hVF!{A}+~(($5bhmkx8p2TR4` z;(suhOBbfT-O96zmwA}_;c$sRBPcBxz_DFrC0#8gOr7U;X)8zI|N2|eU^q+>mLK-9 zTHnkjPQC^$=VTV-Y1v<6cu`Y?ca^p?peSj3hje|~shK%y^c}4UZ?!EuDp>Gd)8x_(XHb(u&n#OXGtbc&=!Ks61w+bPRBqdy0hyf~x`aRxxQANCwc{)lRf%xQe3sGbr? z3G(77@@4%oQTofHslB90N2BaRc-g1*xTRllPlfT%(^#CI^o%v%o7imTPU^YG^|^^bYlRiMUIO!mR4 zq^9WFm6F<=6jeTHt2kDVo78n9o&)-9s#@v7HSc{Fdy3gE>WqCmRlQ+foO9%Auk{IB zdsvhc*qkHCNgZd>{pkIW?EKOuYqPQO zyt{`{K4X&gZpn|u6`Qbh&C~+p>C24L$v7ohCK1qYR9t_ zlrax9za}tFGfbSdtM*6YnJX6u;(3O4p3G3jWSIKZSXIx#s3ISL}m1bG4p9`E^7?9q%rn$oFJNiyWYuspl}RPez@WXVEA-2 z@+5KPe26PDVh$}cKqst~wT*PINpsm}WD|lK=}7nc`U^3we(`Jnf}R#1mq}9P3J`I1 zrfooGI;ccEtdx|ut+CR^%lA2(ptX2u(sT9nmC8bF9XpGx(%1dAJc6_u#bSCIhnBHv zCXlCe51o0Vh&5kJ`E3OjyZ(mse7>}mI{9+e2(AK9WYJYbk)g44)B&-d_*uqS zZ#ie&+rTur+c!<6HZgCBY0zS|{KvQ71Mr`)hJVYB1F|j~vS=lNLR#1 zvXU+JgJ5pp!?BmD2CWTBG_BbKnwEi+`v0z}ql3I%Fcnz=rQcU_o^H~?HkKqM+%Mmaf9ftzyYu| zJq}MuS+|{B#J;AFdBAT$_E5?t&P0+EvzD6YX#&qYQ+oBcGi*(4tsHm-a6WTEHnmo) zkuB#%6snk+fgik24ID437g-vQO|qq<;Uc=z8(LA=-# zS-TYM770F0k`hW}U_JdfFL#@F&g$p1)*g>-U(?%kSxOw*#zF}J>@Lz=vm9EYQxC&{?Dd>Y{L>BxhmV75*p;rcm(PH>1K9=Oow za;2ps{Gb7o-hTae_nl{RAzRac>225~%jNjZ*KfZxpL`i|zN<65lp8;Ol5*$6f6mTx zU&(iukyy@?I4{gce9s1c2c-e5l6ByCpjzKn)~S-pB3L%Ma^_&1`AM}=p!UYe@xoeA zp?8Pd@8lY@b3v)8?}*@Xs;k5nl8}@PC#Jzs$(gA8*_jzB3Ay=M`8+)E(sCY1X_a4T zbzMVaQ*(L#{fwN)?T`6TU3|TL5(9h#16C4NR{sxmCq%W4jd|77n6Dz;B_ZJdFKq=) z9pvOLHMcakcQm#3`krXYA6<#fKa5>K%$25Uy5-lc+~BtxZe)>}$I-CXvgRDzp`vJI#x+ z>s!Qt{EKP2RTF0+)R|vq@*Hl{fldz0`RoUAZ~x8Sx2I#?8)U-l8{h=Za8gyAoq2j3 z*PVLDZAX>niY@DeVvia4K_G8%on`s-V2@uaGxL#iyUU~oRd0tPIqP-rm)Fm{<~J^f z2_uPnlX-XX&Z9)adytVNSzR5Ne(y2jQQT4c3jjoqR37->&;X2TB8yko#9onUN2Y!H z_OIyk(X+uFnJUSuY+^<$%EHw5w}Wn#8hV?AW%kdMN@j5-9L@+66;nr8Sd0p^A-33_ zNoKz`Q>X|!89M4EwUodhmgf$lhSnCF%@~TWUezlF{u?ManXn|JxVJDQgQTpcorkeR zNSlk^V3IcH$Em?Q1QhGdW`%3Vy$=dojV_jpvNwc^?e0E>&`RpUHMQZvJhdR1^KD*Z zIYkb*I#RCxBujC}T}q2d>z5CWN9us2naZ1SMj`_T5B`?U1wcqReADt$Bu9fblq#p5 z!uX@`O%f$O{u-~WDHwhVMl4hF7PvDQs3gG-+p>11-A!b-y7h~)h%g)dV2Db-xM*6^ z%WQTDOG2laoS$W`vC=`lWjAgTW$Te;xn^faXP9vP=F^Ehnh|=p2}x1t$y|T@2v|L> z>Q{O|^&_^Aiz*RZIU9L7it;;xb73k%2q&@l5$4;@gb@bLiqTIPZZXp_7>8CAqLJlE z7y`&PZ}mFh=VlJ~^zawTcleJtNaeHa&gxtt0;=s-_yUK%Tayod*ZPFNn{XbFkW@%H zo&C7fTOM;VF=c<}Nm@(=>;l$T2?lTc_0a;I=DmuKts=d;w*xmVngCzkcRGzoDl6+wE4)R?p3zH66I!7_`{S%EkW@B?@n&?d3X-T&i zwPYfWj*8Q0B#B)!;-v93-_}r}Y8$6E?zoa|QCx#1yS!A7uq(t?;)%f@w5>_6kIL1q^?a#*(?@gB&~D2e$uxzrLI)}R}|7>sq^V)Xx6(? ziJg1xDIW8Ywjm9gU2)hz6`PF7@X;>dsiLm;2it2wzPyzeLyh+>-S5wR=H=KuZoKAj zmah&F76!3M%UvPxIX8wWp-P?iq+bye3wbDLr?+!y>=U++egd0fb|@jgjQG@n1t$F% z@s%!Tn4cWRl;e)I@L*+es`eOO$Wy0Rk4c<}sIwl11XJgacUJ{LC-L+l(jy4ty8PDv z;&*S?{RJmEc-5yEgBYCcINBWeM?;UkvOMui_;wjXPGB0J0UdQG0~z2D1)guWf>#h? zqtZfnvM6)Pt`0IEPeAYhfK1-Nb10nfu>M6RZvW-4Fi*8i&X>_OExOI6gqCyE80U#S z+R51x`=@|p)jK-=A5IW$1Ck(cYgzXPRih}VO_B3U~JKke?&V zTad*%ZNF@C!x3Qs5sY`Lf*g$lPZ+Q%68+UQ#cA(VFGTN0GkuIY#Un>BH!%hh zK{E$V%~4a-!`1U#3$9wxq5yl12ymExHFZRLBB#H3vN9i#!f6^*k@h5YU;qt5lO|mq`g2Wg8GO)CJRnw8hV8GXb&S?4I9>V`-j zuh%DNkFwJeFii4R(+f@R{C_9iAOmqU-R4fvVByHsP9Xr1q6Lkhr0}A{aOL8XlG2hm zG>_cxzEc+8sGe|=;zIB7^%XJrG+T$XzLO6?*WpRniq+kZ5^fxY&r`LAF5W)MHx^o6 zc4TCzG5>bI6=SUN^88YZ{C8X^IRm3-wo*!U$q*W-Zh4ndahO{@S^D?I3yR`5fN%H@s5CT~;9yn%x%*cwb26e$ z)WR^!*7YWbLikRyqGQh&T6bU+pW}PBber_u);VFxggFBSG;(WZC@VZZK}FZF$IQ|m zFt+evM~3qT<0f+y{m|*QSpX`OU$=**jzBOv5y2T1u4| z8_K+eVX&`u2-DSIPS9h7#!-&|IZ~#}06#sllW}ig1ypVoPx%PoU$v)f`PCt&UIvHQ zh9q-$m52k56fYCSULdjYGgk86#m21B-tRUKV_u~n&itqGww9av7&{Iz{n-g4e`exq z8p+E4*&R&_lyY~0-QEzl>szqL`|(GHYZhPHf#0>8OmdE4Be+9FCCv!6WYJ|yH(xa0 zvJ99=!Qy~m)__O4Rn#)4^BB$L2STm!$ym*aI??iDBRU1+<#E^xOZ%S( zlI`729qoaKl5T6k*C)5tuvK6|a-!NaLI1>5!reQysY zlQ}P)L-J3f7^OnWa$~}@;n(;@&WC9^a%i=yt^_v%K>`f8MpJ5`yUR&##1#y0lJc)m zhbQ<;i32lQE-5O_WaebS>)-1blqQfea^`7$Sii8lfqN+Dc$!g3ji-|C!`t-Q1dFNR z6m_(F$x--Wf(koCF?(Ad$QbS-r4dn_HU$SuOo|{kpqVll!6QMrZK50*B2A#GXk^C{ zy*1mt#}B+iNB}gRQ+3;a!zIb_2*Px7v%X3p6?#Rv(KO+=_bAit}9zpSChi1|CuOQB7W z;<#BnW{JTrFx}@wG%-;r#Tu17%wjU>Bv)sYBLh2-=a(E{UfRdk5;jrO z-M71B1+0$6!$#=ktXYn66cLz$Hw4w`Ja2I?Vuy_3K9=6tJNTB~wGa7-e*j^CwBAf= z60|yr9vH2VC-;FOd2iemh4Nx9Fy%*w#`6m3$rG*z8h@=1&DrO3GEE27rQBXi;g7t_ zr=%!eja|+SGeV#^TovXt6z+8*Q9QY8oiw69Xf$?c65Wu3PlKlq=_DTBL36=On0PXHMI&X#~*11!3jhaot?o1I0oRs?PO3 z5tYDWb(R=Z()ge(W=cPm2uhlY`mh)KdA5C`_1o81zbAz1DdVB3|B_ffU^9|C>fdZ% zF=Fe}tRx@g6qqCtyJUo}L}Na$ypF5V|09~9hl8s|gPHa&ZA{%8eIw!io4E4bEYL~P zAyV-C_*VTW(6|b$;+<@PH@&6cCMO@x8G6$yT(k(A(nQh3d&_C>sIvGHF>@COn-AGKzzMuQSlO8Qt?yY!6_ zr3}9sm-`IDLCTGxvya<%`XZI#(H{$cV>>Ep`kaNDYIiB1q!2Y{k?Zmi?IJhbmy+c% z%^ksY{g`4MCA{Ww>xa(fp}f|vS;a_1s&)f5SKr8|&(qeqWWAuoAfCQHnjzjx!irFO zN1b+v>u7!~iw&S&P}oM{!Xlnu_n2z@@Vq2BD#$+H}uf^tu52W$=&;f_h0g!x4Y= z*M$&tD2saFVZ#B2$AY?G!zUQZ9RsRmm|n8G-TRMG4p5Pno<}{_{{17`4n$J2_T%mm zxFjPdu8QKb@bmY3kAIW7zx!17CRaXh^y^mO_?%9@|18$ z=R`T1JwFg;$o&a&qT5ML6J<&2lve;#)_Nw|YPN2-NQrh0t)#>iGbh0@RUw3SneHP> zG0#yNW}4erLSO&Z~VzF)DCkR#seI70=$3=V)mp^`R~?$dhH@mM(*z-aui-0FQRF>YDN+J&*{*WO)7iy|-+YEY+Qh68EgUUId2yM0Q7YPx4aI~4sXgMta(NG5YP6imN2=>LNS{Iri2 zTw!;xsAd@g{`x!odw?UIA7FC~kireey?VSoeGOn=c`gjN@TvGEHnO-u{`-mjk7zc# zLsj_i#U&n`o95NT;*zIU0mJVwsR#sW;z*bbDs0`u2p$R-97S=CAZL^ULO60sn$2v} zRb|Lb3!TFqL~$FZY(4AI7$FdF==e(GE>*sP3qq(DfRqyob97<)ZiTXN=t}iAQ|At%t2<#VTs5~;X3}b3-6H67ETfp$uw+t;&Fb}A-iiJKo>{M|+q<{Lk`AJ?W zp{UrE(v#$UIo}n=PLTbWkw zIEeIiz1!1!$vl*9?az$dfw6OoYabSW170jBav-uuC<98m2QTQvW8ZH|A0EBH!O4Hp zr$3|*FTp`ksCHToS(~aC4Qua^Y9kD>JM@Medbp({&5a*)dTd)j+R?Y%;?Q{?dyXff z9T)Y|cuHPFO80HRfjET&9$d6k?^boMe#)t=U947}O&y#3Oj%4g9jeBO!3K!4@0UDL zasQ}cVfuilACFd2I$P;Z>%0`2p-R##RY~pZY;8NGlrH&jym8huDY4jzgV)hBqit6$>FJjXc_) zq6841UwlE#U`<<=>33@she$bOwk``i7;7Vsd18O~rCzf=uIv-fPAR~s8$i*%Xu_cMe>#$T0EVyHD5p#I zi}~jl>>Q`cob)$45;B)!+p}3zqS#NXmK)@IP>H>NHT{Iwn_H>G+-pUevW^(|b};l$o>AL4pD9gob?r^p`}wcCB~1DS zQa`Sr!$AijdJbKEoKB}nPmUn*8}CxLuUS6gW~#hu-%4*$FkL~}KQ$Yo{(pZF|ejCOjRYu)|-ifI_`t(Sd{vDH*#@c0<)o{wB zkf*esy2G#MIU?$^{thmTX&T-Q9IG7yNQ_E2b997sMS$7&8Hl?n0(Ug$I>AR3 zmam2&8o&Pg`hD=F4kKJz-+$Zrs@R}*{)PZTV-pgINy#b6ap_m$vHKaR31B*|D@5%T z#`>2>F9_HK%cqnTiLTy6JV;qXJ(k32l@zkG&&gSfdlIoV5J{Kk381v<+4 z_Mar|%&~<*Us&4MjBFKyxYfi?7_{~C5ZdW&@X@6tT?QW33Ki?^$xG%$UULbs{wOsf zn?uPiO<$%V3$3L_!n=$m(=ecH>;l#KXmY5voEVI$m-nX1)l*0;plZTsj@8Y&mn}Vn z)fQW{ERkH`zZ%TV6eQOgDmIgIXJR(XzF=!T|0`U;Kc(-n!GLSeZ_d}`fSsh^Yoeah z5gxcg{`lOYz0JY5k4TwmJsy)hfw+Vg2W3w#wf6GFHh+k?k+ zh&8vq!GQ@>R8DqgeRpK-Z2Grr2eJjo8GszFy5H$+H=^VI!Umq4e?!MhQ-1D?89Iwu zIe$n>s@JVN?s}I$f5UyeoI90}&vxov*zKhKJ>D8j`HNfY5+uN4VWLIrk_cD(=RT1r zibSj!p*-Eux~!h#E*@-_R<=fLQ9|QJ+E)!PoIL=UXRe~}$*qMVzt2I*1X{SJ3tOdZ z8S@>jvzV#I5{qx|(eCIVjRr@Oum<#|^ihZC5(vA0|BlX;xlU)eC>CDys+f3`Y{&;r z1tjq=`b%dCJaAv0mztK8Oyqn7E;mLz&(;}N*FnnoBsDZxlOEP1)1 zY{|l4fwk_4kR?BeIIZ_?g1|xa-guX5O12!f9;#6fH0jxY`lJ1rT{v7O^Gy45CRli4 za^Mcx;vvko+!3al$l`)uH91$%yfrq#G!%36<<`mf-87E1m!@Wt0c9@@6{#<5?x~|b zfHdh$bTqUc&ilgnm>*_YX=g^12)3yO*I zP~a$J$~Kr+i;9^3(zY*w?xxN!^Vsc3=9eot1^M-sZ@5UOf|p;vJLMc3AM&hV>rn`^ zygYf-oCInci2jyuEd-Xnm!F zL&8XZeTtROJ*E95UnfI>)T&kU0;NMAW@P5{3>r@+-+eG(edym#!GLi<2+a%pNocBh zSd5!LBP|lN&!%M_57n)S5nla#{DsyRjpiYbAmt*^9xWDKuRf|87EiZXd5KDJ#OrH1 zkFn5p7PVz&NN}@gG6_j@)?Co(K%xzSRXvogMxUe%yVl;SS>!c_e9|)7oH^2?Vy)rP z_Tw_0yTXLAT%(7Iop(~l@79lX{iPE750mk1bhM!JJ5Jp5B15UEL9%t`k;`G^#@M4% zbss4m)mwiS;ce|wb9!E2%*y8Fw>ah@>C!-iSZfxKQ`qDdi-yI!b^-*B2ZA@2?$6mS zLQW%e!I=Okq3u2o)fJVG&sfLM&u&FXo@)@h#M$Y#5jE+-TW>t+XJSY;5^nl7sq4-?eWrXcat~9vO>LI?4ISqFZ<*DXkADFuUzr9Cxa# z?pabql81@1yTZ5j3wBMH#>^{hMg(ut0pg@YH&Fu4;A>=0Qvv+T+WbJZL;lBRpMonI z_(*IrbQnNY)NMTcayXu`A824E;uvW+Q3Q3G;c^1#(OF#K_PL0b*7j)@B7FsEFL|IV zn+Fhm1->xUHVv15VfUM}iqd_dAlVK+<2HC*(KMgl-tQR!53PZJ1U}4IR1tlT!Q({# zo)kZ{)j>j&d}VSH_8-Hp9Wk95n8wH75nVSX5QZ9D_K>nxrA~b2k$s=l3`Vd7u_(z% zOEq-42N?O!E+0uR3(3db?PjGDFicc?YYKr@0jVs8;}@fTf(@XfQ%!J)2*(^rZezpv zFtOuX{==3`|2hXEe|{O+Ly^W&?pe!6w{c6^cW(+CfU`~m?l6)}@u%DmVusZf zO=o45Tq!O&Cd{C^?FnMA@CTm0-fk?X{P+ERYK~pUHM)>XotYQ;HSL{(vaD}7l-;{4 zj^7I{$IK*V$}V%>M-vQLG{Nss>zg$cAO@l(GrsD{b=I};6h}AKcl}+voY!N|$|qH& zmT*Y|yiw^4IvU|uoaw)e5pP6GCa&X*&oHp%#3o>;Z;(r>KaiIhyTnM1xLS1MtG zWI9?jjSSbYU>Y6)*1+Lbr`hT2d_I<34A|=%cj_G#6PPJG!9{DItii3OdT&MxV4%7{ z9vOzx?luOou+w9rnZiRtBj9dfOA>5LX%2o@5RUy0>!%R+P;>w%=tZj_lSAZ+57b zO4#3JhV|UKv)uQ5;^UKc5&2Z4cAm-PEwj_ZT(-2|gA!ASZzX%WPO03V^snJs^7z{iRHyRxqd$4JJdFS%oIBaeGg(ZYchX`INq#|jYjZ;` z7yG%WguB4BkGhj#+CvN@YnnBxJlrstF!@yYga%mt~vr|GBnl*4UzaQwqXSVH^1uevUO zOl?LwaNl#wRi1l-CAz$q4)oF( zi4#M{_jp!~yPN!AelthKAj6C^f+z;OKfw!9hz~Es8_N+ASKJz9zMkVIm}7uiq1q4GV7PYhVXzt( zw8QJ##W+G%cU$Tx_4se#OnQrB(Oy%W|hy=|9J0a8}=x?0u5 z>y_U%AE&Yej9mX6sIN(~+Mv9*pplp?C6}NOotZDP5BFVQf;-7_Hm$KTO9I3Rpd(_8 z8#s33h-zU5fEH(V#t=DC`wXf>gSEm!XH=Lq;7NB=;?ML5DdnD%_NR{ z@-W)=cq;Sj(8TWd*|t^wa&RD(GtdbnuqNapmI9UVx^&CK1j~8_%QI7-6KRX8gkJ7Z zd+Px$ghGVeq-`UF+yQQA9XG{r7#)hv)SBoKA?)3hj9L|TV*r!~0uaZ1Zn`OV<+vi6 zBweeRZ&QZDf{VZ4xrq@`vO?l1#i_d6(dg0CA3%rlx_c<|vYoW zO<4H@rQ-HeWWR6v|BS3WVh#vpvHu*N9b9l3kafZdOw+ar(bhT9_=zsB8Rz;Z9hLIy z-isa*s1tma9EfrjJ2(I-6nHwya;l%@Siy6dmhU2pFzid(>cf5?dX(Nz<+NV%7I~ zE^z)Lj>&>4XKJN$qUljEU6qNjj*yQJScb<{+7o1CE$Cu%tB~QAWq2}Xhe#gfB z-E@&6Jj}7mf5FO!#xx}Y8lGuuPiQKJQ7}QNE!&Io(~hKI{o%F!@YeMV1uZG{ z3aJVjF*3?EV+4-s(o$$y&9vBK{Yy=6(?q&-E8D8{--6eb_tQ0ycdEuw^-~h#6IGg$ zr2OCE?klBQ>XB(V*((BRbNW8+d)&H9{(6j+t3bV>Nx$Ybj!Lmw|iv}M=UOD zM+y2~-|yfeW}}#{uUB`Y5&YWA|CALjQzF}X&^UM4_7kQ&YugrfRQViQrHQ!*nbo6K zGM|=Ba0_mClOy37eQ6`3uSLq{1y;+o8^Sff%*{3ND^l2F4z3bMD^gAA4#tYCC}PJ7 zT+hAgb|jiH3<}Cd+G*i3#w#J6tUJ+&bw}M=&cbf|^I7rJYEGGhj3UoWV07I-jPLw3 z1ihD!v=SJ^OF#DXBa$wY{4mscHEJ>nq2KF>_2dGLjifOi0PQvqNdnmxK^ZA~ZYTn% z$*$~Gf|0v`^X_`uBqB~QlpY%zAu6~k*^4bQ378J8Msoy%!Ge-;KlSN@MsDV$aZ#W3 zlkDZ7qvF9`Wwbfm+0=n(1`K?Zvr;j=N5mLYC$6NCBaOJttTVq-pPqa*nU1A=0iIT*g4y0TxQkc$k&u}VaZDwNiSX{Is*p+~0dFkA0};}D{rcb|eMt>b3B z!4&m1{0;TVzgB=wJB1ek=Q{{&Cihgqiy~F%qMoP)iGaK^Y+3_NlX%$Pu>ykk zi>7oQ{~4>Iebs-TW+21A_>1$MmNf1H-R37nW2JtBX8h^dN(p59w2-jDOz#Nk9Nx2o zPD%C4jz^zn+B1}D8J|9mWE`C3GVAoN_-=kiu8KLaiX8*Ijfg&M- z`|h+U6(H`L-Q(YX8c*iu!BP2t)0sWJ+JG(DY58#<8x78K@{3*%KT(bPxYkY^9o?sp zqdRQP$c~XfP+8y+Y#Mim$NfZ36=!x0pHV3?SaV9~bG}7^fgO1l9da`M9sIMMaOOA# zk;e*w`hPYo#Hw$fx=83&^K_mM8FxKzY0U3Kf;q?X4?;}$KV|KH@Eu#BqQC-eKI8DE zmpy^A^&y==lV8M#l9L{y?)oU*0lR&|x@KDRBsY2J#b9dK0RUzF& z;cBU8mFg5<{>}pt#dprRn>6U}^VNMsq;~T1ymN&pqVM!=@WdqINHYe%zaOJIyEt#EH ztNTV3UDY~^Q_pr)*H?67XTKD!j_|FYv~9#!-h0So)Dh)bTkiiOBU@H`QfOEle97yq zneCgyt*^wro4Z1v`D7^O-g0YZ^Z{vB_9>$edex(YC)f$C0eM@tB&N~HB8B0WS>Sf$ z?3KN}47^fKmY_g^H*2_mq1zyOU3~ZNCg$OP^b=F<{Rd zgY`QdnsJ9hpYr#Imr!7M(g(wmXH5!@6wNkYhH7vu*%kDIp8nQvbKj=Wy!3wdL^H!` z`}v1C`pkB!!J*S|qhAMO=j^_^Jiei0nF)2BE9rnW5oz*6U2?JRRpiJ-2FY%-zRWUd zS_*wLw6M9g@Ooiu>!0u8o2-eBqHQq|SptOt6R=Kuncs2w=hcds@o9zDyNgUYxOsL- zLwQUC{$Ey`D+M`(rMy>}RHeIplEt`G5Is1xp$VtjcrAq)m12%Wyy!6G2~b~f$6pI) zWq7~5jtb-j1hVrgHlrLrfe`wzY!jCbh1H6)va#gvUGn%(sacFP=L}D?PLaAV%$GF! z>Ey8^^NY&+>j=0LoXT*fPUqjM?;o4ZDxl8s%R6kVp-R-jhO1TqmsDth$*ca*;n6-* zeQ(lske)N8TZLez>w(3Bz!C3(?dIAXp0Z*4FmMa1OIe}4_F2{Ky&%5-g=*NH#`jke zy&@H#?hWRC-;GT1y9y)sWOrxjgKCS0(5v-bf~Sc4&loBz(7^;W%*OG7qhe9hpf--8 zF7j?O>qT~ecoJizz(#8$v+qM?d4ElwgB`c}3O6SPNaN z5;^(w1Qa&}lBmVUrzw$ARHJUuU67kAzq*#4ZIzOm%J)WVO%;zcXI-F9y_sy-bW zeJPB#a_urX7?Ag~Zg&i^da4oPYq8(fPqui?F3r4`EYzFnZ_{xwUc+cFtVME zSF@Z%D0P%hQ>zA;a>rN@rDuiJy(wu>9o-FS*Zq6F67g2! zCGREHkO`@haINqMH{SALV3l1)ymSJE8-OO>`@@N;sCRIN#iqJa-o>bzp1myTn$@mOo^G1Culj;0QJftWu1jww&D+ktg>D=#V3K0$`(uMqRJa^ zYX66Ngf!rI=rBxB3qIl~?^%7xe1$dS7r-Qn^=`Ru$F4vXa~;p$+%8tCX%w)4#$Oqi zV7j-Qi@rqI3OqtdO$9W7T__Nr>p%|v4>pt21rnnUXA#d}F6q}lUWgHCw(=QEil(5N zMjlqy%v)?P^{wY8H{;j0Hu5YhW&*f{R)~qb z6H1sf=DeF2;r-A0T%J#IdtN&g7pQ*a3Z6f$d)4A|i#|Dwi8$ZHk?magqUN_KgY0Mg9qjR8q@wPg1t-uR4WL3RP6NU`3aLXSgxqZj^jyv;l29w39a_Ju>a;EFqFqF0K;PJi#E6KPODfRB z4BXE}s?wS|;&P}hGa-*#B{M{oL)NUrmO(Rt5}5mcIQHl%nZest6!gK@#;vB5IXP?H z>JTr&Gl5UFHW2Iy#q+DKR;eECFb`2h(42QysYpRX#FP)+U9&y5KZtndZdPPdf+xHE zzK%~5_La(IeptG?FfU^d&~m;`C*c~;q_kJ`{pq^1BoMB#z)=+IG0RlZnUdf1D{q#)QU#ce29jx# z^78w<|HJdSpZh+q^E!@rX5Q~pv=lab45NXwSJ`b&PBV|B=D^RVSRM7sTX28C5U7{? zhyrqc%+($KoIU$3!mBMOf)74LFU@X1fL`62GXub;u4|lBR2kWnVtMAGslEGf#(5vP zbS$Fl{zseA^b#3cuxU?XFM`z;R;Iit*4QBUR3;{7c%5vEQS=OTlmdmGZ z^9~(nTELLJbt!{;s?)s{Sz864Vm@-1IJ%!jm}$ktXbUQFW<)=&tp{7DGKPf|0%HS}Xu+I;2ouRvqX)N2q?L)jk^T1f;#TJx3)K^tga31bsQMX= zFb5(P1k$Lv`Bhgv=$Q-jgpq~U*9ZpsN8iCWRMoWDD5h_@t>C@2f2loV z+}vkLc=PVs%*&}(sVs0Rn#`bw zMN;=pKj%fFCuMlXZ-Owk91>E0JX{*-?TgH1?ANE2>h1iN{6a8tStPP%z)|` zP+yx%^hERTR-?MIflq~=x$-E&W-`V`ET`pP<^G>VY^q=nWf2Aw}tpWi#FAUe4Z zdCS7*eKYwcrJ9IgIzH>k;Okw!tLHr`i(|a>=iIin=nVdR4z5DE=?~!Rb3Up{>8>T8 zS}b1l6LEqGpPl0G2Mixhj^#&C3OoBeZO(T6?UIwje8yQseBYU&8!RKDev}qi${Ih~ zd!b^t3|+oG)2Sb;xoi(BR9%f!3dGB+5iovZ0PJ)KjH4S~aS-c{9%8>EpD8uGkPJ{{ zN+8IZMT@+%2E$^?{EnpE--tz#1KGqPdsIty6njKA~CBZK7-9)O?99 zCvgKqq$dD3CKtSn5s@S|(U0F5@1*ShRf`-9KO0@-Axw~5m}3&3S&JQJ1`*Q?5ZGX62qGt0<6FCR;N#|e zC(OydWk+O6hC}ckIgmfe&f0|qGG>#hOMwR#aXQ`P1gr6qi_m76rnf)$(IIBKQ_uiq9d(dX=5eH8Hj)I-$oRnUE{&w;GVSG^yI`4$+)|$jUdbgQ$KSp(KHY6JtD* ze)5-u!l5ucIm4u_X#D0Mh?ef8lwSA34VAX32e3*0fsF^C061Y;@<6CpqpxhlDKS!& zlpRg1^F4CDCeV|H@a`~WLn=P^8ro!-TIA2%6krGCc&fz*!u`x~gMclAXfum`JrK$pCJuTUTP7HZ}a)?75xxyIt?MtL;Vgx-5 zZ%Z?&t>|%BTE7WXUykx%b%^w)EmH@{HsCHhv=Z_m;rYAiDD66E1&T=W$}VKLJLq!me@pUA}3&fD4-D)z3O7x?-3GQW9r0( z9xH&PV4^~#Q;%b0HQPyKm!F)ffxGsgzYVz;>*)2}p4S3=QYy34D(ULWp01(9X(V25 z1~EBO*+sxh!oirI(mE_K+F{>2>wl*&@s91@h|}Mo(owBkh<4`2Hdtds(WSm>vL+V(UymsL$wJUjMf0R#b_+Xj>AkqY_DuRAi|sAM8tOGqUg znpfB-_jQ=neW7cTMk=6f;R>0x__;~fofzJS+9tfSsUv;aCPc)#yu@{};;zOR7YNA9 zH`qxF;$d9XWsF|H z7OynEF9F93RA)860u^%msm+ypGG5i>(bP&^0pwUMa>KAM^J`y^)Vd9YTkQ*^Y1K6* zsAZX2<{ksthVUAu?+R(zWU#%3z(uy95YVEpNgJxV&XY)E2VYkLE!EZQY-T+h62DT~ z;Z9f0cK-0@mWPQmFB2AguwfI8d)l%@H&G>~t%l#cqhL&=@6&Kd4NUv{FzbpxG!_gbW%l;SD5s=tBsp&eKJ8QM?CwMz3n-IolZL5ru%DX}HJ5-;9>eTz7s09mi8f8W_ilUQT$WZT)5pa_%#C z(q8Z?2PKv)?=xoCbLF-Hk}O%sj!X-UZ4G1Ih)x;sZOZ*uw4hf$D-%XG;zACOYvA=@{>W;!u?WGoP5oZv zexs(?bTNIllFCQHqs02SbP-zaiyHkoYG%l+=`R68#aU4BiO$T6n$D}4HYi*3a@ORC z59FSYy0oKA!i6zaM4PS?gCP$JnZ_J&-EcM%=7|N@(y4t+<*%^WRk?#K z=WFbq6aUS7W?HS$6FBfkWj3fu>3l0KF#~f>qWcM{YfU?sP&76I8B1Yf>SkH;W`Rt<{u~i$k>@n=BYu{Zcs1_L`^ikc`~@D(m^&}SJ=bSXD%pRH zkx9`$@?o#I9YA@pDLcCIwgMV4m5+;%x+|g22k#H9QfQzkPd+T3xyo?Ify2q3gD^po z37pLzNo0dDzQrwlSMB&Yn424QX{_g{OV21{#*F80)B!VbExmUybNW-^-T);Zb77#FK$2i)63V!PFTVs7s zY;9cgbv^fPFwgL+X6!o%*%>}##f%os0Aq~&Sy)rxX9=^Lqe)m(wgX4*634mC<8w?s zKJ%Qf_UnlDu|3u8s==|E)VVsQFzkX}}aMV^e-zaQE)8zu?d>%tT7< zL-@%jLRKkabC`%8Qmp9_zbHVeINv1FGi3ttP_?UeeYL1(Kl=Ut*%v|tCcNH_LZ)(} zoG2oZZr?UTE%*C(7OA`5{8ZB8~PAX1(bW^-!1n9kG>R9vntQs-DSN!2e zVDIh4UoXh7*SY*M*}|g8{{Zjr(snejy-z3Lvydg)yG}Nc;997V0Zx&5OeqEn zC&hfVEK$`gwqQ0)ifB+%)KlY9L=e0>uxs^HF9pW``2&PrJ$m;_+wkgx;%BXX7hCEh zEr}zn1Q1$$795MJs)|Gse~N^phK586zoev@hFOYodRB1~T1`z! zDP2-IMJ<3o-7XzQ3sMDyAQBOZ#e7*eo`R3;8_Q%g(Kfe9_@88}3LlIaX0?8O5 zmlX@e!|{OcS}%B7)mT7aE9cb&KU+W`P{`(TUnMpzgCi=%@cMI3rBSwb538~+S69(S zrA+c|qubkJ*)Sn?V=R{*LZxME?^f%@3>zw1^~xVt&!(1>>#9>P(J-g2k>sKvT8UWK z(2Z$K2d_`eYWc|E6G_w&79u}s9@Yhk@b6Q!f>)J<}<;*;E1kdw?gb?9#QU z|4GuQPZW)92wP>|L?Gxtg$~(|rqHdwdh6Q~CHLd&wp0Sm+fwZ?R1CiO z-jEU@(_U~iqPxnqz_z4uVjRxLyoAs3U?OykI=xYS+%#j4hmOl^afF!Q5hbiL-HB3o z0@26nNGZHP;9|)+E(kD?PTd9IRTmO5c<)w@aC$g4#AP z`k7NaUE-teS#@=?a13L+RibW|KiGUOu+6zmnFs$%XV(?w%I02`<9a_PRzp%f?ihFV zqii*b+wmFvE;#~ZNn>C3o8aX$P%QGNCkNv3Tmpg)976Vjh=Sb2f)9xjn8QWzrkL@* zj-ST+-=g`DDp13gQ39^H0qg?FU1^@(Tk#0D@6j8nKg1Vd%z9-t2(?g~a%u}qOgxGQ zjzw_q1|6iDZ$TJR0(EZLQh5|3sHhq{me~bbA@?$9FNnv_*RhNTxg2_kKA&v+;qRKx zUnJWSI3&1&+)oJigW(sy^b+GHR|V~4U%2CHr& zRrh=6EQ!ABjuiuq-n)MWo$RqD&-cWE|NNYaqA=)&CF_pdWvY>EH7i2Ky-s1te9o!{ zcrxDPqc(8PWD^Rad`W%JKSqF&M+@-VX!RDdtbCV9dx%S-Y7X;Z=9+v8)TDHd60$DY zmB<6_>76I?of?IA>Zx+dV#z#I2)BBWP>n!5n%o}Mtrr-)K_vhg3?NDdsgZuez~HYa zS`r5nWPVFLrC@d2R#$h5g7y`xmvXVzdrX4KH;2LEL(hS#p2iv%DtOslz($XFlyTAa z+-sBef>;fdoFNMLMP=Y@-znn~r36t1DDwLc#c_a0lWOfNs01_ABtXYWb{tYY3Ob@@ zmm`vkr|gfwb-s^iV+7#c4>);2PUe=_N5&$YS}5LtVC4@|?#Bt^t>c1e2{Cz7YSo;f zNO%(~_>JP-Df@EWg5F4amiY0i?5oX0ny^A!g9K%eKmEAD?JTq>&>Y8=vd1wEd|%!t zouMwKr*s0wNT1Ye2TeW|lU4#!jTdR=wX!WgQ%Q^Y+w2 zj0*PP!l4xw3}bUeXJx4mb4z>3*JUGwd_+$v6@ZQD2QRnoyCJe*3u!;JOrTnkGRxYaU|P zAyaoC!C-8&wMwqrDu$5fdi-7waQaUZ{1wG2CH%5^w&w0rH(@AsG9_I$mv&zrg&^j8#TA?%Ka z*dr2g%x5zED~>CdK7=h!#a+m@MjNJ-R{s5SfIH)bM|1^;V&*Szes2vBdF30^OiX@L zj>ZtDu=3d=MqD`fURm>Y+x5=WY7l->^dsZv6(1L(+Uu;(*lH!`8M0&HKpp6G-F;TC zZp?}%Hlb}^^$;N3r50_)$q0y?`;#n)9=5bKwGUZvmEqNiyK>9@%{{h!RG*pi$&sGV z-4$v@wPcniFc#ym7SDz-0+aYggMG1N&w{<+HTS@z(O-#-tc0W!)f@gP79-R%Zi>o# z8%Pt3TbxAYTk8H!AXS2=h}bY$dMSoQCH&>|$|Q)Z1&_d&aJ7cC5-Z+xo`0MIWQJkE zb{82@n9b0UdmD{%X&D(3kVH7eXSeNLz}a@<;O3IbeM2BzugPn@8HdY{!*Hx(S^My( zqI<}%bVZJN5LrKG+006DhT!2x(dW&%ZMHORrRfa5GPvRweAQ#$|LEVj^r=N%T%?dM z@(O#=fgZFODg*DFE0(2eh?nF0O~iX3oTdxZdh5015q}R^PA+lsB-banpUl8bJAe8l z4C(U`p~Iq4RWISI#?Z^)&kZ7<7kjzm-bxRPE37vb+Gl1|{Z+oS58GzUJ&O3i!8>;C z+A-xw?abCb(_4AXu~2lZE}qzLN6;QUo0#zP*Y3nDjG|C1WViODcAlNB!R$$Z>Fm+v z0x5gL`x&@(hA^_EA{{VtIssq;$hQrLVATws9IoIMRjTP81-b7nmjtsnJ&6-r zOj_?)zXH@9n|KJv8L{A%V&Kf_65n4)c9gIEJ!u-XurWY^Zl&*nZZ09-&=NkdOT`62 z&ix8V3&FI&yfvT%D*QN}bEj^%tLJJpStN2tFW$XAzj5T&#nrMOlNi#kHtd2HcHG%b zkm9sjN>UwYhWY(u6aoodVn6(NO%VLfIDN_2Z<+Rh=)_SBOZvc!=eLRnYX)P6nLo)U zW|G~%@Bl;Z=ii&>4_z~S4W}{(LBE_p&QGamb0}oX(04WH&KPCWE28~NdrmF{J{9?C zi-LfLSyd~iQ-+|9>qBWSV*_dz^ALf>XcwcFgG-wZdQI@HOYw--FlK{qcEg`ZB+2?4Hu*L5ma zem5!YSw=ly&MCQO`;jX!&;d`?(C+HQ)-f|h{}})8^5c1kFVIc)wwrh`8X^re#to6o zv~cTf;>c+zWq>?qVt!`Dq+*Ft84{XUvO zb4pF5GXk6>AAUQ0_MO7zJ)66Wrl|Ig5h;QoGmRN{7LcPg-oz+F&A44MP|p`h z(d#bZE7E3?MCR9m4sH|-M5MYr&)X@u^{dzidFb9cnueXIba#gMoyOX^TTfBP4Q9l- zj>c(D$N8MaRbRvPx3a5#@MLj2USL3^Fuc%EbvIS7?)7*pI@XG=dv*YfG2U~E-H}8I zsJZBQphU2L6>g`MxQ`XWDY^VcE*X_NMDLByDR|yZBO2nvma-2wl8z+k8r%n&-?^3y|~rkS$&$b2z7IWSi? z&Jd5Rve&I;0}g6@du1c7ahft(I~D#X!hk6UzDalvw^Ret#;Fy;{Uqr-t;&5Ex?6c!rGA0eU(=g~gZa zYOU~EO}6~LIcp+IpiZGx8_=_bvt-R0DW@1bSE7~*ga8b}O>@7mz9^(mo9(T8bn}9F zKMy&obfNq-U6|({cfZ=g|A9_G790If21>Yx$9XG9=T~Qgu3|A#`236SV;85`TE?b5 zWy5bH4XpA9Dz0r_m&_~3;8{>Rh=TUUSjVrVAqk?4%;H$A{n5n<7>(Qv(h2U)VgqG6 zf44vTZBJMV(ral(gB7*3%6IT`(y93jEFDS;>)wjN+hRe`Qano!FI7*?PMSQe!iukD zz@8tKhT*vxAObJTJEqj1xsed7Fbl6h%LsB99`Rl!&Rsn67g=R_Vi|oB^&$;EER{4oG7Xcqs(|)j^m z_*1uDt9H#<)_C^856Mm~mxrHkYJ1KpQazoXA?mU|+Ot)t8K2j=6Z;nzc9lTtFBU<| zbc&-IW}m^FMHt0DL{3aH(ezcNk=OMtosxF%cD*jKG^QEfc#^6!^Gn+OzsnT0A4i2Nb) zH5~9Y2{77vhpZFT;>}ao!n6MA?9bHwiUJEl40-0es!JbQ>N{0X>r|4K;{|lIu*k)~ z&J|y|N3DBR&grz!HB_Fow%TUpRc|Ct$W&2gz`do-J3E!U+PyVhZ3gZsE5C>;`Y8|M z9+1{VCGHV%g!u)O=BKpF2$lJ~TqJt25zcF360tf=q9OmepG8xT8HcwSk=ss4FibLb2A#FN+FJtL#DR?qOKXk7;o zaL}|IQ^~}@R_j!$dFxVy#nC>{zY_RxqU9k}9a=iz#yYqdQE9DJp*>^qpdIg6ZZyx7 z#lQ9?e^vyWlJ!bm8zRTr%2E59SCFrKUy|<=#Twe#q5E8sqe0k(#;rrqYv=`vCZB=^ z%1C4sE7L#q^sTB-2TG4JQs0?I*2R2&0TP`k`@E?>o#D7B)XT485j>E==UY_Xa6Iy9 zz=3F3o_%A1?~u0?(aoY_HjQ|Yi|J0jvBjtJ>(HX;sKfm^f$nPHj~F$~zy}Nj42nhX zw3_8XU#e;B%SiF>71$p0Dod&HhQLR=)LY6#*)2rJ#^{%I)>hFvZ$X(hyTheUng6aE zdpT(H0_-5|N|)FA=QGixt^G$BJO*P)q%V+@Z?uNQ5aBrZQTRUIQ9pvubghRQejZ$N zuo8o5h_Hg_(-odF%Hsye>$>q&_*#6mSPc~_L@8!Uk6EMhBMM?)s~7vbu*dNe-)B(0 zb2hr&DYLI&^KKi@w!3|_`*n9*Vr+jvNePrpm-@cDJ~_UIGy#Y|Yv>){>Os_r=}1Uz zNQ~DQpJ}i%goxN}vAK#8jHG?!M*MJm&13Z2#F3LAjEDVgTd};b{0`hm9=U(lL-)I< z%8zJc#D%sB$F$3j_a8;U#dwqT7~7#7DlX8#8|m0iHl~g@8LZ{3yYwEn#PnkP;R|Ad zt_jmmz0BVxfP76cydu;A)Hh*I3X4ma&+^Z>Vv}J?rjq#{cvQhJn!gag(wa{D>b`nf zI0IqhC}ah4BIVn38D_4ff*JpOI{Y_&FlF0L?RAQ zLB8Qd$_${HY{!K0S%GBqG$doTAlx>nr;**kzdC++_U9Tpr*x=ckLbPCP!?v>Fmv=> z+g$Ml!nC#Kb9apyu{0G)7DSz-Xb^{!VODzKFyqJWH-qIMr|jPC~CS$NO0Q1!SllSOVsd%R5BW$%9J$B8u> z$rPhLJ6sm}Z*+Ur=rbv`v9Zg?nxJEa{PGCuIh(#B+u0}aGL;MVqm)h2FRSFc_!>a3 z{@IpudXnAr&2U_FF%$B#_~C1o?zg$ByOAEKe^ft&?~53E>e%k*k&r(XwvYqhGrXU6 z{qN#nC+D;kkK;@06Q-)t-&Xt@*145*RU(S!${)8!T%7Bb8v$Heo#?rtLy}-Y`+j?_LE~7 zCsfTRv&fCTLmF-2qs?1dJLIx9f!|=8tU*31qwHzc$Dnbl?U*o}W>4>*L{}}ZkCw(s z(alwt<^2KUX+pH|kB%br3)8xNkSthG@a8J@#l^DzS_$_W!yeEOme6xbI2ydl%MKT0 zU(eVKC$(epdALUPN0eDu<3w(1`}qY4f1B8V|KGFMMsHkp*Yf$9Vi&qM6EH5CeC{bp!* zWOQsi>gm+<%t?e6)EBj;Z%w?yT_zx^5~TETaYycR@NBkPxrz z%%)3Zjl(E*zR%*5vSt;PB)uSL*%_BcobR_(WzpJx`nFUhnOX050f3MU{1e;V*Kx6N zD@@%VyG0lc@7545>=6Ix$RLDi2vUmfxjIatGv}kMOgNq`;3VjYFu!r#fc8 zIQbk)+_DD?p9O9@YT;L58U5Fg_h zu3~XbHSTf&W$l1kLkJFmN?FwASG2%b1~Pxom=*eE?{*;E5*F;pg8U|e!jqLxPnCJk zii1gka{}~bKQ!Xu<9}sjCs*JV5;KyJvuS5XDcrwll_a09%qx=`wG64hv7wpw;&1L* z3SwSEC_^AWg+~gs1k&Yw;i+*9W zwznGg)N+l&+S*0U%*@G8joQkQYGVccc=(rA9K^<6#};od8UVvhSx$wWwQ}c2P<3p) zcaXsk-VKWuFjj@<`~noa4pZ`ex@#GuX4v+qYYNu&nvmSF%(EmgEPCt)%1AIh<)qm) z9}g;e*)@glHqFgvBWz0yuG}Hc9khtodB8!oViYWB(NYYh3O?90G{ZDBRX?iA%eM@n zre<-#r)=RS&>2&L@Wiw7Bw)C!I_!}kS8u;)BG*g^PZ>CaD=zzLdu%$VIE)J@WM)}{BjGZD?1<2zGV#q9r1 z|CNVsLhatDt;Z{35~04dDPj%Ln5_|h@s7-s7=BvM7^?rGi`Fd_v>skIN`HSR6=@l2 z^oX%Kd1ZnF9-GQpj)~!6MH)sYX36s?clQ@-8oF}j6il0UIc&w-Q;QviExJz1Wh_vp zSJEj=t2@KCQ&R}Y%19qGk$G61od6{qwNgEG!jZ&}13Ue)553f3J3m@XB-^V}ZN+!? z@cE>p*(|)^sY4cHcX7rE>>XOXVSi?eNdmZ=0MBLO5}<|$W0_+PUWV@SyJiCil)5=p zT)rJ>`Z+b>Rha!+EuszJaNmk0?*AXFRkhWeElP+|OfpAlN|* z0-T+)pYLnGtlLHofGGPQcVwY78o+MuO$(a_- zmf$G)pdjiprZiE^Gkfy} zwJj7%$%5>ot1OrwwlAN0lW0Xf&U`zT#O?QV{_6QJg7s%12{rx zNvTf>z<4$3DF4QJ=8n$Q2Q`Z642|WZPjP%=Yg;7Z(pd{#eQV;ibnn}eeyrdB?kjw5 zT#BHyy5`a2k0!6y`TromR`1KxPR4i!0(*;hhF?UER1v{0D($ z#CRPi5>jSE_t#k^lmnPIcnzH8H)XEfp|3V8vy;TP9uqWP;LVXKM5?=2Y?*9KzScU* zbVmecU`CB7D!Grg{!%UlM*&dO+Y-?{-%9a3Y9*b)O9Yx2K%%KN-{g zAE!(z`0j%q2Qsjzs%I--!liG6K(p7o3n4iT;2i-)jiEBX5Nd`x@`%REMbF1=*GwOg zHX${-aKG{~`$${4?akE%KahVDY0U;jp)i8#odwp*bGgj^jqKa^&R)!S;Rt0e(Lbv> zFLUF$pEH1vV*;~0zF6qp)!4K5{wJA+SYo3DvBITDkVb6*l$(~0k0+o_tPXV-qpf@K zWlG20X)p9Km*eS^C|6}3+mN2|;xB$IEitqLn3Bud{T8k^F(%5@*sb}(^_HS{KF%uY zvasQh9hapm>TMc#r@SE7VNudpO6L-b((&Dqq9$*+h~?Bw^)7l@hjAFHaz2mV%U>yE zUD-lPR=219TEWuA2T7^5B7DuctTeg9VqO+>z!u*d%sr+^f#Ju;D^qCs9oMWqt?V5C zo~2$3l3J`IOUY{es`7^+RPyD;oBt9s`Y%Jl24n2wzo9xqh??+iNBvAcr6qwV!;!9c zoUgA_wDEY8j8`RTMTrA+TcdlQ9%wDJ2vXx4{ylwIb%|rQC%aKw-GY1Eg*!e7X>Jp9 zfXTMvQ(Id;-g&ZfyT*Uro%egsI#@be{kddqb`r5?q%nYP2;#C%WJf~8!%9%{(xVVyjb>P`>0wu_<8<2i|E>k{kIL=1~4>-Tc6Qbe;VhG{Cx3S{13$bI(&P{nQ&<}8MX18*MSk0+{xjeQ&h@)g*|VG5 zIp-`fliD!)^xa16_1u5p3I%`I&hytH(wI&j*ERJr?w0HydEcW=@HqM#)lO5*<~d#v z2X^lLrh!afl8*J}G-$Oo{oB~W+HQP5?hAg)<>$h)UcyQiXef3N7++-hJiiPJun*S@ zM5bJ_KHjH1LVEj+QC;3BMj1iS7^n^v-|q=CtBr_IX@UMpfv_|BH{DDS8lX}sDt(CW z>9MaNt&pIDoDe&lDxQ=6%6WQ)aD&ipV*~Uo&NoKdRp00ixJSrBcmw2Up*Z0-;jDV} z!I+tF**{wPSybE;mt|49Rnd-GCAS>9lgwl$%9ubZC%>9NZe;+;8Rk+o*g6a593oD0 z29#^Dk($81=9XXv+|&5Q6|&i(4p@>L_T3yC^8>c0s;bS@Ar?HOd)2DXb9||9xFX$% z%*-A;=9s)-6M5+O^d8ZgFiOEj^R#gz+zlAJ(k`9Z%AZ@NkjvqvOd}{C3>cAeIX45( z1HlfO={%$S{h6kX*Dfxtw3kl!%E0&%)H5Bm2+#2+!JF|syz~*9$-G4Ln`JuPet_uB zNQc0r$qnrUS|NTVeE$sMkB)Xhtw#N(5lS93*`ardiZDc|Jp4H9a;aw znr1BVY>QIm3eyo{@S0J0x}5sU2SO}L`mVo--JCLmL-iM6F+&!<7i>V`5nFQilu1nk zZgjBT0q{3Y@+CNx*B?$VEWvCjVQg+|SR-NG4kKTKMG-weWVd@WnoPSNttR8soxxQn zN)$cvTyKhBZKhdX(s;p_^aXvs*`?M^HrfM&_<1oPVph zywzHGIz2i8)!-O8B;qXdOR(7uFIJ6M(48h4$K2 z`&tWLOg|r6S686IS0gqTG z?Q!eN6cJ|?IQT80*L5PNPaeF_~?d6ecKzXb86^;bpQ!`%+q}RVn#B zB}Bv%YwLGPh&2*us%jVo1MND|fnw6ugJIST-(4_rTn34USt6_3gh9N6_0Z*=;swo&4Gwr$yd`+rM8=-#*`W$LqX!) zs*9mNJcVH`52f}Cv$$hZM2ccFt>%Fd_EuV+rX-LspddR!Z`G=4EdUAU6S#pgak@Wl zSMu#s?Gj05ZgYnHMi2HBk80P(ShanmB)!4Za>LvbhN2{8Ecx=XK3Wn%x6x|7MW-)Q?B=@`EWF)guSRM`?tjgYXY zz3-f6UYJf9w@xX~I>xNkfsn-r=Iu9&~&rTuL-z2ViSjG#9Eyj%A6BO|I=( zc-OnIwy7PGB@8j%qD7xbLJ}X(Q>5i1BqI>7?$s&+Eewhnt2^e2QG>pI1WG^&XGsWC z++Icf=*+33zYEuyRjl83s8y*d+Cka$mI~z7QDoeUsyO9!3MASG-nOufLTnxvBwXKT*ficsm53*Bk&fY%iI*1uRrwbbW4 zp|vtv^~3Gq`@slVTEJKEzDuJ=|MAGBX@@<`=mUF&_c+DsNp`iEMQO~m=zdF53<(o< zYRKg+gF}7Tyf`LxhIr}*tQvDq&KwuzBJtZ8^9)UzL>b8lTOO8`o*BzTOx?M52iEiMhYtA=(LrUA@b}!&h z#q*{M?+l6mcG1Y=Z36J?)KzW@Fcc(SqzNiCbB0B_;^5&5VqpO5-{{`Sp5v9CjKti) z_{w|JN}92E+$c|FtjO0LzkBbtpFPWu!iQAp+!g(}mX+|SVV-DV&6aM_Bzdmm)uMsE zvDczXym&S0HX~^7&JNQ73jwF>7nwG?)AJF;f`(o---!IovTz|_4tuJMZx7;sQjv>+ z9{+9kv+>PKXx>3)`K?=$uITz2TV4Kv)UmyZl2?xj$*I<)EMyhcI+1blC|N|j&P=gB zx0zlt^kbnfpXr;K%%7RMmrk(GxLlMUQfbH3i7&5BZ-hn@f8wZJ2ef!MAmwLSJ}-Q2 zyaVHR#MGgw{6%wchE{?b{?85Fq(faz0D7UHLgKD~^C{flP5G<-q&emAfOY8T%Rw8K zo%{G)9c3@Hh!)If$9)B29u=jxJB$bVErc;F_jWJXdOt4|0SLq(#b`uwiK#Xi7@zYw ze>$(tPj`My^7>uOENyGU_WinwJ%D=%zxeoJap!7gSw~QX7b!^Xrk~|m+k@{#tR)9; zJNJYpFq}XIl2?!YSoCI)O-@1k)|}4DNxj1%Ths3V_;U8(yxg&l$L0km8f>VQwX+?W z!ex__H$2AB?fSY(ki)ibg{s@T^x$Co> zUn5vIEfA%C7Bq-P%gwin+MgpEACGtpwmyN5GvYwZpNTs-A7p7p?P#@y7H{~iX+>J> zI1~GPjRY(d_)rEQbXx`GTs9Lw3ns=u*jdG%7poG}0Yg3!6nEm6P~n^0E3F(enoPm8 zw_7?4Q#@ExRR|rpjg?H2h7lRkN}U}*vvbf;*T`fyu(@X?1@Dtx39`iU2-@(?r+fh< znvvws8yl5z-A)FffPQkEcf*cSd^*Pzmt*Hi{3z>aU#b|z+h(JAo|&# zyl0H*@3UIo|Ge><`}^LG%JHFuOd_&{hZ>xNeSzuPX4F$;{Ep1CI47;YqdQ{Q=rkSi zHraSRbre;*VU@CnIB|sddL^gtQ^h0!v+lVdj2kCt-?qrb#E8VehP;d|NBN5j(j z-u%ao3o3kih9bg%w8kULzvYum&Ag>}%!c`yxlR3o*wI+S)N`OgDe#l>JA}Z9W(bqF zV#&@DQ>~ijT(g&5{>PB_IwS?p+(v*pE{kQ`QC!^hFMH+~$$>bZGlj@AI zXgB0s^JQz2Jd@nI;~{1Cx>U$}#h6aFjnbF#<@!Thb1iNNq!Hzv`fal2$HWAFEW|&9 zt|?dk)gCf48G!xIQeXl9LG!bJla91w)e!_4Hg7;Rr<3L`Is8|&=DY!V=|>&VmA7n- zGUVD9VD>}(FUNMl#A~p7!ZLpI@r3fFu9SqR@z<@s>0iw-JCp9w!O!EiZMZn%4Z29i zAwL63(c{N*a)jVtlj)s2m_Isrdcs*}gt2ziGPY$dzx(ExUr{8ljy8u4#&)xc#zXan zkOdCJtDnce%$`@*V{8+mfl(<@h!lAWIc9POv0Sl&JcbtxB*mr0c}1lq)%PUZ zdN~njS`?TkwY{S~vAd_YufM1BKCx{Fj#AS=AcQCsTuF&r$p}5avN|(ENI1DoJx((U z6c>k}lq4i2g*ZNPsC@qX=|Yw2=GzVI`%ez4-xvRVR1vay(eCGrpA%zL$ZNE$8cPnQ zjsr5Rx-WIxcZU8No@z~-NMlt=V$^EmK>n|WyLskUF`XwIOBZTyn;3!BI(#?yl+D zqOWw+qmGt+dl3qLJKbwx0aA)UL*v+b|JvDnF{kA* z-kf+^-j~#_FA{v&YY~*1PcOA7+~y0lf<%vra_R|XDKA5R&+wjq7+@r32_B{uC1cE% z@1M3QyQbilwqGI0C|XTUw)#oCRLM9TxEBlR0A9X>v0W=J{_!P$^g8O#-%bjiqvl-? zVwqYLDu!2ZMX+^j>d^>QD6KDqtCm%hr*15h6)41mWE0b>Qubf{MmcW9uj;UXVkuXl zBvK=F8P$iUz~CkTe=rsB1EtuyGNI8OcFo#|2RH_S&>qqxr%-m=niAs!H>{t~jqTgW z7dS0ImA?gUBzjQ|SCGFafuV@0Nx3%j2;!!faL&2BD-H;hB%N1I6lkaDWkMzqbwOa) zD4C`^AlZQe^b-msZCo$(Y8#%`Dr;YJ-QlD7M35{{QBY8tuOAhF#ouNWRu*07X-}`w zw!fj08vk$YIG4to2B&|Tpiyp%>aEaM_|$sJ9C&XW-{C;P|XgU4Z`p{Z>n#xDXM6ox^PX2dMW1gL;mq_QjYh$UC zhkgrJQSF$=SrN|X8bHZxxaU5^WUDiqOwX#6ScH2nf6bfx1%-V%;xVu}{vi35(~kyb zJ%^s8ohNO@qh!E5qgMLO22@^OO|jM(f*u&0OljZK&}+@T@IUv~kT?JL&GS)?%awa^ zD-snB7Y@K1Yp=0p$Qp#RZ9R@q4l6xbNAiTHC?z^EFI+UXld;*yr8K_yKc4QwDat=w8~7$Hy>#Q!jdaJ--QAti4FWFRozmSPouW&3 zw}^sBNGPEa>W`Om=AAS1{14xGuDR~d<<<39B{oGL;tP>YdJ#gQEv$ex5?ipSp;3`V zwaL=qPwFXF4gWn6={@fPSZ$J2o-B;eA_Ob26ajV5-;S;u$`k}csfj6Z;lC-9JE0UOT+jkerzH~*&*Gw#6L4KKv-RG zGOpi3893LcjQ^{%d+);RgDQuVIHa;BgY&f#*lQjT@JQ@xOt2TTn$^(HK!T=atI)9- zqmI=o`=pvkezmp7%&iqK#dYS6J|A3W64|6R)NEWW_TU7izDEyd0?`8zO4+8Bw@EPf zx%k5}06?hkAT}Eqrjus{@`HAon`;{x;!`^k!v1mK6J7N#gLF?yR7tCB0T{1C^^Qur zu*$A~ha@6TQ6QXP!m?8non?4=%4D?Mjc9be5a?Q%4k-uzPjDMe_J#b_#fw;E=w$oK z9>B;)y>H1;jbr|h=NBam6t5HcGb7bqpk-2gCK|nMN|Y>Xk|6%8QOt398Q$m-;~Erc z#z#jgw@Q03>u@DV9?@tn`b1t)Ig_+pRl}q&f%@;vC^|cQn~}6;M2E3}ciyX9`x>o+ zyslczl#f^@5>zGc5tN@#Fh~bb^PUe=TbOw61gUNo?$Ra4uW1tyP%b~uC=sLWRTr-c z+!j-3(k8a+202XPz1K*-N}DA20ysu(kp%61y>uThs@bfVeOw~{;j2+L*4QNYmAQVP zdyDD{?~3g2O3+Y;$|#q#LW+6wGI{>x07o@{)T>BPLvVgIpF?sy+EAmV;%S;4_(ceB zZS^iGw|TA8UxOSo*H0?|up2{Pk+VQL>wkDQavdpnlZSK+Av z`EA8k~?2oko?(MUV~ITzO#TD2hB$R#|8_pd)fm>a~azgZ(Q1qvyUfb zKRW;MV0-j&`ftJTIj-)oP*JipJN4bt#6m*AeV&{J!%G$oL)kN;sBFG$)5(F@b#|~t zBQNkM$RXU%H1|YK{Pvnf%}7tXRBh9cIix9Etg!G_t=u4=Y9dZaxC=iz3c206%<%H$ z_M{7V@=u_gl)bHES}>Ws#)+uV(VdMctTUnT&Vi4DyWx4su0Hv|5cYF;(=hjefe$8C z4~AN}%kJl#ssq~oKmtN(-r>OdHP#oAwuDi;4k7nBOLu9l?_{)aHK>B9_|x;DK)k_H*GW4~ZoKzmPde_n}>7370=jxNbU$DqO;if0Ba8 zpNGXN|B#9a1LpGhMO%Fho)E0G@fgSQ-hjHteaJ4jOxA7w)QwseO1CCs;C48Ud&%Kv zvy~fuxK2Hi@doxS!t3*A%ez0qa{!_bx5BP*!kLpPdz_NMQC6CnmDpfBOkNx~7{TI` zDCcu~?3(N2Lx3>Ljnl2o^J0Xc5Q1U;#JIc+q!U17+kyRrfue(vgn>d7GVqbk6!7vH zLU`y9{~f>aJW|iR#<-^HrNZRPk^B(j3HM&eE43ipDId@r8W(7QKd)@=6lk%~#zSTj zxqZvIdlO?Y)rlq^QU3x-c6#y z3|O=BdA=D7-Jpwj{2`%IG*Ux-RqZ>wuH;kCcQ;CEgUpMMBu6mjLl9KrXcM4UDE> zJ09n-SV$njRV?lGm1#pcn4t~u=O+DGp-9{?!$byd2dQz#@2GNAYAe}dWCr9-1Nk-iJl^y*1~Z;|URevMuyCW&%(gk?&@5(&}9z`6&VM zmAIlMor{gv#gyYmuN?J zO-ClHLZKoP#g~byqI@+;A=X-?<`RU)8Y^VZy|EuJ9k9vU-k&OlGB&FkQ+#am|Io(1 zxQ{EUTZVZFSC^&8u*>@W+h=pYZR<*ccBb7?rC!@dHz`kN&yDh->&@LvT=`|OmqYRH zmaT(YRbosWoz5H7RNU8xh9ej1ND{LF*+$X9)YqLExZAYehG5RgMuY1_e_0RqGlko6 z&zG*DYI(5_g!pElxb42~wZrxh@MDJ=OWcT!Onz|KR3wepKm0atLVbMF)n#* z!N8(UsyhaDbP+r-O^T!Y{kGD#Q!KV<$Wt!(U9AG}vf(`(B<@;Oe5Au6UV?V*J_J{% zb#$fAdVg~AHHu_9{K{0JVoc+!wu;1W79ax|Svy5~2IW~i1Uz3R?ENR(OCd1W4`}9? zj#hC@{)1Int4A}As%TWujBhHk7p>rx7#PiO>A)G{uI+pa#9`N|WNCc!D>&wuTu?&fezehR>-fLN%eXV zP)qaY3w*@^S0>Rq{(wf?;gL9!8s9Q_2)Ed*>%M(0*|OV}!lNhPb8VksN-uj#NZOh- z1P#V%qsqnU^3rSds?SaB#wGy-MG)6l|H0wr1wciyIH^kH&l*~GP#COks=Q0V_a zCiqj2%tvErDlCfMeKW52+Qv*c9sPmxK9!?8%}5}NMM~nEaSkbNZd_ax1G*a7RnFBq z<~qJ~LpizazMbG7PxA&LVniSbk|3`sV+(!vM?J&{@6#BqJS9FAhYXzt+3(yYRei3( zhqA!I$=vM`(~TSqyGPdxlc}Y*@0%p|fggQ7R&x0DPz4Q3jItC9<^G$=sKGBBNdeY1&{msb$>?LH*;@Lt_H;_BJ#V63%U;T;$$9&pu^MxbAE2 zvWhF;I21BIk2rlxHQzpU&J{kFMY+4a_OJ@TvL?@^;^$s5z-4`)z~(ZuWw^xVy2>@1 zohiV^kwgOL`yVNZS>IP`pp*GS{!yUfG?r~Vh~`!tWpX%#bs6_!6?@OcH;~SsbF5&y zDnqMk4?9h`#p_ue>-kuc(dX+)5?hgnYI)<}OY2bwqh)tI(cZ5iaDocp#(nM~H9qPp zH{|E%=%~%a@vk*|I}(>Bx%o#vpUQslQ|Psem#wI;E-eoE<87nB&bsCQ?AGrstMQ9z zCI666nHxn((|dfc@RI)4vCwUKOG4$nkb?0Ujn#NFPl-Ve&V-&wg>P^8hNRe>NS^@{ z@gJp|2PH9a&9K~cKZu=0OK-|Q;L&^2i2D-jkQnm0lodsRA8*`t_Q=Wg8yO~<|BUjB zOXA|wswShYq;F3DQl70v{OIz?IA7)C_d9+|`&oZSsk^0`0?OC zeD8`gLycbuY5*N0HOSg~%bO0F8kZ(sr(GD^)&V-hBUF2Yd5~ z__yYyG6_EuUYA9!OJl3i}QmH(1#m1NFaKB0N^l>RN~)L2$(bb>BNOp1aHHI6j8}p*u;<7(# zzi?cA7qVorrUc$27pvw*rJCW9BU&c`i|@5`U6TSO`|*C=eb~|ZURkk@-JU!$@VOmo zcU0Ev&xi&J`;dKhc&L2-U!y@EPw8asrw4i=nQua5)iOE8Q4s}rpTZADdc8(>2>vgy zP5j^8vGk10tzI)d^F+$vn^+PeCh>ZY1{YFvU+iAUmaNKRBEf+k>y^yT>QJIY1yc*$)_u zLmI|-!*O?i2O}dVKL@U0DHykw%UXk1p$w%X+}xjhH8 zN;_R$5Us$mV2v$$HA(?zRl`go4$ZtYH)27PnwcK%^*p1^?(*eD>(Maj>!aK{1}jSx z9j7WveW}G(F(!!noER-9g?PdhditW&4iSnuf|UEuw;pX}8B_~@#$9*1D#d6wS|udvC@9Khs7_YR0dvyccKHIIdo>bi3WTw^&9=f*GCNWq0sk565^4%wrN4aE zPim&B7uj3rgRjK4A4AgNp9Y~?+Q`=4fX1%*E8k<3=xJOafdsh-Sef~!07jsPv@D;R z*Rv?*4U_e!lBpT?<&vccDaLkQa0=fI7WY2$FSXrrnaGmJ>7dQk9{yPCX2wMhU3!O@!CijiThS!Kv_aZ zk?t}*l!jHDjn~8{m=4pyHy7T9f=$5;4Jzk#ST(uUiXG=6*xvd0W%W@^bP_3=ui+v@ zxQHeQ8?5?EZnbIRi(+U=5)P2wojp>9Ahmzw6%Uj8NXPVm4Y;U4C=xC6R!_(|x?uuh z+w(E-%;UKzUIwUK;!~bESDX_07q2DM3Kr2=Dmi;{b{fW9auKqkfxU(4bS|~c0Mo6$ zQm-6|T^o9PF_PB&p)oVLKZzJy=7SqktKfwhx0spU$`Z_O1JQve50@S5m}40{!d7%2 z+iqcH7bS|WKAiD>bMvYBX5pii=nmvDvUHs!p0;-Oo3Wh~0Ln^?+lJpH*12BE9O>$v z!uC&YwZY3FyzwB7Zwwg;gBcei7G3lo=;kPPnyz>#-(Q&KAxnvol8PojKf`%&BdRx5)rr!{p$)YxumRlF#`pEp%*D(3_cuh=mweO)Wp-(b!q?Lg+1^jM(m)%F zlXQws-y8nqIPM==f(!p{_cr|(090&f{jEbHyc|#EO^QLTQC*L_k3oezGRy^t<-~U) zf$y--+mlPqy%{-Z5%liWUt~ufPsrbu5~iyV7*J?1sFV!=!N5%VY`p)BfJ6r6AXAjp z-iNiAx6PO@eG4f|)K<|-!Ea)DQ|J!{WTkH^-dMz}Sp1O|BvaDd)75@iad#RZt_DYf z&4EcK|8B#cz`Map{MvbPn10Bqwk^(lCt*$)1D1)7y&2b?ArJ7Tat@ zLT`?T!oX%*J_@8jqwq3p#CfB(SP)Sc^^A(~U zDv>Y@V)}+hB3{poBZ^@hyd}*lovCwpnz*G3(FPm+pi%!nfG!hspVCLkDyx`90Mee{_^z96$oa>-s3i?09|`6-Ccc2(6!og zxhlUsIhy~@;)m-sgNfXx0cdn$fG5Jhn8a8wl_ke#Sp+klPVeZLiJ(fPtzFuUoGCTG(ym)-??)p z_l-81Ba;4svd3#2GD;Jw6BJA`CXSVU)>f^;1k<1u`m4k``OAfZjw04XfV0N>>Nfyr zJ+P~a03t-4_c0C@xt2u1Hf3o~qZUhb*8+M5e?eVgY?SBmwP1~b;Cb^yR*%*1Ui9H> zE$1p!&X<6i(^;B7MBV*WxLgs>wo6_RtwfEv5!s~Hq_M`TwNWJacHmrQ+D89rnG^0N zx?hensQSR1{jQ};*=|y%Q=Gy|Db9f|r=GWLk_(9E^3>1s;0Yci`kZx(h8?Y1Ou85& zX^o5e_g`3dCkrly0I*Z#bp5&i(DvaXFrq`h=_tG{(k9X|2rfAfge9*+ZavHJ9W=6> z{%-TE>pgZEM7_~B4KPcmMZknEL4GZYWXTO}2z(g%nPrTe*}A z3=odE|8OiN{+}STw|5jGK6g2d&S^%;We#9Ive+g`ZEn~nWmoj)BTaOmrv4Iu5P%n6 z{rKsuL2=Fk6!(3n>QDf$x1&p2;aI1>R75g}N$qWxuY?1SK<)DUrL`ot%ysHy`Y0qO z-emFFnW?sY`R_%VXLc2;Zn&VzB`AZ#e)JYk2W-6yG*2VYSed)R{ZidiTKMmgsB&tU zFVQL2q(nav9iK*(Uw;tr&x$IZo=8^(U~V^*i;-s*UAc9po2NH7lI^+R!y{uF2f(Bi zl_iG$O{(tL1d#Cj-0OMJ^&0qC=+VmF z+uJ7F^D4P_tYc?6gRO5E$I3fzYRaE*+Tbr>qw|x*#=&n?O!)!$HPfjBb5jHj0;D_j z2eSet=Q;?i z9P&hojZOk5$pJI@VS@-x2*4+B5^C87d8Pwca}KBN@{MNXem)s8-tMlq?tUZS`SPm< z&Ruj#kKb2tNM>*7MZWxvFo}-xlO#v><|yP#kk;aF287d#3lbEFLfcT}Q5bs(V7Eal znCp*JanIcgX9M_%!oy9y`LoCnLP(Z>nIi9uebj8EuJ*|H^YNnz0i$0CVBP>X(eQPV z1fp>zPE2kH5rHNsB5*k&kWV}wljy5RTu!jf2`dkFTZ9tKmRrc{TG>CT2K+lnN9EXP zyvIKrrO?Y~YXN@65@_dZgsS%E#UY7vGD>tvP#Yiyh{AzZZIH!i79MZNWBW^?C9{9F zfocGV!6n=^KhT}k#dPusI$%a^K~49fqNjqCdVKx9vLsE>rJWEwR6JW@^Ay~SM#Ltc z-*Mu>AVgQ0Ifg(Q2_{FVALXP89z+v|x!*$x>X0b%T6gvRq{k}13T zLdFvE-`>V8`4T#kLkv)Xfuhng^qgvNAV(jBiz0htGSk;zmw=Gar4A%+Dg_4;YL-7S zwK>Oqc?rgTO4E6jSeifRsn3r*o9c{D1@L}23zq6V`j^Y=i;%|d0TZJlpVPHrH78_% zsw}K;a@YbT0-TbuMGJ?2dEgx4BXz*?6PZ3S;mZPYP9rRfz7R&&tU!ow?FbVE#6jNM zH)T52{xAp>MaiuX@#Dp$=%yrG<|n0Rv0Wi2zhLU}1mx5?!AR7$(Y`MLk3Pp&}~pPop)f+0UlvAbd>ch?VagEi6q)U-qt0(cx&ruqRz9&%cB; z*NP7&GSh-BhQgCRaYjlkyI_J2Pk!y(_ zn=<$Em|eSzk)#cm$C@|>R8^}0y&m|x~QO}Z5L^^hIBDyFVU*JVg6|s!j=F^ zS#)*ms!yewOSM^!!D%y~N#L*RqhPEp^+}lr0+px>Mi?Z$28mb2caxDlV7Sf=HRFkZCc&;h!G`7UKfra4EEFS=o2#9AI z!xVwBe%$$lypoY35bRlueq4TE8%8z>sMnh_QDqF&-G3D*C{_Tk?>sU8JoVMxYzi6W ziNOv7=GdXhat!TJKt@8hkhrY&r>)C;eeWs<13_MZJ7c%1D%Pi4Q?1Yr#f{#GKOGCB zlJW?CdvYKW4rKKPCH6z?5e=!e*2)`k&sTJYV6`wiS6FKCW0k!AFK(q~goGnOKZ(#qBx$uPxup;vH1sK6j zNj^!p#FD7*);Lc6zC7OPYAdH3^~i~wEa_h@xldJMMH z?6i;I2wYQZPVV4?8s1tVFxcu^rLjTLQ^Pyv;WW6w526Wn8ADI(^_Bz%>st&&`OxlQ zDy5|E!ZsJ@CRfBkW`a0^;EG^=;~gg903pp-3%zVE8hl!p_*N-o@Q>E4kX`-(7BxSR zYD2g%79XPn~VL?gWGq`VN-^I$%=D19NqL-vptp@LfR>I47}r@ zo^s-jtQn*en7) z(*1Xs_hT>J&)LnH$zuuS(-5O`^(iQDtnuxfFz{KfjpmX4dkZ%=P^XC}%e2#QDEm^l zv4cCUlBM{5uEwyN2{CfrV%~oHMP~vpb<*72TV9NDtKE1oRz@mq*koVv;seddB2M&( zzb}gVG5XJ;WNy+s)VZ%)idqR}hxUu9AAgrh10}z#cuoYw{1QdZbjNgK3rpF_0M5Hs z4{h-P6+O1|N6pFP`Wv=5^tTrvWj;(| z9tV?R;)Nhov-;Mp{wWxKH*b7SyDsm~VbV-o`P&bOJwy2~u?a(%crVoXV7}uC-Y?cd z&yaX@zw!84-B<|aD{rI6 zX3ruZIaM(iZCt(NV5a4G4%!Nkn<+Ll8&Us0U(I)`!LW;m=xx+#oQ@1|X;;cN@FB6gPfK}* z-#+!#wlm|C+(><yQHAn%F z(svAq)+hZ};T!%-eqf(S1*?x|fzZ zU<<@P=`G9A30bD5v9xa)c8r$Xs^<~!z_C9P#61?Nu30>PcwIq1PY(DXXG=lW>)TFm@G4I~;@sTjFgY(;fO|vBp3yVw3E30ek8=G6(A1cGy z!hvKMp7w~tqvMlrM{orE`;W`>>mQ_~PbJ^`2PXM@VIJW}&<7JjCY5X!X&ywM_plra z0LJJlfZ?oiI(_12x9@2w{9k*(b)&9oI-5&MXxdm!2^qWSdeypV@oS7uw?Moud68U4gB@6-kFbYJH}yI+&|Z_-RZL0sJVVo z6bo_Rs4pr?vm6Zm{^47R^5Q2cA|Aja^dmtzl3J)<=XG@3er!Co2!ni_Zgxja@kRu$ zSjX3??*By*2D)6`bR=FRjmt;FuvMBtH->DPi;8mHYLyuvvTe;e`~MacP?I3DzIKk! zGryKR2*lqJncF0~U!HAsmTAoYHV1%p$EIo?)gyR5-&~&F)6PYBOA{%lF&T~6GC0(P zo3V9@hV?mRFl1Kmq99~0dy$nj6If5TA;@II?tgYWMsnXqvN5wLY9hV<(Yxrq8h1qz z>lzE$?Z?W@AFa|a;|WBXY=p2Kq}2JuW3v#H@M?ufwh}K|U4LBPw2tgPro&R0QjR6k z+#*NfG(nK)h`+YN*}2X2-KMD05T%2Bn>hB`$ba`_$(o{ybugx`?t6Vt@}7F6o@1z( zlb|F19u-s^Zb+{)r^v>}%RO;fiDAzda9o)ZVX`40Y6e%dkSg_)4>`u7ObB_?E;f^mhj~Z>v1v`PT@bRBXg<#GeY)&}xM{F+*hr0JhlDZkWp1=_ zD7^l-LFyMuZ455I28Y10V&Ncc?&>5)2knT1k`dhe`)AIeEY7Pjl35cL7NLJhH0|z6 zeZ<|0^s=gYdkY3WoCu;eG*^dX&Bf$eM?IK`k3<07D_q)qlX9d+icf84;P!3c6!Mxp zG~6fYIaYDRrEI;`8a$Q=6LFb=rkBjgbcD%}I4%yS#4&vx`_kO7ZX*kEhk2w8enV4N*A{J< zFJh9ym-|<=;zJcksu|icHa}U^8f@OVR=aO?M%3P&KhY8;oo>oSPTbwY-)gxLUVkbf z(}FbiUykw7;MrH0?`wDZW8LdvI5hv&Uu-pv-*JHV_LP>g^5wzo*8s zN^o8ojYCp;Ub;<_N81suf7(Wbj1@%rqC6ccp~tnG_giej~U~x1H5*Bh-jqP3zc6N{lP`yXM(NoW-8?1=q3O>*!KQo9 zz3$79(~0Ou%MrKY1BeqZ7!JazZ_+#Guf_RCp(4YdQxW5DMwSPV5mC8-Y*@hLyI#xu z=R=(KDTYE6sJ4>j=EXu}Qbe*7x2PxgoZP)|jQD&5E7-_gw2?6l5@D!K{CYX*+~9zU z;7~iGuqz+5{#o7y4HThRwLGV?mdpR96HkR#S@^PyJkCaU1!xPA{8%qE!jjD> z)o8XkK*U<;7sO3W)2%g@t%_=UC83|E2;!2ic651if(-D|VfOGX2|Z3a@M8w}x*dZzPKdhOF%?QN+otpzKX zSWo^l5W4`yX8J*5_yaMgV&bqy;<0#<-g$0a;f$8;=-}sv9(&3RtN9NmC9h`kVp1%3 zvqhI;`7-Q%ztwXsbK$)4b=mN}1~Adfm`5)q^>pDjIQYzVn^k3DwAc@}M%*@Ge{gaK z4L~;vOV2*a(WnEB5v|Xx0^SyFu-oQ)r&C(teumHgYPO>{L=Tw*@@%lN zZA``;M*_#f>)@J4YQ-%1qO%99_*$xaJHg&%9$i+^u@-}HFAzV5$q2$|DStRt+ER}NyXS=sW_spG@@MQzweZ#TyvuaS@!ywUiFMJ9T@$u@oXNt3c*WtUJNd3W@t> z6VwJ)lWeaQJM1E4uP0=eZLlezK))zd|HgqoG99OfEKomUHa6ceYA+3FDHFG{{Jgg} zE&1ckPQ|CV!O@K3KgsQ?x6d7)4!`k3dU6Ch4=z-xmy!SVPAPA>?D(1km6aZyi^4cP z2kh#d=+`{88Z;zY8+vTq%u&%(yXGuKx^0SAfO+h?9}%@P3IEaESAysOR5S*(81Vwd z0pZ87y`o!@bK(fcw}KJ$wHTZxk#@LI036)rcKtNr$l8{lJ;X~EV9^lNd+v%)BMpZ# z<8UGtouM}kTDxn~MQ3abHAx?PypZFueUZ{da-=+S*mf;D)X<(GDFyt4a+)N9)-%h= z5WEo#rjtju^X461>yn+D%^itA{2WUg>au$`8J-md?f-rU3y@HS(+-Xg@0KN@l=DX@xTqY5Lr+wL>_dFW$#Vm| z*~tQQF+)v*;*CSd8{{UFa4DnhFQa8 zoVobCjVF&^%{U7SF-NvUVTl^kbhe>Tzx>GJY~^nm*10+Hg~fP~{j`#WJ;0ctI!C_dvzRpUhP zbsW4M!1OyRz{R_mHK1w}U*v0iBuT;#eU)$a&s8d)|KpdDtOk*ngM4{aX%vkd17ZrR zlRpKss&!LAS2-CFph0`?o{V6+6XcRC&`&Rh<*Vya2R{jtq$UujOeJo6#hju?X{;PD zv8Sys7h`&tTCJG?h}ArefVz2_S_ z?wWAbx(ri@afULC*5+!2|j`4NO-nf5vW>m|GLP5iMuC}o56 zFF6&>D(MG)4(o9yX4fq00N{2`)^2Z>Gt?I>nj5C7B>)Vs$O8?4jZa`?~m>Jr=D>D3(xlW(M_v4Q}m22-p#XDlVI z%bK$pgrHGiC@+SAvMD!7CUnozIs-x?hGC7?aeNIe?G!7l%A=YluOdHmAV_%e zw381xt13C#9e7DWvrg8R5Vf_O^)sZhhL3nT2&>#7yUGB^CxBam(uAM@^twm$>ZHJ1 zL@B((@vJ^)VV|_1!K;@dw z_KhTp6%-f9wV`Y@R5)-o>OOo-Qn@rXk*%T=cnZ(bv6r~*FmfMz>zv!Gp|Kd|m(_c} zGDs-P!J#z<54q->HQ%es1(|9slb)B35+o1?Lis9)8zC>Si#6eO(l+AnADU_vb!d)t zq0?DQ(+x8p8uWlTp(}{UBpTisnr~|*u_(yX>XsEGalth*Wi(P+?RBndON2dy2b9rF zR=PXT%x|kY2F8c+Liu$7FLdlIut53`z`B`2w+*`iQ~4zo2;fgmDPxrPP8IicaQrX#S3%AF$#{u7ATkty zmY4mfIJqy`W1hi-v>QticA>l~(X(qpctunBAG?GyYPfXpE8(SnBXhV*BLrDqp`lj{ zL-|193YKz%nJz@VFNa`rct=@!E*(AYXFZMv9fJVB`*xDf7enG^Eb3PZtrV@9jp?1T zt;mu2V5aA1q`YqIk5eY|;P%O63!{-rb{hz$XJRpT0MNZkav#6W9~yT*s=}kCXDfHZ^M)JRRx$s`fh5&VqQ0++k?hvV64x26un57ixlxB4`jtLD8r$*wB6Hx{+AO5r|;a3K#d7o(p{YN~?+yxbI&Wo*Qro@0N zDh%_CJ@X~#iy`O}2T+ncW`KseAfYba`!pH*Sup^s7xO}w0lMY8`0bU@XtR)Jc&397 zD+*&~0{BW;m5A^&MAA?BboIb;`_Q9@9IRMq*`Oj-C4C4~;$`LctP@T%Nb!SWw}G=? zrwg8b$p4mZV}$j1u~5#nr_*e(w*=HjLva_NLVJg{TJux?M%ANqsjLD8+u&Bz5Sw@J z{u=>`TYkCUe@z{`P^(|;<64}pp!#~o{*B&&^7m=c(gSgG7Hxya>~Affq8ro73ex|+ z1t_e!8qq0B9pDjp(@3BC!SF=nWI{@>FDq$xH1S z<+~%Ya!uNY3i3U0^2Pqz*Dp1VdM1MdE!O?8epCA^b7u64c&JOMqaYE zp;|vc_S;>XUxwBJntqAA_F-FmmBj3+g=HaILd-Q

6G+-Qrtix;kOn}aH!W=T(F;j;nKA`*rF9g+>V=c{r9VU;e*O4(Ww+Sy zUKX%eXii^ran2p9276nSnhAY|XCZLdo^?WFE* zqy}XKNuiw_WS{SfYzW!lUKh1+PU-!eH=yaw0_?Yszc93l9myY_Yj1ax`_{Z^eqYhs zXEcw#bbYI@){*&@{Gox~Q0rZo<^1}56ci%Jvjo`i zpc?=zr@Y=x63l7wTth*0iM~QWEbl^jWQ7G< zbon`G$vJ;O8bY05 ztFcEavz1R!g+;XWeVl;*8C32&s_H@NhEEw^;4q|5EDq zGZe^N9U}P#gml4ImV#JBzkJqo9Yuxi(D=kI04@K%kRYZ|OdjE3`~tqVVT6>yZ(YV# zF%UI#2Ybc{fXF0xKR@_C@Ik5G1!z6thKu-%#?qB2ZZgoM?n_F7mG>~<+CK_ZMln;b z0kEDXRlrmB9v+6iyPwJr4#{&nZKx;8`6^AMOY#g#g5XQkPSfbo&y6l-Pk4e~y$t}$ zv2Lzq4UL$FF#4bLvS1wkzQ|Vmq%|0mhaN*>v#e#7YTFR$nFo8$_j}vEA-oThdEDZm zkp$8R6l%cnF>^MHo8E*M1m|q_R;W`mK|9ub{x?;c@tMs1a#%5R`t+sdf^wNdI&apq z!alO77?`j7G`Af#<6mQg8-yr}Thw{oYBXGp|Ao@_%xkQ8x|f_kO7<2~*51z<^nR&0 z?P!X^{vLW*S;324uQ7Dnie`U*y{FNJ+{2@}Su-%UEErkf+H2Hlp8zno5UNWOMaSTR z5@GCHAt(N$9F76{?yBWLC|zbXr<0^(n@SPKi=0fI{I%NO9$xtzKPHS*U-%iA8s;0C zO8w!LBhDdTj*<9*e<5hDL?D0~l4TouPKs$^!(azYr*hbD?)^T1v=Sd}(;=V64&1V< zQu^(f^>{aMa}*x<_d%8&WcK%pErypJ8*dER@tWmL&y*6^-9MHK9)gAYO9eXo<=+uJ zJjMLtRh;t!uzF+&vFu#U6N~%@N78%EXGLxZGv=M(x2tkCNu(|#=`Dr|8r0JgCTW7i zRzM>sO=i7X8b~9!vYWDW%7MqHc|iM>B4B}2&{7f^pSt1Lv4>uBT`tG>cR2B&H2SPr+x+$tFjrv{$LB$f)2#|JhIn#SWoC zCUCYzlD|blAvxdx2-e=||KsT_xZ3KXb)AF+f;Pdu!JXn>io3fLw79!9xI=Jv_ux)( zZ;KSCE$+0G3RJ#wIcMB^|H2+?kG1zR-}$^&D$@dtS3%-TC(6wSpp<Q2u@@UELv7V-GC0biCBg_+q>B!@;M z*4Ko$2{HY6C{`9rrqN2-Cu(5EzEM0QF}bwty?OVji7IgmRVecyO57#PfejG@pD@n98T))=;%bWhWD-{e`ag~;sRHrWwH2yW1 zTfGPQK-rH?qRovM!%%(Z#XLkVm$;mz-?>3_C_m>>Adv}0m550cMbDsS`cGkh1_*al z;NsyQ&MX`bWF}2?$H$aOez)~%X9moB)Lh&d3g@%;X=zomnTiaMAEEzBo7D_3*w7_| zo1~+c+y_t>oI6B9KwyU_gm=7Tfa%78rR(k^MYUV50~LLC|iW8k?n9i25<$Ev$jV zV}kjpV35Y}J;*TCE z@Jst$xJGNG!G^3OvM0&yh$&foK@{~X|f{RE2*8l}CFPH2fTdP-bD9CrvXRwnT zqIb56C)0*OL_;I-k4Ny03Uvibe9+$7pC^P0`QjP3NAbq4dwPe%EsQ=wAaD8#*tZNn zFuu32#`l*s?REv)WEXI@F5S)4dC0u7bKu8E5?`zRr}XED*DUsC^nvIxb!NhrcCpX3 zLCuB)|3%OWW(8|vMAOV_Z40-Z;uQ;hO+S$AIYH%bXh-eE-}2x zYG1y+1(rapw^_zzjqg%6hg;`{pFtHd{j$%CE${(Q#};(RN8@)A`)`s-Dm+k6Rj;Q- zE4JH_>CYf3wru6{B|j342XWj5#**Uc4yj%dd~j%sl=x7xKKe?{TOk6_pB)AjsUIW9 z{h;;>_x&rmq;e7p6e zI=n`TaBz^)Q$_sOHYT!0@GiSh?<13GiU5rht){7v>|6SwfCny{z%VPv=Qc``{>C&@ zCq9r(LpK{bLwnupZ-JRTitosQVn`3CWkP=CsAM*}JSBpv7)A6<#PuD}6m7}o1@QIf zE$H<~tCZgU8B}`&8v6l!T5h=z$p{d$Y3OyfGl(){7sO!?Ut<8`3b|11GcO-e`v{4! zF$Iv81Egdk_v|7=Na6Sh5Y?G!yqC8m-}4M4n3~P8!weFWJj5>>+RiVeE62CRHY{~g|ay006DPfhVP|1Vuw*2q&mv7y{m^$ z-ot4(Ow~PkFq*u_cI2GX(%``EvBP(%km2{g8mh9Lj?` zAI25BZ(X#iL684Z=y9?fNI|YH)ZNPaLA^*veW^R?hE)ObBbylwi7-MV&=9|J?Owm^ zmx0N24R#3Ae5&!}Vm?3-i#?n8QzaR$2gMXLTE#glI6WrYpblA#bdDDWrXw{K*BqqJ zp<(P?Dtqy-`T(55093GDoVfIB9mShkp*lZsNASZOW8B7;`1P;Ku9p!5(cD|!SX!MUBWoMzyh0e2|Y63r-+geQ-IwbHugE{*5y|w~y^2f*nbz)wzM{Bv$6Wv4-_QCDAGlr(r@QWxD*Pl_v#d9MAvZ zB8f9o)qeP!cy|A#A9XHGG+9Pe*xbT+3hHt_q3$k_g!zz`4-Hbey;ymeS@7z%tbqCTG@nU9B zc&TH>Jb>t)iNYZ`kG?UFfwR&Und4E8gS!M2@}hgoNBcH5h&6{)h7HJ981blE$k=%4 z?2N|du#5TW3wI#Ma!E^p#zJJOYeP!u(A>&Yig{H2(W)=Cshdy?>Usk{cv-;7&{$;3=kXzs?$l1V z-4H7>x2V<(!!VC+O7#RXfTzjXL?qed6eBpi6vr{DMA+H18Y9`G7ZyxezAZpBHBkLD znCzh3ngqboh)uji9cVQj-!9vtF;#f)P*-Bq^qmS|KnfBea(k z=>?MyxYS#X#%HB5zc4<3_;r8V#n<@Ddb>QKEZ}T{N_z1tEF0`&Fm0+GKC6II@stXx z7G$o9tq2Xi7lcWrZxJdWO-gZ{l^_w=YM|Ps-;ZsJDN<6e#NBDtx~!iDksXTpY66@q zPh+Njy!>T`w!^epgaUA2KwKTH|H;lGdtQe2*kamnM=fOng96vRXmNWn61{JeVW|V= zJ|y<9gIuVZYNqbslCb7vAu$HmSnQ;NXmhs8>1LOK4yEJr+T7k;K!4_7si$n`OUKS2 zC8qVjwBW6NdC43EV4%`9$EY7-8VvawKlBFQFlFLVc3tKFE2$#C&91zgd<&_&^pG}e z+A|i~GeQLs^BNj?iLZQC`17Xmo%y&`zjzeLzGH*0#>i{DFY^&;4|T+~8M%%1X2d4u z?;}LD(S5JyYs@aFG5m4Y>NGn}$zGdGQ(3&yjY7!@c{1u<3=&g^14YB)^;MxcCJpGs z6)J8uGOIsiKVPcl7WxXiRE3zLO=t%YAy`y@r%#;$^L8;O#N)rj#ur`3LoA9%v51nl zly2dgt4B>!IJmBx_Dm{uWF~#{e`sWkvwg5qC!oaKJGFCpCTQ0dYlza~EQ`J_`{`=% zGwh%xj-0=eQzv*JyYhJ>smh9-vM%1(GJ7vQXEX0TKolw~VG%k5m`tWyLQ$J* z-UG|0#hN({+44+;w6v44H z(=Jv1d98F=1ky++N0lT5j%s-$#F9H_Z^_iq&;A^MXilO@-5WhD9u~{Cc zGPtU2W-UC~l8{n-ZZm<%z3LeCMW+23dXLa)t)*K6&@CEs*Bch}nD$#tR<6ZNk!J}2 zh=Tou(SE?WcQ2dPU0cSyub#yPx}O|0`iF1KhMUH+i2ACyJo_O^xl{IU%ON^-wjrTT zUNcLCjwtmSE-+NPs{i~lTSdDvjFv6Rg(OT%-@oXZs^qyEzJ=Op-z%(w=~}`{;D7Io zhPJWZV2@lD9V(@_w=9|Ksx$C4s2PBjjygXCtUEogc6MKUo%-+z+F)$CyX+f|_qKSK z_M^{Pxt`Iye+Mzm(QujB0Ba^6X;!TBw}MT3yatNgd{Q`9vW)j0A@aZyH%a*53&DGV z`n8DwrfZlnd9uR!N@YlFt>!{T8EMG1!i~;;cJ#X}etT&^B9_d1ZSg)()7qObAg-Im&@$NTeARdI9z^nW(pOB4L+;xeL~9K#MU|2{bQgn6 zgvM;6v-J3&asf(OE=pqLOk&Xf@SbZV6B&ST9=bjC!!c^ z4}u}bqDyQpY{3)7iEEX;1q_4c73~WLOfRLGa$Gu*CK|ZOMOQw3@4~rEjEee@)0(Us zdF_)A(uQ$KV6Z-poYiz+rSrPgD+bIbY(BFVJ0qh0kMh%}!UQMPQ;K=Jgb7PC+HdZxHU zFFv{N?SH%Lx8rM@?K?#(e472NZpn!pp-xGXdgIhu4;tOQq=4IJB zGVLef(=YOcKLv`GYuxMnVsiz=(Ci*Z=0{4(KzdWrusJ| zRFW?P(WK1)N+AAGtN&v&u%{8FNlzC;Ma+DX6YSA=ef|1JaSUS)xJqT1BSmb`g#e1M zgF#?+(ea5%cDAXuZnmbWcIsBTV&vh4kHGdJ{Qnc%iqgg+VECigfTE3pLQ_*wR@fAR z7#=~0j*3o7ulipyTUfsPC`CBGxV*Z4%-DXt z{r3IG&%68Mow6dZ6g3C65RBgj1c}Dsm|PlLik^rk@R!8BNA=AK)WV=pMBG7qadO3kuG`h;W0lt_w9nYCs|WhNE>GwV{M#6c@cFABzox5wGUF<^lN7sBps1Tvo6sZii_$q)+b1S=OylqAX< zIPI-D9j1z%)K^KDhV|eotiN{dz4M0Kghoi1PBR3xkT#$&fl4jzlnw0aD zr|!{ppkP4q;Hf@+#H=Ot^=MUl2X|^-#B6)wSUPx3b)lp!24ig15d#ARvcphOtURN{ zGQz|$d#4a6LZ*zy&EAGQ;uqXD!PMzT-YiZ^7fWJY_Gs*$4!!{8LJ8-0VL3R-Eockr zs>3)zA%Gm+kEJKq8KoF9>#GnL3WG!nB2)Jj!5uIiCpKQ6aVjx^DDu;;_eQQf-9_Gv zV*o(A0<(56Pj+?YN{K2k1J8+hw|Jw+b+`Br;&*xmKEJ9*fyl8vy08N%Tod)V2kQ%` zzl8tk7|^7guQWJg)sl^UF$#sJ+t;qZm>p-R!r;JvV9f~ZnaZtG@AC$MC=AYZ8`yQp zk{_(P?jOr#t-#6qCU%%eS+b$qB-dxiUl*6LGSP@QhRnzxK$=;-DO}4p#5r0iWjQ1_ zYbGySx>f1>YsWzH{o-BBBX(v&KqWm+Nz8lmnUW_%QUiC}Za;DhjfWPrPYjMDRnG z+`}=KKM+o{?Iy80Ay=QnxsyLS^2wS15KE|Q`}cc2KwJjRT|?E{=lIRCRnt{j9Pkhr zL$vts;dA-U%f5-%U{#bj#CbMzc2e|@c%noP$86z9&+7qzm++051(chwUCDb7ki}Jc zTn~c~EA7Xy3GL$=^^Ftx0dQzh`#|XgEQ$e`zePFvLcp=%bARiLn6r6GF~z}cLIyq4 zGZ2Lz1*jTx#XL_;UzJ@B=6%1HBux4EvK|q1U~KTMy{yRikX--481dydV_Qe|nySB6 zhTiiVfdg=o>sS)P^aVeq@XpRi|MvFy!~qfMA*1n(Om-u#P{mrthSO;vy|BD?^eS_+ zUzquj22EB65m6RJA@(DZ-I&2GOnqerUJl{KS(69~@ka-(Pp&zT+!Y!9U`Di`+c#80 z=rgy#&{u)YPEbn|Hy3xzUkT5uB)!D`3hWg6R$#fj2J1iIU>?{{phU`(N}zFFzNZ;f zswQPZ*d*b2om7_&p`S&IxC6zKkQf)ZED;Z_^^p0RW;=} z=9yTk*+5@6_Vt`uqJ>?g4QThd-S;3?#F0?>dk&p=HSjZ71+j`^BSr4Odls=Dwqz2H z0$*1bKa(9eWgXyw8zmH=I)bInSLeccm{@g_Jsl42tiF__HqHkh;ypOXB151dwmJ3~AuMttN%$xmu#bikcG$4jW z8Jv1bAZ49+LVEarV0+PgSU30>P_tkwf;K09=g6>~sonUUA=z!u1AWsQjhxJOj=hFZ z9cAm!Ek2W#VdF{1s8bL`f|pWT{kUYJ@N_l?HoHB@Idz76g1SK&V$?>0aVFu?odr8B zAB}J&C;bO{d8|-hgk3R1yk3F;b{%-$xBa6vkA({sQCL39 zW1H5qPJfy-gT6IX9-p2nw`TRHph1$d*=%7U_X4g(d3-V_qXBARy~QJ7X2|lhQa&azhctNV;GJCaYLi!PcE}6lhW|RRp8Q$Ev-5>GUdp{@ zVEIbK#Fq82mls&)Z7feWfu+UggTdbxK%gTK>5=3AS1R0TDdd9seyE)zSfYEu~B-T=#1)n)f%AEw(>_NMX@*GW(U)*F~Q! z21J->K5tyu;bk@1CX1^CLySgl;eApcE|RtuZ0H|4`}k>XwDSh_me{{UZOnbxex8N7 z>FKPym5SkZT*kNHbLGMwW&C;*C^dn9V-39moo9|NYgw{I{g}G}+23KwSa$uO99rXF z{Z+ss2_VGS%%tJn(Poi(w<&Agej4i`;XEgol`$7FRj*r5BaKu7ze!AQ>^@@sCx+ef z9uz@>1TwPs;FRydDzg@jhs8-U!kbX37X#fBEUihr$Q;&5;+@6ka=9%?uk$FXfsG$M zeKTp6^yF{KKCgL%?9h1z^|GXzF8L07o@^qd<^f^pPkdvm(NtNpgtT1%%15-Hw3X4 z3FLe{ZQA!d58v~Qv)z^VEX+@=tZ=-IkXTXiNCIr{_c`HvKLdOx8HeRvf=O*F@Ss!VcxU&8y{|a7fz|fVI665G!uUApzt9FY078N z=cgF_(?Ayn{Cese?f8n_8_0>)f5i}_O=&4-h&yWV)QA;~RyLO313~T_UI-iSD4F1s zJFY5PIv-(^^aZo8+YtIk*2YOcqfE>UA|jl^dnJcu44{dNp;3)D7s&wjcgyf2U~h2r zvVu%C+HuEEh^JXyQ?kupW|B}=0A$1fnhH7q623_m7cE&Vw|bB})M29s6f_$@9h5Rd z8LwxOU@$9x9;=Q+VQGqSa8dy696Ko7#9oVn@$z4KV+=;Y;8Y(Y&RhBd8{Z+Lkf&eq zga9cZQRFmbyuwZDXf@cY<^lYe*fGkE`P&ETwukWE==Xa+c|ioE<2Hno$cWWIwaBUTCYIrcm?XJ8 zb0wV6LAdPJ80()ywmv7>0Wng-Dtf*N_E#_cS04-hP$?=@>AIW#Hp&5p`TUnSsUK%7 zDehw9X4N~7AjScT29F1?%39A`S@0}MsXYy|mkb3s{P0#>pNVHK&#{n!$il>>Q2=cv zh=CXQzXUBg06J9!on(y03-pSvb8w!7uw`*yGw5JJY}3zzxu^=NHWJhr+$Kb#@Y+Rd zbKL5Fs7S$LPLK~tnTa}~b+}R(00{~#c>|c42C&s*VP>PXSKMBBL+TWw#g%dgPP4Se zxI1Bj0{Y;btQZlU6y<{KxxQ@dJJhFBXB&9VyI7^|*oaNafS4`)&KN~57?{Nmq;?}N z(I4od!UmMl!htd9B8=5dJe5(Nk5dEoLsGoexS;-$sc5YSC#)@URLF?~F1h79vhrS1 zim!9@I?+_ArY@&g1yx(+jY`ttm={8PZk-tgz5cpM%vouEnf}4Rd%qFsrpnx%748nACzKGL_DJ*0ju}1?is0o zLUj|;2X#hL2k$wckPOzD$twp{w$?|%uvdC+r$zF##Xhu*;>J2z4*wTho-V8UzrGj| zneZM36C7vbUFG}~NbN^IDs^B6ff-&oP9np0-IIYQF$xu2O01N}Nrcr{UA=T`<$)Ey zDkCIf{44M}r-&Qp3c1%39kJl3P7w|?h=-H?J6p`)mcS81)$4OC0pFNjOo`}4dXR~_ zlv$AUK=DVB9Q$>TYx30S-tb+ee0doMVK4DMM0l>goWV^gD$Y9kp#DOo)C5mXht=5B z*ui2H;uvHU5e3p8hpTx5P3M6#NqNGUywy63U=i;CGDoEgh%ldW7vC%Gyz;cZ@^rI@ zHWuvq$4|(n4ciwz(H*D2t{E)c0}(L94dK$(2GL5+55d!EXg>#X1MIZrn1StKy>rdi z6Gh-o*$NVIWwGYa{uszfZihtELXhQ_qKB*U%ljk!$98fos^(mMu%Z_}Mo2DU3rLFu zGN3>UX1*!xjc?58HTeNYVDPvJmYj}*L4e%N23yNbry2wQSiVzeKWIbAVXzDAJkya% zp2qGAya_4Khg<02_>dGtLI-f||_Rsb#J0>A2c&Kl{ z5?*dI0S&~14N+Jz6=oQ|d4$5H7}^eBQK!oIH2q%On5ik-d-l}^PONm&Lr3mQ$E8Gd zi=KFh2-+vHiwV`35pAIxm#13}M$UI??`x)n^vM6=JCVggWRvMmcL{re=wz_ELg{;x zsWkchp#bBYYUR8)qqpB`e1dL&TKqYGfHp=+_W$t!X@`1SOB&DWNXPY)ug6rl&%fg zmF5F_ovh{40M6fI!ytem6c(Js_zU2~Z;&RjWlV#maq3||0OOr9(N%!$U`+!L7@v|o_($B~gUo=guh zEz@I-lO>BJ+cS8KTiPJ8onSQ?_A_V5Dd*iqJ`=q!Oi^5pU?JV8XE^p85HY=RylKfA zoXf>;ms!OqkjyPO_*+P2b!E?2bB@t4?Btmn^(pc32L!)hwlKa!-)LiAQEjwTN9|yI zXplp9cJ1G*QR2mv+<5hDsaDs<+MH(broov8iSc#=xk8ejq0Zpj`SG2baUqQODXv4& zt~e%T=#!8t4+7Z2r})a-T~7q(tvOcYO9#lKzo1UR;&DcZ0SIAUBy+v{kR165|E+>M zQ$sy&qy!DZ^vy^li7G{r{ScrtB~+0|^yZe@lY4q~879~BRzWW`>V)ahR=pd_G}J%S zDA6ob^v-F1$t_Vax*4@a)%mY}KGZ&-BV zdT(s8hWW6m0*@j-p5m8z10MtV{;?(X=AGM(N}<^if5{RZwZ@S6#@sS$B;$o<9Xx}1 zogey6(r4WuepI_>-A%LDiBla*WW#5;_9sX9Z@2!x&BdE6j=e&y&GXfH_|1wafHdFc z7)fpOd$q~!93~n3HZLj~OVT=xPg!sHXg4Hz$Hnw@@qce_?G(JjBzFUy9DH#!Hj=Sy z8u`Q)!#;7Fe*CjN{$Zbq!TgILGgl9+B~QidO|+5>5D)X>8Nsg1_5Qmng*u!l=}^%I z4tOk=+Cq<;Z8V&QEXM9yXQhRy_BL5t=|RzZZJ{F@pG)T{v7VedZ)dK&VzGW+M)Z-9 zXo`^%@)?a~xod(53SXrO+)Aph5ehayq-B55)z9F=ZU#M#aWZ%h<}Cm8k$XqMm7bGW z$Dh$cIFF6#hQh$HY;LOL7dhC#zIM*=X-dTKp!{Ic0b4oM>xH3xzKHX%)2zq~l27Bd zGc9YRkzm&>*L~mi!MOA19EaiM883)wzJF_@bbxoXK68B>J#ANJYw1adet7wuA6l$0 zU%Vi@Sfa_hdPoh?ln|#+ZZz`1k6>^Rae*w7p}RsXYb3!!=HhBzF^(f;vgqIw-JTQ@ ziKC--WyZ?b4hP9a$oNh?K#dk>vnSY6L?Ce`N~O(r1;5ucw9o*Bo;N$#BfMU2*t zF4jlfFh)`!puOGCb-C|+)b-%?Q&{xIjiaeI8v^m$P%UGBXLamHN z?R;TmJ(ZjG)zA8g3NVT!qyWs&%i?iBZV0dZ2q;UetFyY}|0e!el zK@+ZD>G;|G$J=r2PA@)xIyxua@M4b_cpM})OIHp9V{4*#J7eh6eqUP`{8iIkf@s8g zPBdku2-2phw#9w=FZ;f7`<6Pk`n~!G7+jK9st=1}AB;YHaiJ3kvfyN|MOSE1*J^734e&Jiy0@ zZFABivE`B0WMY!h)#c(6k(cM?WuBOvViq3Ir)3})QZwKZ78Y4Cpp~WoCV_XudBV4o z*thqSvd~567pD)UkHi+;%)`cJperlOb$8E3TZe_EgGj20iq53A9CF(lKORLXKiRJ^ zXB&;g0;c`uTj^`9n)$!QW7YpFMIhZu+nr1aXI7ysXNX0>NqnXgDyr&;p2$Q>-`pT) zh#sGvPy)NNU0se&m0F2fccVd~rYPwB5)wpACmDnN1AtQ0CYQ83Dn{7qBmt$E5rql< z8EXyxe=Igb$KP+u>brRES@a#fEoCBuEzobfbm;QayVoyN zc4=9N0eHsTdxj>qsgGRyc}-0&6px^Cj4Td@0-?Hoo$6Y}Ltt|8?P2$YsJ(2Hx133q zdlNiN#VGA(@|#F`zG=!shya@jiV>tHGp#Np%gzr1NqDT{xU!6sSjBbQoH28=f4nvE z9OW1Tf{tnDG?S!h0btm7Kjc_eK!YHiQh;~$exX~>`AHE?NG40fQ4U)I=)7i4KU9v8 z>?s76cK6=x*_iWLMZ&*$8jU9ve5gn%hFP{~g4!IC5Mmd;QW*+RK0BL#dFWAU9XHIIA{<-NX z41TOlQ;eu`z@KSI03?s4sn+_DS5WQM9p$=y?q{-5`3MrJL45>YwA`&$%g`xCf~Zwc z?r!&lNuOT>{=DR_fQt`|lJJMcmY3NH_pR1M!73XxPEa_Q4$7J6-5jelR=eiT6*Wy5 z{0ypt4;5Nwk~Y{ALG&6J5Ia!2V3 zPrqHrbWua|@WT%!m2u(&Eyknvxv!aZQl)&_?8?qdU?G_YAg=5SO0d)^8TG7(XK0^2LIx2%m*tAq_vJ9LmEb z_bv@lKxMP+J$6$@k(kQ~rmR-(T`9&GRj9qXZsBwnszDiL$gmWn@GZ*6X~|Xz1JQPo z+AAe}&AxLUA-*rPB#wfd^rQ~=oii@KqN?AEE66+uBdkAX&5E9yia5}907=j0bnlr* zbb1`JNitC@g+6M&Tb-#`YHN*AeDMg<{Rpnj10H942#pFC%FLEEJ>;m8#EnR?@qCBB zAyb2v*OyG_<`}n9CKl@EVeLT+pYA#r5?=mRD<*7i**Hhow=~H*ZMSc>V%nxny>In1 zW0cr;-XPjm1B9pZE{uH*Q=)_73DQFusfyFrTwKS@$~ma=lLN@=o1vPh6d`Fxb?y}b z==2Gi*d9)Z)AJIOZ6LeeYRzT7|qmX`xkmD zJcRFH9PA&(pRJ9nkQtV!1V@3$5fs{*KOgTKz0j~IDGXLi}n_Q--Z@ETnPO7QFXZ2Ne*AV32l^rZzNeWj=5}flo!IJ zeojfaOcITG8-SJ_iwZo~s#eAvlWr|(XLp^Gg`wgTfUQ!09xf=BLjbSyaJ1NFL zd1hp3Zz?ock$LeCl==?^$;(C#R3P`3+|O(rY7-e(QC9_}0lqkep$)zK73<*J`?<=_ zI&ZTksj@SDoNpDQhHNtC%V`3MRuAsC)FlH4I?toXr8f(jn%TiUR;^IK#WNW>nZAh+ zIaspl&DIZvk|Hh}9Ia=`))xGB#4K}5RH596ibW^S-$ATcD!|(WsgYyTUyWZ#ol^6* z&$MvTo3ZYd@P$l|pVLi2ao2C%sQx-=`sYLr@d!%Uy9hmXYf|p`oAD4Z3}UbxRY>|; z%y|)JOtvIL#y9mj)&KX)d_U;cCzEo{BnRd(j>4kSw*f@oR-y_3rm;m+iG4hT)BFJZ0k&v*{an*6Ce}9iPw#rA$f~cuFbGpTVKWybU6W47No-ZX)Vtv1c z&b=OlrBu<{cuqNjNq-!Lo$*kAe3UBxXT4qH4^z*U=50L>IsFVU0o@&<1+7qCxCQaR zne3lRQ#2ll8GBm=Et%m_j8s;Apgo>inSg<^R;haS#0z4GWdfe(%SEXXqg#%p@A@9Uwp9Z zck2e`l>9w8On>zp7kPKhL;aP^qFd!TJ22bpP@AT@+c9Xx&yszR&tp zS}nnLGRe6RTWl~a{%N^-XW?ymX}UhzPs?U z&oi87;_zqY`W)XgK-S-&KBCVxR#1pDtInUaQeO1G-bcuZN^>S~oP2XB{;5gZ5$2rh z*j5dGZW}FA4oa#Z#HtC4w+RThf4($Bw^C=t5ER3lLtzxnMrPuvS|O|qm(R!s)#O0a zqHNb=W0W`jBAK+P5ulKG(y&0oMk7yS2T|nDsCx?8iCRW3ISXszcxgU&YcPKNI)e<< z6=&0Jxem2j7mEsdAXZZ$`8uQGaT?HrqgGI>X6WQ=N1kvJPh%{GbhEQJQc^HFM!ckC zIF{vK5K-AB$M05(=EQLJq5zG^*mDuP*mi%@`!MKcJmbq4v`O;09);kT$dBUyq7ITj z%(2Eb02)e?LsCR^9@+8Ba~-%B}H^Ij53lx1~VIfCYCI+mOh`)pKhzA!Hy0+cy6=L=Ux$c5to5r z7mL{xxw?B$5x7%PiF7^%>O2vNp!*(5LM8hIHzS-uQB#@oI4H~RhyQs{1}kpj?Gcf* zy%c9X{Us@BI#^YOC4$8?`&3k-N(8`qCWkOJfX0z>i9xMb2}5EeH*!*ju@LcN;tw;=s@kKgbw>6Kq)P3My1 ziFDUg?BN$ zT9RG{cemujffX+kb!tGeWBsL`;@OVBDz$s`ufIX#yPih@o@G>O8%;$ZGaOXNs)y#P z70)Z0^57;^hV^mC4rjy4UnF;PLe*amYc7#yNq{_cwYrC#r#b^KT@D|_ z1u`;~PUH&vNK|w}8?Z}CHxxqV)95c`LBh2R+j$=g`0y|I)H0k4rz5@Q(^+3urzS-( zt>F{|1_V<#*0YFYpwR-$jVH1-%V&sA=Z3MqGJmJ6dY9y4Y7C)fiC!NrYoJ5}4<{pNIbqX?(ii_XUyb!}36K?475* z*^2!q`}qp>YjiP3xYe$odX*_9-6u>^fx%<%9aKxnSXVkMPQaweQC;x@?w&n5v=dWU&uk96W zPqGu^u1ilM-xZHvr{CGEN<-(vMNjR`dgAreg*ZP2pKXp(B)Cbo;@4PL3@Bn(S}4%G6xGUn5cQ+seZmij zKn}F94Zm3!{M|l4)zJu&74ll{Jq8-=vNio?CcmR(_`R96d^zkFSjs*_sCq8)nZY-I zGw>#G$QxdNSYc9P+swWMXKot!y`9d?CAE+7TnmLCcn{xIuz%osz3V+1)6v@^p%sT5 zIScLHZK(Z~3~tObr@ZX`;W7qNlL&^=n01J7-1zRvbF@1s%v{Qc@AOV3K|#W8-#FW_ zXX=B8qww(4z3)qaav?1$Exyf84i4d)PJ?{Ibq1*g_ua)UNIrv_tjDzE#sKo(9<#~g^$WB96wznD2CXUEzW|@U zRue7AoB(oD6yHwF6pqKsO-?tM%~U-59k&oOwD3NZb%?g&4sYH-YPivcfhJ|*E5zW2 z5smLVuY&~th(r&V2as_umQFKBpC<_`bc_F{FT7&=uocME5GlQ8SadL9bUzoeTf_Q` znSoD=0kwesxe(*lq@nTdHSIv9`og+fAfVDySE768aEueI@bQqoPKs254>*yp@t;%x z(N?9iMwkA=v_#>O&$pNgX6G0glDH*9>Aw@f+(v_!^$*++0~K-a1~p#EVZ-kJvVW%? z6KI+I`**1fyDVmCtSwYJliUC)RtWtM@X3PXjFlpBK`q&JwIuG%ROOo*NWb1Z31!LB zTX}^uI74P!e~|B6#^*WA!!vjU2=L8YhVqpPHk?Nx5w#4~_tTY^QGP-h3;Kf#u=aPa zriS&xCh?16=90$pvg;@XMmH&zI76jRyxF!xmSlO}%m0^|X^{FkD~UWQRgEr+flSuv zlvj-Z*+=g8xP<2A%&N2{YsZo1b472_d_gmPgAv0X5g)ewe=E$mFi^U_MgLqrQ76eC z+>ym5dRfU)2(p)ES<*^b3214wfsA-I`G&hs@;OcR0v{GAK%)=lY_hCsW&v}_Z#E01 z-v9LJU)FcRwb=S6_QvThHs$*i!P18^Li2ClYwr{Kg>;(}>=^`CIhx*VzqRyf8~&8N z)-{qh+c?JI$qCEQn2p2i1nJYCGTFxFbT`qjiz@Q4ZBq&4#9*w zQGTN%Y;50>_D=}x=``lPo;E3Y&wm*HC@}J|>^kQQX)fE(?xPPCCQw{TF5qc~)<>yB z!L;RSQw65Eoms9WFp&ja-)t`8VB_jjGY(l3SJW%{w!+%>?&n$+y<`J)_OeQ^o_LTX z-mKfwpG>OFeAC#V8DamIyRq1_p>b@@{Zmv`5a7`A;7PaWOAx`v*}zvKbfjQ)BoHzG z=~`IL{-e&&p<%zdQE~G9cM(3TGX;;Ma^a`l!qDpK9`?`kx6~K7ih@jUf=feJ8Pbl? z8{Vr-)8`)mFX?%?uaSc-6W?j)tg8(?=}!;ck87+>-`){{;IqK} z(~c!(NBSrA*Bh9&(l57pjf}Bp=jwdDs1% z$@+6_#An5?nMJKfPlp$XVeeE|LG2b_zg@O-R&djd>{HX!|7rD9`?v?NmWGeZ#ic+% zqr4|r`|nyg%u81LX<_K;t3Og##M)cFrP6gZ+^aloa< zX%pAHNNb;1J;5J2Ih8Dv75XNab|*M`AM*O)uc$TYRY-s2mtY{@eJ;;($tamNT05cb z@7s6xf=ho>U!5D!sj8Mfi}>^7PT{(cDUA;=2N?Hr~}>7)f1?clrc3m zR%|Rs5o96b!dI;_0%Fe5X=B3W+&b!K0R$ctxieE zA(eP6GkZet^X?}Njo{z^1b+jtP9|Qam*UXzvkLJsN1`UIfS~UgDlN8UZj^#9yR+^8 z57_z~_PD`0eiPR*OpyfXoWX}4dLv~=QU5$HisnWUa(JZN8I0YW9~yx`dsF+kuhq(R zEV6Pe{qJ+%J54mMG?HD`8yh2o31EI_OFFt7)D5W$b1N~pq`zTHF;igkZfE_j-NEvu zC@zQLo)AO)TpPe**9!K+@LP3Yw;Q&reD@wv$DHy{`Y@uPzwB3fNgyr%4u;1eG2Rz2V*a%;( zS34~lEPxTRdaAJrZ_`e1$|KVggl;Fnjc=;xq(#SS?cF+pjrBF}_Hxls!h395ud#+0 z#t4gm^W#U2ZNXM}go(ik5An_8f_LMTZ?&t|#l%sj=6YOu!08l>G)JCaVG|jSv^^={ zO*5@mwNK(W)Hk$LdXuuq9%~}D4>Ligx7%Ro6hPfhGLbA=K+NJn8B*%&KpdW*=R zeeIGI9|Lu3uVE#3teg-#y~0#QPjB)~hIgT&mUv8tm^g?@qo^S&$d}B4pHkyJwK~>R z>9e2j2kXe;mvs6LAme#{ZoXj{(!yg>m*g4#_(t4+Tup?>J|#-fkszA%@~ap@>!liWiAWNQAB&sN+_&n_rXG5Q{m zzc#+#duZ+@>Z@o|j>m}1MExuk1(H6$Tz;o?>F4UUfctUBV56yJ7kkdG0~%u4pPYM} z!Smnu_r`6XTVMX}b8NT;d72k{ki3v`hdA)06RGHw+b{$@8NEVE9&iRFxBH&|{*R2z zgX^MRQj!#%bZ;>Gk(g(}@-wQj0oDjciGzq?elAp&*1x}3{U5IG`l+o4{t|uy!QI^{ z?rx>QB|vd^cXw-WcbDR>!QHL6yA&x_C|+7>Sw8!GcXsx4PV#VW;QPTt}E33?S@2NY=sw#q1v5Y)+^dA0vXOP;a z2jR38;l?P+wv3=^hNx@p=rUvk(4hq%MiJYi^w!8CT4 z<7Lp?ryFVos1!v>(G=`ahJ}k}e0R#BhDHHku%1x5acjn)!w7vjDOpNSo(6j zUR1`rZq3=JVA8fI2LSL`t=G}@6n57uQ?uKf+fPgFN#+$oC+V<`(r9h3vh+ge4HfW66LhZOoL{;OwVKYECfvgN7xK7Lg>OujHSx(j_V($wXQ zfe$uVLj1<4ZN%2u2`cTo(Ko~znl`f5!N-U435LzSK0QS*rFMF0nIANr8-MOGg;{=| z{Io47{edG7xL-RPP_l}MkJbS2^um3jUE=&uC>u?DT!)x;hHH(7;eh&>)%H)RxPeFC zaJ6p3v%SnR%aFyMUpb9@cXYBgWFhDZMf~NO(^x;S(YU6s+^rN*ahHAl*7x_gW)Wex zE`@D?Z!9P(n0;z#{=ED44v?AL2X0KV?y?PU4#2@o<7i&3EQ?D`=rVvOc1N}Sc&#FP{iO1YD?JHT- z>SBgr-O-wkr7{qqWk<$kTQ8mVz(Kcm{+*pco97bU0i>dWc;0Vs>2n^Ar+@g@pKW=Q zn7M3Bck3A%?{mnqF7LMXpR3Bg#EvOgCWkT4uVygeWJPN{xnxeq2x@I0zW+;4OPsMw zO{mp?bSUCfNs;dItoi$xU0Ps4yX?(!B-)ISOr9AayZ+mw?Iu9v6Wu;G6 zc_FXIiA(hjUkd!ZFa7I(EZ;pOVrw0*wK;1%zB1y^`%-W8FHK0Em`MnJA$Uv>nuOGH zVjC2N81iURJa`2}33}8(^f5&r4+l`=He;4}!8qSI&%FLjfEo-}k}qL0nmRYnMW6(W zF6KdFI9T}ul7fbC?$WTv{j3?4{j7PT92dKQ%2VEP&`ny3At@UgXV3KjW!Irc*>hK= z(TtY74QA1jVC1jVDZj;`f8VCAO|GftWLNa~+D+iTnh57cSAM=%LU3ag1>=AUW?Fvq zBog}7dmpni^kNSKUY&rA&9KT-9#$YW9X`uDUF_FyJXz3_IK$Jmo!0-J78D8Y_ES5* zH@7>J75w3c<15LZtA`DeN?qj`7LGj0d0mteNnY139&stZXYMd(nDN8@GVENv?)(6J z8)qA^HN{TeExbGF!bM7V#t2pQX8vpIJJ23_))~Fo8eO?YC4r|cQ6o9s5ir;B!9O=< zCe5$1!;cfl*&`RNQWYIF#fW0>3a<){+jMIz6~qyFGaww8BGK zxTD;3B8_Bbhj3a;hoDuvqOfH8?0DHD3xzWd#pn1;FEB?5;=5YMjtjkee+fWZ0`W_- zgh<424Rc=?oBc8~XQsgXClOM_cPd+v@0l@*nWM}m;c_UaGDb@53)*-;6e#J}cm%A7 zG8N*oI^(+5(3Kz27_3A^&h;=~l2QB^-tLJm4L=6L#hy}Nfz!;Or- z%hEX&%tVpxqt*QdBwCiWk9ek!Ku{WVXJ{<3-2RDSQWM;qW!9C-0VY`)#evL&p=5k!d*A8|b!OL$22QZ-Ro2f;B;#DvBlDtg>=)KLf0bKgwjfqaF!Ga$u_ZX@-87J?Oz+XN` z**NCgnlxdSlw;kL$cyOcPrjfo=v}UaPABz{1qLTnH|51Novgf7HqS0R#Ei-I22~1@OHX z=4{FRIiXg$@K%X+io1*FQRF*ii~t)X9LCu;Nu{i57CA@wSGPxq#ef3?!6nF%!{_pH zpCS>g6z2_!+XB?HNJ?CZXsFx8=G?Ofj!n@WDsObPgAMaAavxK5Z zD(O5EvfBK_i&7e8SIHftaA6sKx)=!%oJ+=5$AGSOfVI3=ti0oia>q`GV;NAFM#X<# zdYlJkI<0df^{>jyJk_d@@68t{655F^tfA#flqtKJ) zHL$YH&cQIPZZbd0?9b4wEXi?oqWb3vZr?$YaYK48J zSlt6f7-i-Zou9>RdhifEQC_8oraQq7oxVZ&NS?D)0ak!(KVkLMuK`6T2||bJ>gj={ zx`>9_3aqQlf4^WJyP_e#;Q16n=tFvn<@OGp2zmXi{cq2B_|UTRv$BA;tZ0_R_`QwA zw6|+Qax6$Udi%S^ zENiT{X2~%fI&16dLJfx0CPSYwVip~#Par^6DB5b6&2`_@H+C+<3<0Mya&}C?6Ne$o z`k@5^QoEN#-V;s@Jo#)~Yi+#3Gr z7V}>84tZ2=uL(mAxUIK1un;t`WvI{8!1gHnhHH~4BrAuCe9l>-7v{&t8{7#_n2U3$ zsM=L{eDVSkiWWcgFB(m67*7|$ED8&iYD+lwWT{w19Mp105PS)XuBQ+8RKGfRc^gsP zGyvA`S<4v|5uQNSDwEF~v$=`W>>2YlczmbKbge%>vNhyTejPn1fXXK{{DMr04-3l6 zvmm1P2OBSk%(Vt@Dm@m2zLnp%(H1ljpm5|?2TFf8F}CU zoM!Fh!qqhRy)6TYYAjlj~Y!pf=-mM{DgZ~xkH-r<{ z{qSVvh@EYK&nb+qf0_gEI3viS*|{oj*nF!xmtC@dt1s@PZ-MEA*Pi#tF;3?^nxz6R zlG#)WS(BkGT|1g?q1c)>Lf4~3i3-{BgssL8Y$dv&3x})&%Z{5+Z12C5zn8}vhp9a?$;$K_TkCR9X>us`DNY(;OsF1zZ& z792Zgf`gQMgO()FSNe&eglws>MV@XpdqXsI@CSj96M}yiZst~#{_k`dTv1iD?NlLX z2fA2>3)F|qA{HKE)mPQ`RbOb>y6kpx>L}#?CjMQxn%@B2?LFfAwzyrmN=tn#lQ>Z} zwiW(SiFi!E%Ilb5?YQdoMNleGb8YYR_akIZYf)_njL-(O^v}*x++VV`8MD0)DHV^c zqxw2pG`%}ZUVnz@=jkUc6``BVn%Wj}ig`ja&I_j;48Fp9nx?@4pA$l@yL-ocJOd)>^ z4kmQ%0SD{<*xPFgSlle+>vf%dhxxu`L14>J!AD#4?H_P9?y*nNyyU^f8`myIH8Ci* z-d^Uup2Q-4v)aGlZ4r~GN9@B~oek_dcFI7KiM(k~@i9YMrc^6M07hsNE$h{L3NHHWDho&Kuz zq4c>Fp%y-zol4$F+}y|O+%&7~<3)Ze__dHac+UK}@pylFg__;-?pXXApM%sx`rGZ4 zqE%-Pz47GDo&|x?(Alx%o-f`#6AR6PyVcEAvp*;&@ueBFuA0T%74Bh(O) zLB5jKW>d3JdYMT!uPbt z!Yz9Eu7`k6%|+A8@|w8B@}DX9^9c>z?ND+$ILBsaF}LYkCN?S-IzeOqmO5NL~UlUa>tf>d(|TM@KlPXQ!ArmzY=AH`f%mnDUycPs!$q(GJ$TG`6vOc zpmJnQYUz0DpNG@ki{^5RMi~Eb97!cCdk_02M9*N1l^(Tyg&@HdIzE5My3h4Jgh3goac}!$+E?(!D>5n}rV1%01byafT z@Rlba>zT(92RIM5>M^4SGuyFdya?{w`eLEXm_k*n^Jv%CE@O+=z(nhw>$F|QUW;@y z`t)1lspb{6c+x_|T`fdzYVa_rUZ+>f3rsLC>B+N_*aaUau3qc>KC^C#82@jbU=%D@>AkNp-#T37u3Ul;^Rup3Pg!@*jA!`R8=7`1@ecyp z;w{lVdbFnsYpoLkS?0=+^*Xmp0_!&Is_rLuK)J_E!w&IVO7kzHEHU zuKDltUbSKi4Ts4bZt#Y42E)_?NC3VVHBDniH-v}mmWiScZELNF250rnb$TJ0#mcX4 zbEn!i{X9H}%0w(eh-+|p=u+*QAgG9aM1ANhqh4)B?>S?2IO+pn5!0H+hcF>@YZnEg z=-tAm!E*L`dzYvN1j_Q*wwe|}Wr3lzT`OrVVU%3+R}0yQWiDE1m<&%@6K&6@vnm1i zrc8W}?>$Pn2DQmYv`Ebi<3RgrsUIJTh$+S&Kanc?EP7S)FU!I-)#ZT zmDE=ldOrCSmtiHTOsLQ z+Zbn6VE%MGWSis0h0{cB;nhBK^g`_usXDxbM04gFfObIz9UF*Fjqw>@cWIR{!J!3> z>j?m;PA@)1hSVfax)|_4AICdelc(Du(y49Zsc9`Qs-XPFUyzG9>ybX2%}4-1+>qCpB#p5Ex}U2jA$P?SM+=gq00l{#nN*714Z z4e}ODrz1#Lj~7UNVXb7M>iz5rU438A$f&HtXSI|V&|7G@Q8VXE3zQyK*`(v~DOhXh z-166wpw0>xns~3NRQ;wZE+YXZSgTlYHo6nK=Fovui`ItP;oXX$$5U8SqbL1~tS+~cs%aWV?Bbla-o z4}%{(hyqCA&vnB>&U_yBV_d(!MKG_{>BjbdA7@d!A3HW|iPldcKAmO1KWrHc`tyC1 zv~%eb6XiP-rpghBL7t}(G5-{KH@hCLo&z()9DydQ-O)J=Ql$VO#5E5K0qaA7Dxc?W za>DMg_?Hi^4wfDiAe%cW)T{kOlAf3IHlCb@!w@^cw5LMbY0i_U;0c_6Lf!Jt1-7VO z>ar3RbeKfLW{#)3kL}Yc5s#0=t6n`w<8Kz<5H%~0h|uu*2EH{>eq3HCH0A5mt;KkH z2%*qFjwva@X-@XZ)+pgLgbdH1c_}sdHC~zC8V>zyyv>$M2q)IhYwIqeZd#mi7E1S> z{`!3buGf%&;iz9{x|jPk<-5%~+U=*bw>|f|VW15ZdxlavQ`9)4d0e8t-}`r5XbB^m zF+j!!9CBPKOka1&475sW!RMYOx6Y|)P|%-%Q3(gn4X7J=yPXh!`^bU_ z^gG2`~M4VTz>!{?pg#O(&0zNU!@$E2Ip zl_vfoe!B$UXJRjE&W*L~CXu5jHhdJDCK~*2IRq=dUex_J27CCcZUKM$D;5lD*9#8{ zi+l$}qB?C&!mmtmf|3l9`(n?yesoX$x$(0TKTsO~fv=N7$L-7AsDV2ILs3*F>FD&l zf={^R^C*VKkJqL2_UeQq#--z9*T)dzS`u`LoZY_~y$WV&x647YcX&X2$~_D8n7#+V zW8J$oy=m8T&m4i}uyk^++I@G+Vh}ncJ%*;2XZn7lEBS@lO3knLv(Yx2p6J03*VC_h zFTXb2g0esE55p}BXYWIB^73A%tja~NFW&hejRk4$%x^5p#|*(nS4k#7%AlB{UPSW1 z9P?$N#SmYkyk|q7Xw&-^)fH*q`Ux|&PEJ)_L&0+c0I}iQQyX0&zs;E7HeDMpy^sYx zdL9(75I;8t{qQ%^^sCjuAMD2N9NHb{3C;JJ4f(qg zNrauZV?yTb{QO0dyyTK*Q2bfx=zmOlE|F^Q34`sTiDNX;?DQ3Xge%59!6OV%T_u(! zZ*r~fSS+$4BlE1?HoXF`k)wWfr&KaV9TE^@nM+;}K#c6ILVZ#@#w~8a`n}^2n@^1K zsm%5xh+{DcS6R3*Tb>);Y0Uaby_0F^1WEK{e%xthq|DCqu{M0?_zZd!(`V_NqM^7? z2}3`j=6^+jZvz(@!`a2_8F0z)HvuU@}!tKMuf5xnmgg17^@G?8mZ&GVA+1QX^njK+! z!q`}$#$w&HZ|w;Yk6fCVBY%UDpUrds(5B?&5K>74^Son1Xc{1vd zP=+UdiHNw=)|k|HQb82>xt5=32S8~lP;?v1v{%f#eF>pu+Td9~#>ODqf;HPdF1#n8 zfci4Vnl(hQEMzms$)zjn6I$GGci}fd513cRcBGUF8D|YH$;PxCXQgNc6IIcYF|0%z zyZeo(1JrCZ;lQ#;#>+scOKdJKYsB8e_Of8$vfydjmByerFt_+ut!`?M^7l#S5;;Bi z<2z%NEC4-<2XAtOtYQ=hTk^sUPV9a&CQ;>}gvF$bX5)O!koRJrNBygmOPaUdo8)ZO z98X@K@PXl0BuJo>4mHPJY7&cMm0~yz{i=)_WjwY;2oQ+^FSs3%r$fp68&|xR>p8oL zzphyEwCy)B?K?1;%_W@Z?w`e{pY_$jcPYR$D_XNjNi3OIrfSJ}=1ZJ)JQE%YH{K5p zhht8h%*p|lf`v(s*1RHbasZ-vweK&FVAS-U?HJ|w3Olk`d$jc9h+=2aVoW@QMKbZv zAdU|ftXRxC*w4zi!~w6{2X^K-dA+~_$4CqZY`rb>-Y(;g>Cz8@bv5~Qb-i^B=;?U@ zB!slJIPOuSUbQg}snJRS-P#%42+P}^KdFpS9!4BUa*tsq2;L7aO zZFU!ju{A316wBzcN%>I<(E6k`HwZm-NNwl0{8|^EWm3M(nVwWCW7AOej2neta z?@o7$F3;bch6NpF^&S4R9Zaw;AEPd> ztB%m$UE$*0kw)FoLEW(h-5wO(wzJ*weH~$a@U9f`o=l^j?4X|9f}WJV5B#tXMZbGW zD0<7pdn=53tAcuK3VQ4MdK-3oU*RzrMPI9UUwc9C$Aqr#-LCF}j)2|1{NEiN6#b*( z{o_XclR^ETjQY~+dy<{HQm^_KX1kyT{cA=88$knG1p_;M1HaFMcN8m@(c6#32fsiD zt9D9Z*_a7k5l<1x4~TS~Bmw&NgnFOco+%ozaw4J+QFF@iPk#>qD2D+OcsFUZcDWI4 zbhXdF2QU5I-%bvHHXpL=Fm6m0OS{B9Vjm{&AEDeEp$v%WaA>@eFQzvdWt&X%{EiDB zdmnTUD)1Z@jRo;YjPVDf;Zy?5VQ4&0VwiUAoQ%iqOqAo&n7rSf17_CpH#A660LbqF z$bC{{>KtS0m}6X&Wbg5bQQLT$#Kw&q-ZqGho=~6y=w3ibPrwfV4#4XZ1d>MtpunLa z*bz(-(J`@c@d=4Z|2tRsKexNDYl}ty7c~FBJWgs1jQk&Er?Xwbn_xYU=S$^~&-#CUKK;+>Zr_hv;(GBd^#9G{tk#FJM z1hH++Q8cCRg@r6>D9dpyW43)+Bwf+}mn)R{u@1g^<^mh`R<^tcH7Cgu&le|hqW@UF z{HNnoNJvrFeu1Z}2)$UOtI4yTW@`UJvB}c6tv$`&F`53a3C4OB#Z4xB5NcIbdzSCa zc4kxHKFNAsh&!Nk{?Y%ew)(B_&EUR!8zqKZzi-}=y>6Wpn!RpYkWXN5ZPQIKZzMx1`PL4Tt~~DC^S#RK_<|nGDc}Fh zcBA>Zj^d_QA&b2^%f?VoUky}~=|=PWx&C(O55l$EFbKyPHjGMAcsGJh@JF-eFnLF_ zRgl;D9zIGc9NaQV<~GOE@fdCVxd%MRo-svLJ$FCD(pGpsmU+X*3(3i+)S4BkFKnBY zz~OLdvWe$t4`z(<^BM$Q2Wg>l%wMOEs|j;!4ecsEz-mn-7(~M)WsBbH~ zspTZXa$Y}p!5Hio3#*$t9)tKR!g?H1E7)!>mZv#(2N~xwE!429N|eym3)m{<%eT*} zlFKR}l^yACT&!5XrU3*rL5Gt3a)C?L#n<9@oM<0{pC)Kb{u*}MEq=Vge~Wp8L}zRs z1~+niBy8!-;x{Y%u^Y}Use8)(hHX1DTHR;;qQ3d>zhw`c<5fD?a3_a(7>4((!!yS4 zU-_u;eDy@<|0Z(u2!=*WxhiMOErP zB{Axe67s}A_3hOJ$8Syc3O=DYw~uC5nem`-F4|hEnUvzvO!Z{^Lc@!usPaz(o>3%W zO^1Z0tTwugN#$SsZ}QX3=geg~C8Hu-94HWzqcppd1IpzSH)|Sdp3{F_$>TIVi?H^9 zNXk>imocqkZVAYnbgts_6IF4f=g(WaJ{9;Fr)qkji7Xsx&3LLi!b2YUX7)Fw*ig2_ zmIY(>?|d6hH_`Xz@>;n=U(R?sdgkne9*cLatAtv%=R=S2^Oh)Uz+HK&76)3$NEKnC zSIgpCXs(4JrD)w1osAbgO<6hj*XQcMo?fdm1*rZ9vf*v=^|YM9LrBLtB}NeUfMfsoo+WmL#)VlVZ;;sjs)YWPL~&k>AR}2nJIBPS;@r1n@SvkSQz=lMa&8MsJGdY^}yKW%~E(H1EJv?#s0Ao3NfMm+xZJ_207je#YM_(%5m2zV6HjEM)_}{b+x@hXg9`*1V_97N(C@ zV-}j61z5fuh>@ib~nRD`yF| zv9ZH&%7eI7xg5oYSgxk5F&>@Y&lwfMUYIV?ZlnV_WVwW~B3i^P)hEyF@@X9$DLd|O zt8z$s8eeKuRM~!4{V-q@@0|?E_KIUy9ZLL7&7^5RI77J-mb9GgxCCc!Y3!wqQAMFM?sksZ4I4hy@L8z`rNh~R+DXw z4$)2{vZ}kD-x^9fvhb}Sf)h5aRF{LkUs+;223h9y06f*&iP|@N%go4?(BRl%LGpc5Wly1y2MPBZ~M3)3BJH^^xuDKii0A zt{`A-2DqHD&i)XqXyc?DM!N9RH#P?xRtr==2Y`QwWaQw3)9mD8n8J@dKCPk{5&{Kr zQS@!}Nof(E##JCN`R_Vv{8HjtB$AwjNYUR_1#IB@7UtS-HX;(vo%wnBgKS;#r=&H^ z!}Z^&Kxh&1QEgDV#ffCaUegKYPnvB0TAg3Qbsq_`9$c)oBKXY1S#xzhRYXXLxWEx2 z)^db-Bi=FDL5EIR*Rr|o&gGcRA!F^Ju688m63%3;FydI!2|ODXDOtxY`rVtk@&CWV1NBlpKd?9N_s z2yxS&amJ~Uy4~R&?MPa~0(G5^L>g)pkFjYYaUIrCKfUAf^o5olLR$nvh;idtMBcC1 zs|;m^M@PkX(|g3ACXmMpnN@KjmbfS)!2KF>@k(u7Ge?28sgWxzD(XB)_&)aOB(dSS z?gVW~d$~06sDTq3`2Jx4WAOXWgviXpK+bWXiMx7_zYlFU0Vvg0*9U;6q#f-Ogz64Z z5K%c?i>fDxA>g&m)dNe{;GQu7?P34~28qVzsd&Rk9!n4iF4B>;qk67nA95-}UO31h z6&0F_9tX@iwUUyu)?Ei0_6}2B%fF@4b8xpW?OTXh#TmOxKW< zNKuTJfGAKvDT@l$l{eN5BlSpDzbLO#_*NoLm?>%sV8OOevD?p<=q<%u6I-0Y*N8Sfw zNkeadmO1jN2=1c~5PX=^NeDcYd94^BzYwCJxB~@P@hA)rYQ6(7xUPtm-Uj;m*Um<%QBud=m2i$;#p1g+EEIL5kbfgNi zIT$pIs6+q&_JEe!L5gfC2ckK0+OdRCWXi*AV#QsnLaVJ4;tTxxDTI%w6rly*!8Vuw z6p4JNJTuPcl|@V*&R3g()m zzNb+~vVbC1B3p{Y`!L5MYJZK8qHDOHCeR`Y)p<<(`=XLbjvKTt?n|zMoLU1M6QTsG z^hW|D{Tu}Gn%At03p=a{Vwxvvng{&Zy)Wbhp{j^RFkn0^M7;%L7iP~wI7%+z>;=@f zQ85L87!I?^MJ$8mohUGH)jGHv(d$TYldr~w*mdG3GfOZOU1{lfUsk|XDDQO*(pA5w za#{pRT^Wq}Ci`{dlW)fA?WBqT>*vnjo>Y0KcB$QuTPraDSyJEKeX+|$t0;LeEbD?J zu6;qWVwK#(&yq!bJC|+r0i*k#?7dw?GDl9=m2%ymvnF#x0xk9UPZbuAK2rCN`dL0^ zzD7o6o|`yZ(L3bbOIe$g+1ksu)cZR=MVFzk-3VX;MYhQ9+iC6VSnDfc%5~B= zs{fsPM1e#J5WwdFpk*3CdO0&^16Fi>GFv6)AxV0WWbYbSkG0Cu@2*5cKENuN?$B2$ zLNtd+=W)Zzl&Ld!BmaZ%03wIm=C5As$%gu^5`pX>cZL3)6@-K;DN_R5q6m1G%q{_+ zm-ew300%bk*}4zeT9ipfc)dy^`<%xvqvyBhJ38}5l74*W1Um z$AK{<E$vLo#D63&L2}IjLeTu@9paL02&WaO|7D!tsMItGg z>_Eh?J+rlr6|lQ{i~1$7O_5W0>$2uuD4Vrla#19@n`VRO_uwcjCHX)?u!M+M z&$@=?tQW2Sm?~Z1$xd=NVMZ)Dg8Fx{7komNadwUfv!!(iEgaF_+uYv;0VwHnPVyOw$Nfj7x9(S6}bo7*J zTA)-d_Y9Pz$&aRYw(yG!Pc(8FMmvut`9R{T?U8X11>h!weIImBMwZTuGD57g`2z3V zkpy^<)YadwwTIp&NkMkz78K05=uE6$>ONnXfB_(N*+r1*L>E)9vm*ij0O-YNm&-`d zzs0$1vVZiY$TPcmV}P>(b1IvxpK#yBh}Ftq{(VPgj<5jhf@q|_#>{x63R+#hY6O7) zZ~t*jtHAQ9S?Ga9sQ(zzv8vUXWYU=)KfviGX4L5Ob5dcU?d~yBTQ35jY5_dNB zISPfq;xx11UgkH0fv9rLDQlI_CSpbxjg4p; zgqI7Nx(Pt7l5?JA1g)tc;mJiZ&?O_MTc|FWjVP7T2=LS%IvclxCo#`f+ByT$@HrvU zozTor>OFcJDb#W|c6m2rN{B~O*`a;^(aD$Wb1Nl|0QF)8axA-5s8t14BZxdnUmqX^ zJ{7zf<*7O33TvJKJ+^S&pZ-0(kF=kZa9R1Dht(fCc`&%-uk|f&aIkC zUb5x4Vj>PV9%GMh!*A0^t$*?pgVBa}K~cbbHZay}5s$i8_fMGcGE%R05+4r|PMbuy zDPdC%q?aQv3yom*tKe$&<#*rD9z{ogt3$3yRUWS8EJGxMIveDjdU4mEvPPFTQ*u9V zHi(!JbmG*tH~kjx;vRTUI5Y$@yuJ|7_(S2gqK$Pv^H)$}X<5D|73a;}1u7~ii`Myu%0KZTTJ{AaMQ3PCf35!id40 zhY@L7vwRe^rnmFyp19RyA{*$88ad@Fs^WzIQq=Eu%zy7N`v=wia4HO1teBy8vW)_i z(0riR2m7%Ui~?1x@Gu1(Pcnh{d4X&WpHgTmCG+HDiPNAJ%EV#L%bVYAatKh-O)wPg ztp(astm$eJq~xn@8SqTDR=y)5bH%&`BG0YW&LU`3FVvy0km(i~5_xb!(Z=+`Ep5Jk zv&#PdMQ>^Rm)MA>7JUDW3HBNvBVL-4V=^OLn|QdkX*BIE9?OAE=E>BhN|V>$-oQI4 zd}L#hJFZ+Nl?Ny-*uB1wWrZ830wRY+XLcI%%#=w)fB0K&BhT<+^d0sGZX^HYD5xo+ z$l(VRYL=34WMA!M?{(*~eepl3Rnx$edBQ}$g)B=zAv zEG-`21CPJv`U{LsrQXE}L5)^;5CIoP8PGe;*aZ2@JZsDNjY^_zhO0E=?nG-WJJdN_ln*xzqXRXzeOB z9=ba_@gWB0Km^}!t)o`#*qT{X{dHKG?e9uzIEhmwc{k!7h8TC@PGtnk zAe)ggK^nj3^B@&0pp;Q#A5dQt%+mb6Uf*%WwUdeb?2`wK{dh)fbGt8e>NxgtwW?5$ zOefWTXdYd}Df-+tPU5W_E40Y+riud@Fc{U(Y@+^CexWH}@mTU+=o29yI5?c!#QIpD zP%ze0?`=qAs(N zp`*fvckM~&6HDo7Jr4ndb+9N@+F^QlkQ%NdEYet&j+^KbiYa87KjxF@?`24?k&it7 zC-WL4PAT7UJRBt#g-CbGFkSM~w&(RknAgFv?7RrCSGbYWaFKLaE!YDGy9Ec)13<^} zDP35|XWrM9ZUfuLg7lb{0Wf@cRB>=2uuZ!h0a-gH(7=;3P{H#k|Efa=(Um+$Bu#@~euc7HmsD)=SLLqfs z9VJ;ZVJT1+N4_^6wMPnlgBg>ap@^-Ww1T(uU@OE{cB`2e{@L$YYF<;{>pfgzE-TP+ zyXp5p9I`ERl#ngFv`1tS<6&zQtx7r~5OY#GCC$Xlw>@8`s2MNwVH|Pbd_w&m#OO>8 z1!IH(JWXl^a+f!=|MB9(IO4d2m(58#-DMJthcVG6pxhW%9r458vhKCz1a0FMnXxpK z85=jHaKri?d|Q!GQGqYYc8kkMRgkP?XQea|$B7 zHjE`?^I!Vm6!h*;L2?{PJs0!0Y*H93g$b_A-Oyk*-l>l*_~C7s=&S0=+ZDkbI5SCL z?`oxv!qgenh@^>4kjFsMcvva9SN*$UqRr|z3AiF6ZjhCPHr#N=y7wk2TB;7_X;J3r zP_4{fmis=H>$C~ylQ>%Ze)H#fH{1b3B0~*kzhtAV*Mug zdQ$Ty*nXl~b^7{vZbwKrhfLmB@r|t@HBBN4P}04^dje8gkX{ZrCnTlQRpEIFP~j}G6lB`%vZ{BBV|z)b99B|e{< z2JCthmgMH=_$iI_hv(b?o;Qi~zBkd+x#FbI7WpreTZc$l7&5~xqYjBWDx%D6dR-f) zoxb3Kt|y;rti)H#`XrVF1}1Tr;36a>d4@>z>%Dul0yHj$)G++@2uuF*jgHS34!t&S zwp88pD!+EWZ?K{A6?b*RvmD3vi$2QbREa_n&x@txd;1I-&aEB)sM3W zqI2+359Zh>$Ru^pkH>~PtGiKg`vwS!>aE^XB66T2BcY^!O52KxCH_E=9+;XXC>yk1 zp~3b`J0P5B*6-C3yH0NfItp zB-2^_Imk)aVtF)&Ks(F4NL<9i^;#vm?H{gqK*;sG5?QjPgJ<%wx07^7|BI))U~03A z+69~t0wGuklHl%A+zM@QFHqc_0tE`iwLyYQaCdiiDee?0Zp90<^aV&Z3_X-&I z&2U3U(qc)GecTajY|Q~DgYOfw>M&nlkp^9hBdk%Aaz5+Lc$ zfPe$7;4!vXG!B0=^WhkKw2JRkIosnK)93bNWFG8SisFGv;TBWGY1a3QksiPwudRfO zY5i2(5yiL#7~nlx;wgo7wTfbG7lp$MRaWK~-TQI}@`9ex^fCLy_mz=z)<7?P8c4A- zZniU~nd)1adG4?QA;RNs%qsC(Jc*v6F3oMVU~A4ue6%A(LK2mJ6mK(^|wNz0SHAoj50c6(Z3h~rPL*3 z7A1U*bsfU@*k`xT;b4ScQLV2!dmMmtvBBHnOx5|wl6TAtSu?7QWD(mOAPoW zF7-djW5Y;8$LC>&|(T3K!2idRGdop1dUWkVr>jwUy0^(9E zkqa9kz{16O`>HRS1S3i{*}(#04jD({SQaZHo1a0`A;Km??$Q3t9zflFN2as+ND8Bq` zO4*(C)>UEMFZ>1tBopyFL9vy?JB7u8X90zh$(P^bi<$}?0YQ}aZkYX?YyHdn|a1HK`O!P)( zvrr6k7m2ht%H=f@$gJ~3KI#ja{95T=dw8?_Vl7HKll9htOqYqZGRJ8~5YQn+bh8f@ zP!tr53%H4ni=4`K4{(dAKo=~&st!}Br2tZ12t7Mb)jp@SF%=TF21MIDoM-U3CqVA1 zfHsx1o0*cMP4?w#dCIk=%{n(2jQbP)=)XnqA<(qe7!!x*bhgN{qfgK)h2tqG@u&s7 ztys{6O7C|fV4@QNFHk6Z`GV-{QqvDRh-#1fcReHEbyki}?s>6L zzA6$mR9lDwed%T1m~?J8ybo`|g@>ZWh=v@tM4Hp2sgg>~alU!;qhAsfbN-_yvJs?2 zi@ydrQ&%j3Pl}_oqd{3IHHs$ECU?=e6BVh_M$0OMWcv+&P^O&R9une*c(-z#cqN$D$ShP1={6AkM zCI>(Yja_i9y@{r4}kq3gBB&S)6;W*zfFuW(Ubxtym zB}I1Ig(@FL7)l^?n*#KL;)8@m-6jN1L(Fy_?z%%j#A0CODAyVoKI2fB1H+9kjWV_iv6sTUaPF1jP;@GQoFq@r9CN7q>S9jj8C750F#eg3XdeMf&pf-8ECR6;$YE5pd%Ah zTER4X@*eT1zE-H7=BdAYI|_Vh$B$Pmy$7W9k5d1HK(5Vl)nf8-4Rmy2T7TqqgZ*st z0=zsrCUSJd+cr@@dS2>tQrGrmJQt&Li*WQ_k&@QcKn(F^H$UbmD`Q09mHI(^YXI}- z2sT9kArpoNPz)bR3B%DH=K_+opj79`pG3DIA#>1Z@Z4L?x#@(tq5L`V zb8dG@W8xTsg%Sqm1gYP^c=sO@Y}Y39MhWOnD_mz2^->%9D<`cWm9+rzYEaa1Wg@F! zIZ_bMoCC!9KybT06+EW}n7JFb;<8>@Qfm+vn*+|Gq)fY9l*%h)KMn6-dZ_EoBXsW( z`F10-%z6mV$upaBy7wb&EfX_5T*CPw(=dR8KJxZEU4DN@wq~=PJ|P5v8=0@$lPZu= zKa4|=uNwqd$sXV2@D%^KD0`NE)NMB|hkP7Mc>tKm7Q$r~<=wu<+J7yLux@MS>M)m* zdgU5zT~AQK&5LZ%LpZ7c)+ZBQTeNwACHmWQi%HQ2{;jR=Y&jgXQWVp>Bg|R#L|O^x zx&>Zcw^a26Zsd_nexwVJfK7bOPP#VU_K<@YM})Kl(1yLZd`|i~eXyW2k#rf8?>6gb zw5bXN#0LQWV@1GRwmaYYN~eeV-8ie&e^l7Bb!is3v*Ym8SWV z!}?7D@J1i1hqULQx3h=Zv{{QLepDA*0V7x$UGJglrBSPPWb;4< z!%=MtHsLmGVtgg}`bI${r~Jw%T91Mk5*EY|6rx%3EC+QK_2i81T0VojP^Qh+fZz5v~MKau19D1EBBoRzy0jv9hv=bB$-hpmU9TZ5nyu9 z*CzMZZ-V%M%Ix#7-)F5QN%I7HV%#19+%nm4?yE6iKb$Ih`5qY`@6RDg^%hO21?Xpn zpV7A9R#^u)gsdI=r*7ydS1zli5kUE0i)yq6!fvJsEkSF>Hy^^N&5BP%w%*e~|C7DLHv?rb6)<-1g15h6B^H& zpiJ2^j~?*zNT>iM4G|UO#nbWM9(eac@9lTkGkVdnrnDCp*?umMH&nC`@O%;%RlYBy z1d=BLhnLaEyNe@9A1ZdhE!>QI02tw~EXx70REU5%`konr5<2GmfT@LSV|#mkYF$)(j53uj{`EIr>A3%gNNXTAj~3= z!q~VFW*|hEF#_y~NJ$UjkHv-K0uc~1VPTt?8aSbo6Fn6Ih&wz?Wf6`1it&4<8LeHXa_KF)3{3MD=cU;c_=5=Kamr{|Yh?^phA94QA$yk#Mzc zk5cn6J4tu4;DJ;3X!NX*mu|4RF%9?xZi?)s>qgs_ttN`jp`_N^>eidA z-^vS(4wsv_lCo;`3OY;=zlN~z6XFq`Eb&vN{|eiDfo3EmDs~z1z{#ksfb>%EaN5l* z6XHMHm}e6M%mq?0Kq@iHUsmgu1b&p*5L+r*A&C5?q~Gmia?j&fiv7yT!EiUE0LiP* za2hnte90klW$(r6sMC102bYoo_@Q(V<7WfCK7q7Psm}tKnwnG7P4%G}1PalBG#N_b zG(hwtT(JaZ5fV~cHC%4OshImu&~0;ngs2js4jI@wjM~OqFasProt2=pZgV@QuwiV^ zq)X;66vf0$|8<;-ejhs%6QaMW7CA?NtFE5Q7GcPehRgJhOM}kZ#A{=fBUS>=FL+?E z<@s?}_!}9MCF8NfYk2_24JG>NyLLe}b}DQ5azqW$YHp}x{V8ztn?s6 zrGf~Y9x)7@S&TlCS*_QzkqFN4Hq)Mj!Ji|@m;_U7=CCVtBI|DLEYXZ7lpoEd2Su0|p8eRZA<{+Vfm>*QOcp3<;+3+2l^ zBAr+<`i=2AQV1OkkN@7v>5v?ewDtp=#ExO&(q&~r@jbYyDA&#nUk!?`7X6^hN0cY} zTfDSt*49E|mnx}(KHqxAm_0+o3mFMfLWD0r_N;`5;X@3cQRa<}V6?;2MP4cW7m0nO zul>+E(O#tcUb8T_RA|<|obN!n_&7An8Pk5=Ezkt{{5|0nBfWP_)0rt%MGj}Ui#j3HNV%H)ARdYae;$wgR>;_e#>^^CKj(QOtAQ|kKLT)Y znujUZPl$dBP0K?CmK%)O_Llw2NyY0JOTj-JbG`elpfz=J*L~z+cqTjiNZSjGXmSP z+{a@zb5~Pd8^>6|)PIJ+Y76^o(+ShN-#x zd1|xQKd_V}QnXqUpLwFG408E{ZBywGW zQCObb3ojc3s;WCW%P0;5g!kp~pLdRI9V>=Jwc>N#aYhIbO-q&_Cn>aqQ=;n+_1>6~ zyenockhx2dqDlqp_oC4TxB_G{XncH*_Y+nzlMltR6I)2Vj%6%_N||{~t`sI#HVk^= zskk{xZNIh;D(8Lc+h;5m#AvV|Q*COqV}m^yP~6u~}CID4e1ef}MG3cv^Vcjrs_RIfa9>vjQ_E{cq~bXOU#DcFTWcE z#r;Goq#Jqda*jkKBBRC#Yw8mt>nmXc8@yz6l4~1~k{&Xq1#*sD9hs(&U8(ku^ziQ0 zX&h!)@?z!`pOEP=-+7!cqB)v{EK{u(j*n-4^B>?^996x)i%vk&PZ5=yfQgaEc&7Z! zkn!9YFi}L@@qtPl_ow)00{|N7FPD0m2%p(uXO!0wlvlYfRn#Y)o(9dN=2#CG( zD&u9mxM-)=nGuM-jX>k1@Q%zPXI$o5*d`75RNldPBhXmpHKMkNb0-5gC*KLcf8?4Y z*i7%GoDb8M#S?X-voTbqi++E3jO!0Zz;}2ig-hc!Z*L$Cr>gK5e9P@me&Ui`oLX`I z)z7y#SH!?+Qba@qx~VpxChcOK?7_?l4%5xFrs74BPpDLNTGPyjhP0R`6c^RsahP=P391a1dl~V#3U)Ofp;h@8n|ZtlrTmWT zlUF7#mHCFYKL&(>I31PoyLA-%bPf=LRU+8yZ`x&}}LKCsQw!4Rj*dhQTuo(mD1lpG#~}0(-~I^Dl5~D#7gY z+>$iCXPz7Kr*F50@R!$&tk6lHU1?KDQzsn;i)Uz6o**Q8?`ku%H>Y8&uWsJI?0KYy zXHER%p6GQ{Hen(V+2!pPOoaNiLrpL+V-Rgbe_64CgD}W#d_#sKI&J1eU~=<#@vw$s za!G6M@Q$az;H_YJacLo0{+%Z_X08kOACgbOzu|(9o|O_ng*ajOVoMyJ zFCM>KBe?ctPm1C$XCtEHcx-4C@}q zqLH#sE!wPqR&JDR1JKF842*1_DEaBp+>*LJY1+ zKi{&IiGXYMd_H=*jsPtfj;Z9|gHc%i9YZ_5R9!_J*nKOML@2WByETu3(9<=Nw=AlB zwj>^u1WoYJrz7g)dZhnd>3nh|KrDjYU&Ab|0Yvf?a|)8pOWK4$iB&t%?+Q>bR*S{K zq3Oz&b&Aue)L8~z4#N5!U_)1vc z(#(kRM!u&XW}?VTW!HNzZs03ouqyQsc;kJPC)0JtUsQVMCBZ4_IsMhVcwcUzjKBuX zG}5Ye0V9$@#XDECGJ8D5plJHK?}c;hP1`-N1U*>G^w%5D#S4lfcOeXfOcrjXp_;0Q zLVI9vg<4|?mbQ#E5)||98%x_7KGhJ=Ob6_qigBnSctxp~9lC8XT1FBjuG| zMB}K?*CL;+wZ3`wiv~X;U3bXjjEs}Wlc$U`Awm!u$>zr;WtgVQYXL}bJ%C>= zykkXh6ViXF4Tx&wTIceR;~Xxs01p!Gg#lD(JXcoGmjn1P3UpM)IJ99Wy03tL0GgzF z*|-b?0l<~tWCFZ=3f|uv@b$Pa>vIh{Iz^Sj>S8j%`*=6qA&%oL4#uEsuv;$@dyCJ! zj)x_Z_EQ>SqGi;s(7R4N&@( z*Ji`y)J$o?{AP}``g8 z!`4!}il`YT=qI8SX-j?j;uR~8sDdccBCIs;xxoE(D$E<SM}9$ltC9JOz4fkS#|8!##F zZ{P4#LjTq<;c2V7G zzYt+O6dBQCukxfIp5r3-$?J&OE`$!OUj*u=#r=D zo~ub#f%cn-$>3FH(jt&^aexlhTDk%+B9kN|^muESf2qR+xq{&DL+Gvs>ChlW;JtR2 zq!t^u$|H3rN{#-c%$D4ZmRCm&Wvpb^eFGmpc}=mqa{g-6KQUL(C30^CD}g%s?3p%a zf!o^yoE}35zs-w=QTQG&wOd|(iW-D5lR=jUlL2q{HQsu%m;qWS{;*f3^+s^oM=Y>Z zQNi$R^)p)4`xyvLa9%JW`v;hXtGx*Ay1dl!nQLT>JBq`(KOZxMw>B;SP&9PFfIhAI zX0C`KO-fJW=u>H%Xds>-<`Sl2koBBK0vzcxQCK4T=kcWBkv&R-LK6ET%F_UFG^k@| z4QR2H)M2=Gp!D*AC2?sVI81a|vv4tGx|S)ep=v(0leK;)fm`D`qAGCm?|Z0zSJqi; ziC*!i6S02!M!Y*q_{D}8dDI$7gMF_tkjP^->q0F4n;|)6fYn<$48cjCtIhE_AO@)2 zY~6-vMmgJ$@Y8rSw7+eedF)^`M+GyIqA>w#c7$5XS6?G(5U!kN(suderlt@^9rW#J zNLA~6S3bW5VUF}jY6==BK2ospBNvp9XIztl!)9)ht`_HaHC_;f++wpv&XXoO;wZoR zo4kRQyMTGVPRT7sCti zmHw~vN#!JsCz(wFmQ+1L&)AOmDpuWxchY zm6d%LzcYY{+Q%P=tz~Q}v1AXmq98NL7}X{sc8h(~Yd#~Y)t?#PQf=d36)r`to00FZ zHWIY>6*1eIz)~UCs0`{Ja3p@Y4qfBrAv1$ycn{DnLAyn@%3qLuow9rTdC~jt``T_u zQkj`I?aGHG=)SJ{omqK&ohL#NcXS23f}C@4GFakZK%A``DmlD%^#ED}mcLP$qP;Sf9+N(GW%QAu#Y>ErGf%tGQI-dn5`Om1ZmS$yeZ)AR z9_7y?c-=-tHlwh+OWsPsYHa)zU&0ZNqokNS5y#6>5*ChgUnrN(MlT9)%}Ao)+caPw zvi4W*dok%HS97}VfET{{Hrs|b#|IacG6~@H7|Y97=4$i+e&QFc$(SFn+kPavmZa3U zm-w#zqM@W~$FV)AkFypozUy;Y9E@Ay=SCl%xt+YcK1?MdFgE)R-ZEKS2v_bX{g`BQ z&7KR-y@%#WS{l6LEAvgI2M{g$j^u7u1wLMyd1UCO{DO9Ej0O{7TGVkIru%2XWOH#-DYqr{=25>rfu~=2)l~ee zF_GWuJ}?g+m-$!ND2c?oINcZ6zGMq7isgpx;qU4hk;D1QVc;lT%9lc~Er)37NlYvG z*Ghoz0!{L<^b)TERrmcU3070J8+F*V27Lb>u6ZgwvqzhDopyfpJoKZG8_&$$BRD_U zx>e^Y`m!O+Ke<=1rWV?hfmLO+oL@~y&3IrMODuI8;|>1p6zR^ba)a1{&x(WqmjYi5 zuUY=7A(|;_Ht30x#+lfoKL#Is+5OSa%dMaHoWgcy>O;yk&|7|-pR~aBtW2Vxg7>W8 z>ch(7?g-QIS=naFrMi}!1}Xd_Pf~RL$Ez-``y+WuLVCll`7tvL3`ptv$xF$+;V74& znt&l1a*kZ9w~Q}6Io|ex6|L4lX7o`W5Uq)93ydyL+mu0G zQXE}$H>dil{(xhBc<&B)7m9bkTt+#Q>62Wu{o`#yA1(ksAnKmaA75+Uz^*N8TH23T zzrJ+d{f|g({$ zrsU*bqI5>Z1+34Iup&qn)29uD^we!XBXz!HTeq-#|SAD8#U( z6gxYg_edDtj63U}mqDN5F@Kh&{B7fNe{s5<8?8|*?*&QR!>1E06vlcH6G0yG*+|U) zM-gHpBEnN+QgGpzhn1`lPzbPqiVFW>%2pU3SW_F#jMQipqhiJ|Q<+s%QbpD<194>@ z65U2f=tLg|SeP^knhcG?T~3=$T8pc}V8gQtLb#$PLl!Yv$t!&`u@j#k`pmDczr=;& zkUX#oH~)ho{I}lBZ&s0%!b6BqwPDJv)vI!zf|}|ndFF7$M9QzQh!KrK65AYY(vV+@ zrbB>;f`pINrL9@q1T8xh^V&SPHul)9Wx1SoxjI{pa5WFIMcs-gbVHtDwg6l*@0n(% zd1vv|nEDa6m2lL3JODv5X41_D4X*^6=3{ET;=!q#Yr`5niJLQhexNQ7&r zvQsZOwG{n7Ub;~jnH3RQWKtN%FtKNqGkjp#Up|m$BnS=ktG_w*BPdUx+ZS*fw_SLa^ZRt!gBCbAYC-7)KCgiwBav_LKdXWG!1xS~j7 z%UX2Sn~)z@Q4WMovkE_2$ubJKyzI1+LoSOTfCC|pdH_09$$Pjt)4rY;Ysg0JVZ6^@bGp{#Zt);;(B95{EBQ?3am29>;XUsqjWbV z3tgFa;2?DbQ3-hLHIOFE(4A7wRo$axQNwZoE>!DxF}2KwlIUQ80E4{F9JdeB8}F(D7W-}7b++Peg~us$T|Ef}z`@sY zbQYRRz_C&lyNxO4%7@8ky@wl%_cZh7Bww$evR14}fwosks581RyfBsPUO#6FDU9Ml z)NiLN+rks~Ls(hm6(BnGr*yOYS*Lt%6_#e}o16AmmV;OA4;gk)E90)X~N8wfA0 z!DgrGZpu1ccR75sIlS|GaT9 zBvYp}eozQ>C>$+uG3LUT7WZr_Efr8%rBFR$a=KMg#cC>Va$lQGk-PV;Z2+Z)HH?SN zE+R%2j9HV{VbeJOst0e$2s|T7vWa{gr$dQH5&(K^g#cmYXB5KPss8!n8{XkIM0U_V z&2nbR=3WdWiqnZ37av!loP_Q$WrzU#Y-k0WwNe?@Oi|2NX4CA33m`Uwu%(o)QTPLA zqu<@K@mph_vXlTdoSlLAIErk;Fno2VlPQ|P2BFaj`RB!O ztfPWbh@3JPf9=SYnu@kXJ}2~GCJE0U0k--9DgHPC>QbRR3@kC4OelBhSOwgFUzx&m zeJb|TYQv$5VNxga^x=vby z#6rBzcXi8A)xc%q1`SKEY40Jahc#_QmiT>NmdZ(5e9|GqFD3+i^U>ZZ2}JwLTt}J4LVi(~$L65}e<{nw^m~;VaqM3la55=rdRtgsrM^I%Eb&(%dbo&H^Cp#=-af zJ)(d<3TX+MjHDOQbN7Apnk6C)EZw{v6qTK9OoRI4Uy=kgw*e9kHB`xGKxvA@Ks-Z0 z;#N5jyNOuGA?0UFfU3^=4CmBuq-XHU$8t^n;SGqNP~)qebWPQqL>gu1nDwJ4cQq_Q z<0Ubq!9#1B*}f^_B6>tcTL-fAUHziOSBpDAG*dMJ&1<8D&<$y!hPjbS!J99|s}ZQ* zt>5@?bzi?3H{;-_;rCW5@fJ6jy*H>HaT=u?OiW?j;Ur@uBSXZLB0}q{#7h9+O~T~X z-clW$$d?vHQ>-qQaGbL^9hd^f+cl8`21_pIa;8J+*@wY8@5VydUi)+gG_yt9OA648 zGZ>pT%Lc!53^1Hutj;}&@$gEU2l$A%9(?|Ue*EWvM8Y2Ui@?(Y)Om_?m*Zo0f=I$vk?zvt!Ga9TuzoUqHh0+fn%eSbftYybU#VfaV9 zq@r=8vVWv%cBFcDe@3H`G2gE($i2|v{xLBz zkwMup2^%pfq;fH_`5Uo?KVu7>bR=$_i;d$djs1Ri#a4C4 z)o;W#c4I1hIjHe4O~&yh{+QSo@x9&g{TuPlTsDzn@xEvAV=*!D#tBo|2{YXZTkYX< zKNI346MDkp7me=|*ZdRf&pbD}6B)C^UnnH*Ad?OylipM(9{VRzawO6|4{450`tmdB zDjRc(Oun58+;hTwj=_BEPX4ozEGM4)4~hNYpUml*fD?d)> zYQihIbAk9K6VCaa_OFBuAd{QzXd>cYx1Xiihi9JoR<{M{wn$-RXmeZ zfCn`(&Mb!Z787k1liU@<;vAsO0CLk3idq2GMe#yUz{+$^&S?I^uVSj)5_0ttI86ze z>3u0zZ>h0wvA|vFzu2M-u`++PvOw+viP|jeH~}CxpLVNECpMQ3n%y2VEo@SZ@6 zTLYC_c3qP#v{WE7QzmFyVHj6TAPwN#DmCu~nD$nX)>hbFRM60rTK874x|AY&D_yrL z-R~+rwkpX{Kytw_iFip(wH?=AbjSrY10z|>oexvLD! zt+HmSNrhHt@>GY=)Fk)THQ&}|AOsEc`v2H=u0k3$P zAUu^ZxeZ%0(Frbcj7cG0z^@O~&_=Jrv(hcCC#xvtrt)`*Z6IX*+tQD<0DnllWDDTx6TK zP}(%D0g%$AbE2Q;9cI4^D5E=C)hn9kv)B5O-PO?*j86pX$dQr5Zg`=lQ*ab>NxqA=>`GoB6M2E218E z^VN3K^Y$C`^;_nacj)$%#rJjeX^rwWJ-I8h3QBHwDYsWC9QY;W%U#X_?i5mYw%hLY za2lNYRoKf}^oF1!$~a%#CGVKmqw;0h9B-ZIMVaY#BS3TDGPkGyG2nKqu;p?2-b-(^ zNu3*YaD70zB>v!0&k!^ryXobt`}Dz!_^6+G0|j}x2LX<%Ie8kn_ix<34`l`nKT+cl zd;Yd7oQKn9Z)Fkm3QzmH``?7ZNP|R|4W%^->bZ8p6P-Yed-TnqoZ-&uIW(y zr_p_aF(ucxS0=rZe4~rYqbEio-vUQv0}QHqM(TKnpKc83Qs;$pXH`25^yL+~{vPI- z8*__+jP?yE6Xhi#-ku3fQqZLz1&yDXd55Gtmqi`7Cbrez zE(Hxne4h0FJnY=pY5rpBkaoNzA@up&gx_>J(at2=HB`i8G`|_U-Zh5GpUIh?BsZTC zs+y=u7%QwFEA5|7<11U`9T}>bP53q1cs_MMGPQ-see`Y_BiH!>4E%PKQ5 z{y9b%QB1=(JJcVw_VulZ(Kt!M_?c#Yq~`oSGI58tToJmkoj<>aKa=3p=V_jM@F#OF z!25J(;+$^r;*Zzo{Nx_vMNs10y7_z$(eO^f!fM~b57)_Gb2EYUqc{cc7J}!WR>xlY zM-maYw&fT8r@8n&Kc=u8 z<4GJ-dN><#x#}CTZlksE{>Ms;>l%yN`j?H>XySOR;lxz%L@HnGt<-3V?6P}eZ16yG zcF1OC!KOjCQvTodLbnNf{*5x?jn198DvRWr#H7CYExnDLrumT;i|tX1SY7^wrtIz8 zjqT&9ox%CY1e%=y^PMi)?NGP*smr(-`s8=~NxOe{)F7g5iqpl!+iMofGFmfz-Md#m zcX!VA_7mTGO6_fG?aJ?tcZBR*G{k@Yn{<_!cu)T!WFX-9Z}PX0Jp%fNWtOU})P=Hc#w;=i*6|Ks$% zc<$kojo|Zuzxt_9&hrZsG8ry9xmYOZmm;+;u#MgpjTc0XXN_OtQ=Yv0wKLQra4773 zQTT7RD`~rV@6(_8hF03*n!QgrE@#3dpRL>%XBrcR=I@u27%q%WKF=p5lv!RDoo$KL zp3gifcoKX0?%${Ve;3@UXK$ew@rCCdg+oW~mxp^_4jMn1xNWNtAMY4_^xwI-3XPu| z{7t*?v7ZjzEI2T^1S^FZMqgA{rINw^i1GjVejVe%NvO| zaqA4X71_Pn{i8hZEFAlenYC|~if*21e~B3$L^GVJEzBA`J=C?@5PP#|ru{W%Z}6M@ zr+wK^&-(k0cW$i~Vin$g#~L4bnA4`$e6y$B)kyw+dU^ldmGoQSo7f<-A9mW8^=?1> ztZp3lek5;vk4at@WB6(ve8%JU!=~=5@!(JMqHD`nzy35L{4{x^N#`7kh6g_1V?q1{tKUWU#;%E z`S-eDW4p0ev$3K1!}P57kBc`kaaQ+@yq*38|L#a34<173{|2`ItJo$+~PHo-)pa{(^t(9dV50UHrL+0A{zl?2dM|4L?Nl`&r)YQcC`xWd=&iwpb zY3ai1|6^=pr@DLlPycUXyR_J`v$^;6`tEnkdiZ8>zR&DrQ}J*Fg#3wo*2}Ds|6y!# zRTh((;&TBmUthc|owQy5?0np*xjC7}rB_@2jjv!dL(p#K*7%xb;>|1|^H!qmBljCt zuP^myZ4Zp?F|t-+rd=D51T1`gJl%d#T9dC#a_g&?wwi1#L55UB4*>||x}FhJbvBrl zS{=Rrh-+=IGX9bWR&HueR> zU#=`@|ByeuH^05K*5T+&Wto2^Y|;=eK`H!sro*ka-pi=5&qQLZrs#Ln7uvP1xz2DO z4snuKuT9zt{de>y!*@b-xp|@$^h|`isSc%dzlg+O>s=mX=F;Yv}HHH zn{0hGvRYs~{qe8ioHE}H@QgxBb$ds_B#c50&q8E*sf*sN;jD@=0!fp-`J8$Xl%ZG3 zziuOsVXj`Xt4VayG+X#4HxyK$xG^2f*5Fv=I%J$(6emMhl3(T~!J&UzaC66aYbTbOqUU2>mb`>#OnYZtia}%e&9yJCO^%wkW*o^ylJMrw z7Uk|=mEjk5^#!&eT2*K+H` z8as>-o}VUh!u-Dc`dIwqQd2lOn%}XaLK~-{t0a9DjZY-FIQm(3is3gNgOeatXU(Tx zhh6o+Rut;D$umA3z_jYuAbZNu(q;D1^#<_5(2NH-lBp*kN% z3D2sY_E8B%?woo6fAYL8(~cK^^RJkQ5)}GErb>z^3 z<;lNW2ji}M_%|X^JOccPJ_<7YbM>*Y3#J>xtXax&I@$K$34sOOYg@K|oRm-4_$a<>#GaHUUN^k*X>UrR@s#5L8wfefv#s@_U4=u!tclaWz&qncw9 z9i~lTZ9DLW32%AOC@*cI<83KZZ9_!eKBLJV=g3>3Kn8RtoHJ&s}OnBBm8z>K?WO zFx63#%}n(H@35NujG25aJ*jliI?u0=uI|F1#qMqbUtBrrZpLcDzAmBh(j|&~TjOE` ze(%OvbMvdg_eo668R?#5aRvttQh9ups2+N6M=?gzc}x+A%|o(RYRXaQ zz0Rq!#A+;v@7M~|7w?;@&<|0vOTqQNL@r1Cz)NI6?qy@)&h-q=pH+gA=2 zsvnYM77#bX9=_DDCThU@_xfoYiw8vjowfGcUwYck3T%q}AN6Z}rU;YltzU$c>jzzn zG8(4h^XuCX&B%jj%=d9{{T1X>)E=m^{mkG`_RxlDt|WcK@~qvO8h=&YYJTyj&~#IK z{8b|j|EAtoXdSD0x!4G15MEy_YHXvScmeG315Y z-I+TWizr$tmIAox@>>MGl4Uhh-oUd`?4)$ClSit|@1^>AH6LCuIyfSv;=6xC4=t9K zFYoRMlxbuzk!CA6r1|oeHSPN(MJprTMX|>?PrRmO_L`ALSwmcTIb-k;fnXCFm5hn5 zWI@BVN30DM*L)lR#D*a1gl`YZt20#+ki{LAaOO+dTP06YlS0^_@kBe#NTJeQQ{BM9 zp4#;->mj7JR16I^U!1l3t(dJB`LZ{ik~26QbSZ4U%2B5i5;EHUbL9^X)lN!DRAznc z-;Wp7V8Ge~Pf|@PdrbbwZ@Wh3ws2MX9HZI0YazrAyqK%H-`&Fkwi9Mbzt8h_v~$IZ zgv{vv{aEJ~r-L&E-mF<{NPyJ~0jQ=#r77q5UlXSEH+*u#={i4kkLlq~wxeF0&^#?I ztqoTXM_M8tLqy2e>pKmDTk+jg~lQb zs5~BHj==Gb{N=N6foP8RM>#wGOdBlminsduky8Ei%tsf?KbP;G4ZBMv8mgFh=5|U_ zPE)+}iFquulfLF<+q@jtnGtFe&#!dTfDX1&@ciROwaWY=3^l99C zr}Rhv2be%-ztX8ffbyEH9N5{YQqjaNj%&Dw2OiME1DH)YDZ&2%pcCf#5MA_oPR?1P z`QB!x5pQ2CG2R)E2Y0@s{^+R99b|N+bHptmLO+0U6bqPSqOK)~!G{9l4IaB+-`(!1 ze=x@;WHw{ln0L@6o@4p$Rp*-h+r4?NP2HeQi>LOvk0pONXcCXnH12d#TFfajLBmy4r0JG&tJ{5%H z0!3p&X?kHvp5!+GCs|lGMt_5g>l2P!m{LsoWw%b<6&Bm10n!}g^2$WKm{9d^M@ExWvHT57qkG4*nq-@ zhUX@M4dQ22!)+4tH}HKhkM|gk=cA8S#gBmnRsbnO*F%s734{2?U1fn! z__#@NrUfFYDh)nh|i0FS;ROi$sB=opX$Nkbm?04d-UfmRkGaEzdI zj2_kl8=#Ds=8*hF3P~b}5@I;|f(;SLfR3mE6^US0q+q+Gk>3zYjn#GpAOZ>X0y)qE zvQ&2hS2#DgTp?(TouraIfI_o_mwNeLeChv}n*^A&Gnk)v0jIJTStO9wGeb7C0dR0m zcjqvIFo(2Bo9h#ptS5<0Npg0>SMU~_vLRTWM2_1j+sPQPUcTr z=t(QYX0WwBmlS6=Cmfb0SX=p;r}$3^)t2tnj}g{MTCfNDcTg#0Lpv5(0hlR?`Cn2d zS_s#9h?GbZ86Tj>ClcBxE)p%ynVAU}cZ2YC^;H%*;7MVZ*{0$HU+ZJ7cD^@Zx#12-C!VF?2s7DM3qH!(mv>7z+I zMorHNQq+h#Fs4=(K>$XoK6g+S={NsT7oa9Xsg7z8ID@kXAo__}$wF!H25+zjH3W1a zs0Cx$1OADW_V%77XrHaQjvq6X>hk~^09gH4hcr}$Eyx3Is$(SygtKO#!LtpC6dQ(F zARJ>g_~v=0iKNmy2_*G)1LTtuA%oKMikd7uqj$9R1E1E)n zgMFhajb+zYe-=_8sXjL}9<-Z00qdtW^l$M)LI*222^%#FYeGS{6F&;E zDgTY^PIJctAF4hvuuP8CuQ!B{kfwdznpfZYbR$HSXzE@- z^m?(i2mJ&hkf>}r7MJ@;R$~NE{{&u4%O>ELLM^IqyHlJyi#`aOL>wlpAND>~lXHA~ za}W170jg)ybs4obfL0;_rw>ot~BoE8-%^Dct5TMLC= zlhm)Fxm_rGI9vNsUE7kmwOcuGgwS}rpA@u1OHpyEK5)>+rq6|aH7Ej)WZPQ=2CImn&e4WCDxuo`j!9~r9yZSL}-nSwV|~4nHlyOq*S%) zXsA6@v(_659uxmKE|LOGN|0b>lY`X*{p7x7)Qn5HJe#l63~VfeJajB#RR z0S7Pu2OXGg?DiM_l?{?PBcWiSuA+HtlORpoYo^s}3m74y*SYfHcZ7Vh2?+}m7`)A^KY3l`kcX(Ow6)y$shEY!Wz-Mz!}#f%s12a z{Kuc5PBbth3(U_B?9a{MYl(zNJYZT8LP3jUHLOy6&`B?|6dbHul~^&wtEg31-3M9y zZ8f{2pG-y1yvVlfdM+CqChetwP{ldx-O)+ZWbDTH_F>gvju~V(AGSMN|YX!VLpal zrt7O-G-!txLWuXg4^a=u&xotyhI^F+w0k>3~>xxSnK*Y8xI2i1#h;mEh#j@3` zaSSCTyER+-#@f&6+Q0ZY8dlX>>as&N-#sv4E$!p>nT=(H*&bS>>*E1PPMRXsFHvEv;<1if4#(|)4@vwwIF&&m4sEh^`tt5Lm^JeV^L>O;dpAN zKG(a1!7ICCL7XrxN}h92L5fUgJ9sk}VMJ}Cg2PN$*^#qS9P;qM{|x2Ku;d2Z9kdoy zn;IVzxyXUiPWp_9QPSR0?m;@zy}+E@Z-IFIn(BG5njYqr_~vG`q_gKKptCM*dl49739Cnx@iuETj-Z8s!V1`&ReP5J>ciG&PTp}>)`F|PX6S;7LmNf zANjB{kh+MB%sGh^Ap;XAo?1xoV&;`B39|z2a3<|;u|^V~2NchmEu;n5*=hNcTN}@} zE9CLwz9)s_=}G8G9&oGlbz{{|S)^UfJm=Sv_G0?JS5eeEw*kL1D_*^f$<(~t2;E9t zt*D~eWW5!&eCuOE{x?y(KBySm=qZK2*#l0%0{!G$*f%6=+$(Y*t?0R9pEw|(DDn;L z4*OzdN>yMBI3v`@;p-t~LLof9#>gsX*AxsWk87zm&+I90Y|mbBT`d3NI4>5Tu5*5W zJ%K;?7tnsjdH7Nit-z^sj88y4M*!wE+&pk$*Sb|>!N%+=2<2=-*L!F>xXye`X7`Ra z9u70N!6(gM)Op)YAr9((Lsym6^Bz{l+xQ&nxN~Hourf^7~6FM?VwYImoxwDm;eW<>xs~Q8Ua>K)@5-qM0CHYo zJ%TSiFxA_W1b5=&FN8hs@Gx&FJl)=jeJJ_*)C4>{-Vkc{?vVeYMUDD&V-z4ni*5l2 zjw_@EPPGt=zMZ=>@x_}K2p=ta2(FNz9&esC>=SE}Cv>u~$(%{Erp=q2MhS4>$AJKx zK!XY$3KV7~3F_MQuy}4-A4L`vhMUMV62ERK*pbu1gCWMJ3VCQlFt&j6DQ2%ie2yiJcH};kZ*TLaFvmnKDRuvwOBHX5ya4+u zGzEB(;E<2x80LXkvAE!1dAm(i?VemMi3z4u#Asn3HSGVyrO*xuV)!)V>^X8&x|i-p zqx0+EpGzlCpZoAW@^iKLXJOj|N1>#mI>$KIS1^T=@x| zBrg?d<*1~R=F(0*{Z#6ztR`9HKbZEgkW*+WQe*!PCw6MygWvGr+eFya=nVnC4&vQ~ z)A&lzGhev{>qI?p7*|W#u_ThEku;WwLs%h*=^+G=6z7_{wHk_&)@n9PW?g2+k||i4 zE3Yk7lBi{CazGgjGOaB0$^a+;T;?><*cO?Z-g8Vy1wrcH(Ds39SpctXMhyQk!NlSU)PD1=cqa9p77PtnaH)!Gt-#{% zz>qkzvru|l)n>!W8PyQO;lX3i0BldQ632+b9W`Km$nlTeCoz?G*dKMA9}*IsdX4m$IOQtP>8!E`TgWuwN3pn)R>b(w{E$2(|o&^=lJ5YTPxdJv4) zmC%8TW0>Mefpdvbpl2m(n4)5+SwIR{K{$LN15C+SMl%d&tv|tKgY=4^Q65ErJSe3q z5441sTJR=^;iFH8xIiM%!k2DbKwSR^^hAnrd_Tks%uUwl`Ew4?k**BW^kE-f9W0pCNO~*>`Gh# zpuyH&;JZ%A@s*6=k2WL#IA5HC6+C#729R+$#4!#g9L!!N{DPFj?W=^8Lm@L%NJ|zz zLPg7)#0z5?Ls(7%akN8`>$EX77IkWFT{}o8L)3x`T);b|oIvhSDJF5W(rSQWR1EMU zMF8TBcJRQ5MhK9G(m8E^wPgQ^1PB42i9DoPB%)p!uXo11?Z=uh%!#PnC;;j~l%aH7 zqpRfPk3&W)9T)0G40_PYl(YaaUkMih_TW!*w1*lku;EFxkiS1YLRn~&m3NYJkCmMy zW+)vZL{dNq7zolqgAxlNCV2r1Tp$D@SvdN*w8ruQxYI`g+_@0iPj!FksN5tJ0}uH%=lWjxsdcXJcz~Y;P%U_+EJsS zxocP@nkI@`RJP=i1Xb?*0}h4Q08P6wK!t!;yc`lDK;_1?ndU)SmBQ_A(`bzVxB_rrTFo%J z#IFy|aiQoC>sYx_$r2Jyzo+?^GKz^5Xy9l;(tv9Yqbc9puvZ`i0m!x>ldN?V6eR%^ z;t@&01Mogz2IKV$i6B`B1_&|{LfjTKN>>p<>VrGy)hT%n5(3VS!y?-OEuAbvp6?Pu z3wuCqUkLDk4Z!!mW_+zf^;2O90=SL;sVE$)4BP0{k+&A^73eIHkAFO1B5JS)Qp7Yn zyA|YrjGEb)W10Vusc}k>JorJ2`SPJ2u(D3TT;c?#ol zmk~zhUanPN!q5ygt2bK#V|5aTGiIhS2qtAJ_+Lu&j9eLHCWA>jVcvy7VgLz{J~S0F zgCeem0F5_Dv2QDdO-OkV4b+s*t`I*0@vff5%H*{K7TtNnhe7<(YJ7;5f`rH&j{JrU z72+TNKoC4Gab>+Vv|JB;^^s_cnT>Fc{MNG^R%}0y-|>K#&-j z;*CaaY8(|Q3!Ul1?4R;LWhU{!J#cyw7>K|{5=a3H-a&{x@U%TSeL>7H`7xO7>QnFz zaJntg%rO6@LUNNs#WScGQBSWtTdnYmE<*^V)3jAg#Z*W$OC->u!=e&&O?f4vdb~k! zXhs|k%a8Dl90JIp1u4jGAqw%{C;xUa!0}XhhAVJ#oG(TJxZ>8aQy!rwd8Y8y+Jdf# z@8qPwv?vLPQc^-xib!0coKD!eZ}Vw&>#W^xq_fh2nb9fJJIo4+)gjolVMb&H9^8IW zM9>BvI6PTq3gHOCQ_w<2G^@Q6NrSiv(FUk>Lj-SfM;g??Qt(iu5O>I5LxdQX)AkNI zn)e+=@<+gJF5b$MK?gL#1g6OugXi!%h2m9i^P5BBaAgUhE;F5sWGqxY5Q4UK zeuf<(fe8QL0d%ny@z4Wz@LhC~2K}^k??rBbms?VXZd8_XhgUAPwPog4S4c8n*brvl z;Cm=Sc@VN<_j7yT(QS7iZt1apPy>3sF&5SELXMC}iZOwAU=LT2N#CIq@UVnT7csy?*Ah3}Apsh2 z7k7~Y^}rz)5rsB2c5kr>yGdsRz@PA$0vE?q^I2q1)0Y2mpYVwn z5Xzp}Rx6l9VTS32hzWT3n2(JRhW^rzsWCZTf)?huCK{r3;ccEXSdG^3S-9RabV-!I+b_Hsn@tJL_GfhJ}J1HOs1}XwlngSAf z4-^U=YH@&4dKV%9pC6}LuoDT*F#uDloPHrdHS%y$$_h(_G%5O~=0Z`713hWjlsrnC zi(ogtGn`|`E1tt}JC$uJRyLWHIglVl2Sg-r1E`6rI+OGjevtoK6PH8^XDeejE)#br zlp3H|dZ+M48_Qr{*;hem1(3gRqLqoFaM~ZTa2X0InK1{MVX|P~S4=f(IJn9Zwc#21 zAPpJmsh4^{MWj5C(OqGYsdckJ23Mb-5~!M*M1HymD1bC$cPDj|ta#EGd?g7(1aOmT zXpJB&;FhTM(OSSdZyAcAS1G3&x`vF$Zii{7=gO_$&}R;l5gdc5dh!(^kaOM90s|me zyuuxnCq?yCp^z{i^Faeca#9%q4dDbk_&P-ThF=De8{L&z;gVTpIi4abrnW*OOVl0Vs*ZsA2=p-+VmBmq9m|P|HMZG;c3w+KlrUn5QcqUf9f*jp z@AEJS0Uf*xu-cC< zN2_|+7Yx=+%s{IWAR8xhqj#t|nxl~+v6DQwxfTW%4?D0Zm$2KI4~WV!kDIxZ^%jJx zIcyd+%^O?`G61Bov`Kp{k-IG;!MWgTn7lZoutfhzUXxJd8@{r|DBJ;i1hF3TA$OA$ ztfEv6f8huK+Y)=&m0D}CxnomVO0+RjLB>P%WFftg1ok@+86VkNwq4%LHve7o!siFs|SkvhfN5 zgQKYIw-?> zEN1n=8fyU`WTj%V97?=Evx&jSXTIorzG|Gla@58pSfUWr#?eQjc1)RVjKSL2gouhoFtR%? z5DQ&P^dNxZ6c60P-tn+N)D23k$1)TR&cT=_8x1%MuqDL83!nfbWV)77!X^x}eshLn z*rHt}hy7wX6bXI+GsB+2%oAx}J*$V-LL0vdh#9eCG>}jtX%+oCGF=%XHL^Tv!8#On z#!Ge~7W{)Y@)v(nG1Hp7LsUs!W2Jebxir96WHQD=GRB^K!LF=scU;GK9MB{hL3B*e zeXtXK;1huZ8xDPH4-FflInfY}YS3n@60KkimVFz2(LiUb3i*&BJ*z+`niUNTs+Q6y zz0wgqk+AU6Fdfr2y1Om}(|$3w^ilsrva@;a5P-81w5U0)(csb)J%_#2ecq>F%Mg*a z%M8Q>3odQbFij>wXRDc9MBfK=mV!Vn4b@(qU|=2ADU>HLan99t4+KnBM@=o&3@C=< z!%VCj&EV4I_tK-9ORCTS4WIxDAOaNd*A$=tR}h){EXViw%eZhEq~Im1z}KBL0V2TH zdffmiFbr#^9NpnxWB1Z7N289JzY`f@%s`r+Q8A(851j4PkH8mwrErw+ho(H#M=jR0 z%~pTGRo&n9v95AFQni&1bq#4u1&DkF`kz-=pVIsP<-Ov!NYC%g^ecm)IP^z{T=)OP7|=8ci|)Gp+$wVBl#u;|mZuB0As5a6%PyK~K^E3&7+q`Wm*e%^7SsCY?*U+}Do{*nq77DKI!WSC5Dd zvzUMy!`w*}5Cd8c*^<2g`)$&14=UQV2whUe(73OYA~)DHcQ(tF01|c=>T54 z#kAf+9ak4A;TTTgvJt`5-D(zE3iZuaupYr-XkXCa2&+l7tEq6nu38`+x&%((E*Im- zPT%&;-=XF&M@{OcklzAOhRF`gcKQk0H8C27mC2K0*Xf@Y_f5 zlBw__6!9U<-F7i*{@fh#qs{rJ$ zQQZ@16h1snaaI38*e*hQZRT2@=DJKcEkR7E8|I>b9}2Jo3V<34(DOY%0c&2_P;%tR zjVJrAIS;vfQgUkAz8Miu@p=vNq$C1rZt{E`*-|Q{B~SJw-|-#K@*Ds5As{%W7`Yk%=yf92!v{dm6`HxB6Et!lNs=d1AblFj`c4+tU? z6BLDpg(3?B0}BcYeSHIvlazjzmzbHFo1C4VpP-?lmz0YP0uPOZg@mmWB95_+4ULVC z3%COsi@F*MzPlR1yu<@nxC;%l$hZy4vd{{!u+g;4%FofV+1T3Nvee(=&_=rXo&7{Z4L74DL#>xu@87$IsT z77Un2VZVfd6jqGjKaU~psl>+;<;Y(!S;lM_vnD2iGl$cVYa)L#Ts%z@7rwYaGF(WJ;!uBA(k|lBQ-cHz1bBGZ(4%e- zEp@fPNkM?o6&f@UN+1}pVBw`}4*~^h6Q;_?){?19m#nh8$(Sd5JI9V)=FjUwX9G8G za=my_9n+KNOO7Jd$S6z3d{1?|1;;M_vWU!AYP@x!w6#P=K!NG(`l%kKC zPQAMI>z1TH*=b~ef>p*T2%1$cR=V<)n`w*u8#Lw9xO~Bb|2W=!dMVz8?#!9=Hva8+ z_L+e0@dx05q7kT>I;-7xA2amT=8;fAA=J}_ybxyCh8qzh7Fi%FG}c3ljWrQTWsU#X z;fg^iq5)N}EfnL6NEwF0U>pw6l#WK#NEC}cQCOlsJ`#hIP6A|TP+?30PqVl~_)RC6!zXRAnCofLZ03QkH2Fki-nsmxfJ3>E=Idx_OvCIMyja2q6G;r6h2r zfY)7hgOJ9)|8sU zsi>x^YJSOtIvZx8f|`N`@Lr?2HPyN*s-x=X>N^8FBdfgyrxUAwmPOoYJ@m=sTW`NGVlkQ>66UA`H--#y zqJ1!mLZTbSd1gso4t68RF1vhCof@h9WSdNmsdHZ((Es5F$Xu#Ivgc2YJo_M}2rO8C!h;|5P9yTXd z9Q}Awrov3c$N*HarQ?O9H`Xh~@saKlFay^I?PQ|veN zD)-EQvyi)T zGMcexQ=8fV(AF|Woe?1~i=!IRq{N>Iq-cAv}nY zB7qSVePPNX4H?M?C)vA{NYawRxSb|5$;nLJE+n$UAO$hCk6#%t1;3>o$omq3JjXI1a zpr`_8ezK^Zaj-`L0hnL`lOP57f=SH2`W1YB7=R@fU;+Vj2MphW-!>v9ss;Tg79mLp zNaS%meNBi&J<2T9C+2b_D0w9urfrd)lV+5vve?8dE4TbULD+ArUDhyHH*6pdGr3?9oa)0;HA>d9mckBfkToV2 zAEHXKr>*-Dji^#2efk4Ky?sa;okYft(sa=J^_+a?%g{gz7tz0ElHAxPwd6LmNdw6= z+Pur@@pAegU2DO1>m;|crAf?%A3&?#~z)p71h;LCqu?H$EXo$5u<)wgy0!Q(B1z8Mo&&ELI z3GpkwY%cr7d*11q`Iznf%=5IEK)ZujyHVw-;?cRz{=&0SAX1c@=5|uqj;Kk3J9S!H z9gOaMhz(J&xMWlJ>QuLS6a~UYT=V~PXv?i>acLcE>+1T{rY<$tGAe;l|M%|fjqX5w zJJ6~F_wRc@Bd;lUr#szu0D%F>5cjkQv^ie6&@~K~w3N0ueGTe z(1I#^tY@$*U7Yps>2uEdc}t^z*o1~~!~uHN{33OTf%eI&#Hf_}{(Fq*d1ypX`WL^I zSovF)2zIf6UhY7!egN!_qh;~xV+Z4r5b_Lg;l4vSvw5CLID*LYSVaKy_vjCk*~ku2 z8U6Gcv)_i##i7~vvHt$@*6h6ZU+?(QUP1Ii3v_lGC1w;&0X!@hV1#BgVN+c#vv&W+ zYy4Do5~z1<$09Y9f#@}XShxQ|RN`tRC3z0met5?*^z{#7#9U}Jf-HDZa|d{57hD@i zfnsNACkTNRs8V?%Wobe;<;6Ellxaa2Hr{i7(V>20<2{qmG`?mhKUg;b1riJ+dmbhY zIG22=7cSSN03U~c=mIV|_XLCBWwD1mK396WvUJ!MC1U~*MCe247l#99JP2}T@?(6+ zf-Mse0Rh@t>}g4KM!mgGaM}@fHMJYS5hWLh%^)!cS^W~MR-|iY&FDzkq7^SXlH6;cXmEy#j`mr-`-jEj~f>a|7LxQ*%sce@59 zVgoiK6-8YHgVqIXI#e<;1Vk|-G;FeLH}X)8rzb+lHfa z1d!39ivd+iZWUwp_l54`3Z`g^?Nc1-@&sToR@npwgYYi@CmL@xZW-echQ@wzhc`xe zi6&`@5^xOS#|~$vAdvVf7inb8!W_P|SJAguJVuB*2?{wTSPoYQ%3%mb@C1hNeFP$Y z3CC6~mJ2)dk0)7@CwYXrSZWGIB)yOt@7EsD6b%{)4Hfw=69ASKnLkAN9jy0pU09T8 ziF)JFmIAaI7?S^KeesX#XG3ksYXf*CfaGn=%73KT~XfnK-*wIGB^1o2i)()ts4DN3D4! zC@`IT^lWRyQq{$KVuOpZ2!tDfgq@j0hjCj97gpAUe;D~LUFk{$LM*kQ9LhmrRIvz7 zrV#??k5Czv`e~Ak&&?y&!EXE=J#01x@OpZmC<{D^)%lN-2^mBR9#&tMC-kV+N#9b$-cqZmN4(Nlt? zCW8Tj8=<4%Ns^suYnLMl#z}W#$92LfoPdXNSM|YooeculCY2Jr!v)8f^u3=!dMb77=ah)b%kdmd6y$7 z)QiW4U0(`oF2i*wz&Xnn0xh7ZjR$!aH725A11{ zHcBt~f-AW-M?(^uLMTNtScASe5J+l{DnzdvQm@5Gf`Jq?TNgBjA&>i75X6XVt|pnR zmawXJYLKa4b1J8@BL@f}M!4V_@j0$4(UBS(R2WNQL^V$!D^H5>uq0cuCfjl(rgWwH zszn8fBvv&@SQOOpG98Wbmt!5UiCztb>?x zG;j*3P#i;xp$DQco>-pMkSq={V-%0~lfVUw#Pim_He;c?e+OZKrZk@8R9cz2}K(VipxE)(6u`~}I znYe>%553?{k8}~53rQ&g7M`mTeLJ$EYqxmUxET8pz0k3P>kFf5QqTb%##*gkJG--P0pZTx=Y74)+(7I~dxfQXw;`$hs zdn@Rhv5e&_hzq&>`>8Rpw=25{6(za@yukizO8d*e^2vNvfg&K{xeU>no=s zD1p!^1(YBNAS*BBaU{dhD%gxWRs0g5=9HJOf6| zg=x15hdXS%`pJ_{+{j)_p9%+x=+IdEflBRSWE7wr+)`LzaFdEGeLU=Az}E*2U;@MI z2;U+vp8+b9_&mbl3~u4bvi!B4kjN8fv&IU$XwsT%G;E7NzQFv)!Yuz$ija8h>#-fg zJM0w4W)Vr8yCSfQ6Mk@-Q2fWrbx?F$u-xjXzC{ed9L4|e&993sQ7q2Ce9q+z#jfhL zI()N?Jj?JL&pI0&kW9VEV=U_sDnaYJ%MzatAOH*ySU73Rq1;!>t9=^4g;QHi(SLL&L6$b;)~Aa49@=0nl@yxT=%Cr<0YI! zzH~dj$K^9l7~&^S@njVOOfc`#d94fKL+n0?zRciNQQ z&UfwC9G$&}o!i$EhtomVaxHL*Ez}if(ZSl=m=M^w9oE#Jev!_qeZ4UnwL!HA96KLHx8pH0=Y;MOxP zOdo#a+N#<}zT|^l;oQySdfnitJ>UrbTuuIyO8>+T-! zl>qDuF7I~D=u`d)3J&S^-tUy&>|73hYfamf{GsXX2pHMV3m^v+uoI8q+k@`ywVabc z7FaL71FDo*W3_JWIY3CJyNZCwq&`0VzU1&;^2+|}4lvCEVBsj=#KfNA-~M|s|MI;4 z?{PTZ$Y#-79AqX2fr4h&cBvHs9OPD@)0;L6?Z zH;?ZTe)2Yd^Ys4pFwgZeU-Ki+?P71}IFJ8+Z_(xb&2#6G)+w$Zv4D{>i3>)sJqv*9 z@vZa|Pv1yO=XU`p$tZuZjc^=Yr@D$nvRA05z=`F)`IoWJ>= z-}#{b`Jx~Cq%Zn%So)|x`l_G$IM&_#-sr}D_Q;;ItiSrU-};lk$Xbq)1c&$}N847l zR;WY|oq?-1yZ~cO0T>tTe*gEHa}})VsCUOY_7e?2sSb zlCRgbkNZx1{+6iz>d#~JKK^6h{PG|Exqsx6@50~k@vkge(FzC?6oZ3;6b%C!I|5{V zetwRSeUp@vkC&L4nwy-Ro}ZhQl>`5f1AR~?GYblYtrHUp3JtTgwX+Mev9TfwA`QN> zy1ESu1Ei0UqLiS_p~}zD(bCh@)z;V8+1lIC&EDVO;o{@u<(k~+*PPt~4t@>-%<1#f z=Jxma`TEZE{r>*|0}70^Ptvne16B>&)vH0UV76%Cis(>;Ay*U>ERaCKfgJ_NEOjeL z(o?+w8wBi#)vC~|ShX}zq$P|OFNhCe7CQzhq_UC&g9;r=bX&=zNRuKh%5B}jcJJbW zVro>W)vH)LQQgY5>rkN65;}DFkgVCV5@+V>b&&!RK@$)yU?2dB&uCe}{xs$1i3t<2 z+7f!Hwm}NRxhneN^^2^qSPTD(B@=m&q}R)sGfT_Mxie?YoB4_I0~MY;&?7yoUTqGw z>(`m}9_*7yVNS+4WsNP2SeM{J3N&b-AYg`^o_ihQi^J99?zdt?MKlwp`SY!dy5KLuZ zm)$NH4I)cIGYEhLCdvh<-#2*qu>d?784|-_gz5NB8mvGK>*3!C0~&C zMMInes|@lXh>Y1X5k>zdrpZ`$Wi4<;iXL#2BsQj| zO^rDT*#Hu3sU@NX6{;&}p7v^$o^kRS)oJPZYV19`CJWo4@F62XLbBe3lUYzYX3<4R zeE3o#bnS2qlE>n;fC&Osl0P4YcEyD<{M+NpIXABz5oX- zu#ZIQ7@K9Yjlu&=iQ%@8V`-`7TOloJv`RaCft&AWeGmXebSzPNDlv#HI^wD}wY%MJ zkX=zLHa7luVUhm>*KG4R?DTo_&O8fBbH80NOI{_<>h^GMPZrkdE`|uEkxZFV(370u zj)sy-q@FvnEsw3bn=d80>nJfAXcO~1XAjx)+HBwIug-19Ew^ev@2Q#4^FB**!_%(F zu*B9<+{zPjEy6&SR2%!#6Ya!e#%~kcbPG+ftja2rm{;T~L}N*oP1@*yKI7b^2b}Y; zrKhfXt_1_l72cE$7}>kD_s!cw77>C(D^DvRfC&qPX1XZQF)#pJ)rs&#x{Kzfzy!-P z%5q}hRjAI)Xk)MT>fGabdVSr8FMcz12YWZdcuhip1R5OHx6vymZHxPhf>El)3#7Ee zy!7fj3K{25bf7T@B!=~_ryrRW zv2`0vVrMX@#3pvHgD(0Y>qasPT-Yv!!zfHn*m5q5DIh{1k)h8#7y!CFAZzE69Hbf; ziziS(4^QZTf^q|%mqGA|=@6ZvoXAI|FtLw-j2jf)7BmnBXcX;Z81pL95Vg<`cQ_PT z^}3}oUp0#oP1&k~M+vr)f`N?Xk%R?4S@sb% zO$7fI&agqCMZU{`JLKB)?iU#w)`0+>sw8`&QL9>^pbtnWPArf>9akL9JFBu>7SXT; z3}7G&HF(Sdw8;Zx5&)UcK&L3gvm9IgYAf!Hr+a9bL3wTvmrB&7II@w5=^@ZNCOXhe z9u=5YjLA}~$kYUULP#23&>Ci3#qM?oB1QhQhnV9g1`4o*EFj?tXy{rB%6U#~u(O@^ z6k1SH%2HyD=3gznrxaz%uX6BH16Eul*ixj!1+7q$a#%p|Togr=wnrLv)PNlXph-d) z!4=Y~T{a)Xiz#$-qXm#b7oyOCkXCM_>YT($SsBxPF{P|%HQ!6&mR9lMGl}{PM>hYS zbtZz2Wo2Ni78kpikT1~y8ORYMYoPJWN)SgC4KNi&2V>C^_7FE{kO5W;fB_kVfeUEJ zMGEB50&|M>vt(_nJzghTwEnTQ+%i|_slr?by7_@IeBcA#i~|=8zySw#cAer0fOfS@MAX`}yB@TLcVl|m z@s>`t8jLGAv>|~jSTUHukZrYSk~>QIq8QM5z+ZWy%=Lt&54e580-S2i#;Qx3HBrEF zy;*<)K-Zg=74QP&5Y|3qm%G`ua5c>PUGciks2rAMc|$D7nWh&|^WnXg~oIH~=L46>OfUVT9s@Nq3*rp<`K9poW~Fo0M&^gDHyvFL0p)78q-VLrY@v zfw!m|uChBvtmU3fBg11=Pd-t+%bTJQB8%Z1MOsyhy&4pu1AqsPvD~RwilSB;V1Nl2 zaD|H~fTCMt;QO{I*$*sX$qk0E3{GHy5Ktq-S?;oxJ#4o~OB#?|zO>E0yxjnVpwk%6 z9!u40uxGIEOe_w@%Jk~yK|Ixg3fO@O$dD-hH48_krVW7Mu{=Q#cMy{6DJ@d99R+Aq z$;ei+H@k2E1YAJ7Es#J-J7zXbcd5>5ZHl#TNzZNbOd6ox?x#C##FYP%`on#o>sZ)~ zz{SMMOara$n={f^8}rxJ4n68Ko>{9J-}re2bP{5+NfQ)d&e%x)K(dj&1Pp9}(b_fV zw5#pyQsXMyRIa!MGp+HBJtN%Oy@1Fq(C8?Ko8smsGr^=mpxZ%gwrwuxxxjE+co-qD zI;Pt+B3i2AJ}kZUUsM0%{=bb4#;DQF6Br#zN+aDM-QegH0cin8GfHYSNVjx{jPC9b zX-P#vMM3%UdVfFv!TI6b&Uu{cT-W_h*ybiNN3n<9!Q~C!O~-tJ7RVU8800Q6l00rJ ztGlRt7oh6i+I27MVdLCh2tibYt*L);`QjKn$#YMx@5Mvl*M9p^pyK7M4e8Qb#xE8U z)TtsO*did_T?gs6oPOFs_b5f`6Os%dwKyE4`b=Siyk05mah>miYktJX4|glOT*FA=?Ph|_b_!P_@orkroiCI$_z_V>kq_Er$;M)X3cbi-hIjDO}{$(`>% zky^Uw3`%%f@{T>twB(5QrJxMu%%!Qb;%f`^9{&zLo+u46S=o!)VnoG9(=Q%wv(WY{P+Wow!2yG+3NWP6c4Y8axu>eL4|)Ycy5p|*G0lvEg$fTS0Op zD4^lFxVU_A1EBB94%1|6CPIp^rBN!Ue@R2&j6$hFtw{WQ#(n`)*>Ma|fYTTq17|ip zCw)3x7i77O;aJp*=BUB|%6~g9iPQipW^X8SD31ULdKp(U24p}1>{UI!vp7DxX8Js2 zb(cX5ZW0L;C6M|NT~tbdl!FS&$x$G|uw*zvgCVTY?M~0eV8u5LDGuNil8fbuq1xz9k*P#aZ`n)ptqWQGwVp ztX?r-*L^cI1V>1`1>RtW$|ELzo^!i3n-nY#b{yDgl1HV=sav9D}fbG`$~^` znG0dlYQ=>D{Yf*8Xpq|Y4wf_JXl-WY^kyB&0GJF%9;zkLG=Qx;gGM;%l9KhwN z&o1G+^^=4dFBw1!(DIME8G9?*{MN8afAv!9J~oa@?!i4DRDT?YM;rg3C~Cc-+#UQ6 z2#9atN^ZCb2L2BAKFO$e2G$1vaFGDU!c4}w%+TMNsP)XC@ytltBu*4Arzgk&3$aAv zCXQz%1%hxr0gk%3>L{F&%s4i@%vbB#IVahLzq5;Jb4qFNlXJ&2++Bd;y0{J~Tt+~4 z;z^c)KrSadt8G0K9hg;jlEVlG>dkq^R-`3$c+M|FS~{$5qP?@I;Q1=v4jtK*T;3Mw zpd}L$lTH_!fP7QExJ^u)wR)&*LmXl*&Ye5{vnmcDEkHe6)#W!65QVEJ0Et86e&>F7 zl@0ir{SIyRuCp`C($mal4g!=c1eq7w$Q1%zadEo}9pSh{L4|l-5DRz_`Dxa@8AKfm ziR&z4sD8)T^^W;Z5$kCY8(lGbSCIkg-EZ25>&GLKEFyyy;kg!C&Ot=03-4V@fH@_^ z8zq^`5Gz2QdPkb%xE^{H!l;X0)y@9~g%_yaM?2iO=d3#yIwty;<_|{rRz{SSj^(qc zW;Tcy9GDd}nMP;E##3i8;W3*LuKgdz_OzTxtU|`D!Y8Q0PqHG&yuxpyBD4$ab6Vjg zSs7_w868wf2(=>m?5U2-cAuy~ZB(R4R>`0%;w3BGc}indN;Mn<##hp&f4M7)U^Gw4 zSjEGuxV&faLaVYuSp)$5y7}Z|WwL4cEnO7Wbl$U{G5gd7@5g|4fq)}!zoO{!n!*35 z8!BafSH@1D!Z!Ygv3B`eW$B77p zTUS+k1qN;WsOH~6I|bAT+t>Vby;s`;xXzYWAI9V$1VGyGh6eFk5#$4RvEU>Okfxlp zKUO7mQdO`~l?!Xc4`>`TYozLKWY}yR`VHAI_fe?`W;$yi=4e!QZQ_o1r-9?0K#30g zblBHR%hoVwJfYP*-m~1^+rO$$+e3c`)tj4Z%1bGq%mo0}>vewz<4A-yRDzn;zztlr z4ngIAFOvy28%F(`5@H*zZyUJi+c@K$ZEqV$J|} zkl8Y{d5E*teu+j$x3=-0v9z02+bs`wK2Sg^DrNO)a0^ksX}Ya{fkbzl9v$YJD`8`G zo-#d`acAdkOX;AG-P|Px7eb)@E#Wb618w~2OpKdvN&48&4v%TJwdmz zz}lW(%|`p0Mo1o(@=UvyyJt`n8zfcQ=@wv7)2-G~Yasw3{4I3K=CzO;vhHbf-tvK! zD~NihrZ%ftk~io;C8WpULtcEnz?RK2z@^}(Y*i{WjW-^bHUohLUTHQ!$AK60n1)-l zT{$fjTaH_M?+)AQMm?AXUt^zH4*SLfnRCIKl|2BhJQB-xE3M%-@y;@4ICz)tCse(c zT(+8$Z>`3=X2gPOk8wDpy`M;@N9U#}%wj(Mo;=EZpm^1$>5sV6MIH z?)vP~`r9Jp_BE|$UL?_3`;Nx2@p(72r>Q-@C!27>mSG~>eSD}BoR|YnZEaHh+^6&h zi#+QqW~j^48i7Zb?y)qVRrMtjbnTYsG{xe~#0+@3kJ|Y+=m)w5-HmFp4Ng6fgt^9c zpLo~C_EyIxE8Gn>sr3Qf3X~ZfQ}SN+)(&X}5Bo?>+E_M$+_5Lp*pj=MVuo3UGwnok zh_cxIaM$gya#tIb!Bz9}Uwb7?t$|GOOW`$aqulU@-I^ zjnz7?T;sEMx*=QhB9?<+Vp|IEFg0Uw!wm5Uv;|LV!PlGahOa}b0*11Vl`0#D>KOX} z^^CXn#7az8UAPZ_%CV=I#5(BCXs9in-YssM_Y?#Nr2U8`8Uvmy0g`_9^tdmEP1W5ECimk|ZC+(vZRBK72e6PqcydH^DvWh(BZR-8m(K4~b~6h#;Mi<#gYv`T$IYP6 zE6|ysYiyWRRWJ9)xtI7KZ>P7Kj^nPR`V9XxbGp=tYDE+A46KLbf z-Ne0}_v3BWSg+8tjlXAhwUO@=fVJyO=lP!{85_rRK3|=u;Ua-iNenTMtW$qQS#BRv zhF&xWta4hOs&Ds}ISqv*hdTHll~$j451;hr6LXeXeY%aJoQ}JYJe4QD&uF~aN+Mje z{Fi5Hm2MhP+swOHp0GDnus!m*J zo*PNGrOz45m1?^}Ll$N}2R`9FT?*{{B@RE{W`OGRbM zh9k>Rz(CI~X2(0mi z&4NFD)+Dk)zJxEmh*IZ`*O;pT#-Bn0r=_rK)*S6Q9!7x&fUOQYuzr3#ig)WAkKr{t@u0nO1&JM*U3bvwvA6Kl1L7 zg^&Av9&PhTjdX8!J9k%FAps)|`+I}~u{z%I#89X#6rqjafl^UXQ}HClQnLWls6>*W z)YNIYEYvu;z>u_%(*MKQmWTd7jP3t}B6M~4^nPfl{{JOnePiPjlT*_(q1E%ni$#UN zgbW^$Y-;HCdREp)C<6lzVp}$XL4)D=L3nnLhX=hn#EZ)<1Bcu#RLp{4;GYi|+c!{q z3e%2D9Ng#!jBTD;WAQKvp`gl=DXL`TEv1AxgSwFYU;?KgvQnP|J&;5$pCPSIel(TC z<+YK{OnTcY-yQHhc{ve=s;CxBiaiBuN!(c8>^>& z&|S=6(wb;{zu69oAma5Stozs0t~7WYNn?D z_Wt8|zAor8Sr=kZHo?!Ra7_z8Z@%|6f32=p?H|Zv_tLbPY()vJ(uU3DnU@p5o^!bs zm07)e)+hV8b0}f`)9h2EUwLlJ+%~|@p-Ig&*`9Tq9Y)-=W_&Cj0FeB;hIs367+}}W z^*3_moz*uqZjO9epy8G`f-%O@TXOw?Rh{WQ7s8u(oSDI^Cp&V}RpJoW?wQQW(IVbc zo4F_;)X?B#%)7swXvl%38dU0Yk1#PSevktb=&WdUDI*2N8fUT;84F8uE)S#*^{F~J z%0*NU7m0#$RvnPhE*NA%q|F|U{Y4&vR{E=!pN&K2ZgQ+F(||;BcG;Lh4&iXVcy63< zSL{i=oNLZW#Z>39g(43|?_R~Lb{E&RLc;shHK~!Z6GAN>sepa2DY;?nylM4hHvK!r zX`*qe7mkCmziaVW(`K?$;%i$4^YpqU<8Ff7KM$P!5J%&y)hr+(vf#-$Po-0Ms!VE< zop~$bJmMNV2!xZ5EE40P-D9boHiZx`oV-}C^;I~_M-1M!v2WSdG~$jIS9D!)c@5PE zb?IyJ%-@uF*Pf1fRw|E>_5)L{S%7s_*RLs@PPBiXMcfcex=)39RS^}eRf?@NzvJqx zZ{flF__)m%|3!<%HzT{m=LBCQk^)4Y3&a+D74OLE4iCUF>N)6;B7y(1ETipH{q?=R zR1-6jT*lSb#Z!~(ae9Bb=~K_I?@7}a>oO=?4*j*|t=bZ)AvC99t@j;s@l`(!>0s9T zP3Z}-QFP_bAZt9~YvGx*7bP!)j`$h*OXD&NIOfYMzG%g!5$^nXzT!hpRgn6E-PqPl z`7nt&>Ew~SgofvfuhN*t!LVYggx<{4_BDMD5}$PGs@py?KHA_`Fq9)ZqRPl_$p|dwwrc#I%DzR2yxeERj`&5oGJ{Eo| z91ET=$D-5`ESP&&`kx(Qg5UGM+ANXxL z;sAM2Ak15I(0oi?;1_d&%y&rHut+}~u@fDT<0-LWro)&GRpyi=Ma`lgMSnXfW=ae1 zlKIm}sZJhsc5W}XwtP+s3)(zXEh}JU7;WGxb6Oq+0om_(ny%TQ1t1~h@f$5lPwmlkgDt1WWoI+-tw+Qp9XIPxy+kp zlFdd(e%1F%V9_+`GVE|~4X?pn(Pu}$AUkq=+Tpq}x7u!f0cF-Nxll+-D0#rTd<=cX z%o>Spnz%=Bb3e>7V;OI{r|3iEVBSBAAa|FeegFEkTW_!u+X##zaxYg;;yQNwRqV51 zVK!EE3Jz+ATo;;&`S_pZV&sr24K_*r80+*>av2vz14*8AKl`%BKh%{B2T~2nz{Mmk z$Eu>$dM1b0h;89wzNoHw5<+4eDP4f?PJ4RzQ6oj_H%b{|PtdC!kJO!Sg~rZ)M8gbw z**_FNi)uHb)got{T&ir=W$|_7Bn6%-ySbgvREX$a3V|=Ud7m%|#wtFl6xeot&^}eP z2J~n$g@?x&Rw&hvj^jMH)sz44&Mc0K&@g(ya1sjNNRDlzDB*8CPNtbyh>|@hrMZYz zQof&TTd6i~sSn|IML)Eb^jq3G5-VT0)NH1C+I#Y;50JTP>cvkyDXP(S(Q-)B&AFzq zX*ncHQIUKYL}0m;TwEP*S^ukC5w^yYJ6fEuDU%;2l(u?50WBDZDr==FZU}yUvh`|R zZJN^A+xIM+iDvbVDKWHoum$D$)hAe#XhmT&&64#?FY^(#wU4ZEZFyd zhHE)lD8s*cbGk>Isr69ntnCSf>XEQWpos0hd`DFzu`2>E4kZJR0J5|x;1hW zX_IOKM-36n7Q?cbMdlyZEi$eAxIJ*7)=j^!qD^)3Um7B5p|UX>X;iV0I!V>xm!4LH zYU9)}@~5OkQX#emVh(sOSVq|wx9@Gyd*@KZIK->{Ev|XOu0ok6mcc^Vq(Dv0RCs1x z(6Hz#a_MXbf0y>1k%XKb|DtJ)=dfADjc}m}%W?S5Wu>Z5(yJiE*PzYYZ64aZ4`C5s zL%-gBy4&{ey9!wfqrcmMigggCaz*r0;_pIY#QQF$Eg}y^?4~IhaA79AL%{pav{D^& z1HMbsVC~lGoj}oP*LM4-{FP=*mT#Y2Pb3P()2?q2&S!+>Kewf}a2RD;OgpW#`H^mx zD55JAF+AVm>Q;uoU9Q_(oBCp3&uR-#4pBUk|BN{ADult>e`4eBTO7VH{lUMLSc08P z%xTL43F(a<;!7So4W;-suJ}jxFL{Dc=}+GsUynpf1q6-eZ@a5X_u#*|2^5yyAZ-1hr*iOfZ{)y%WE#|@U{^Tu;G9ey!WH7PG&R5QpqcD0cuZ6xCP z$Hedf{H+|NH%mKb`YQ`RC;VAbNo}ZBOcoq0@R6uJ`IpwGq_^ zNfi1?r-ph8mrJ}~D#vJ{`%kcA0u;hG=8cNB@2Jj5grbPGcK_jH@BdaL-`{<@2j929 z0g0o)9d9fJAePA}$7GaE1L`5eas-5tb)fJ~!(h%~mT+9U$}kH!E+Y*tB@M2TF66Hm z1VDqj@ek+d2@t1nDb6dm&(CDoklHtVZ%(r_}_S zq$}*W#z&Wq@9>inRm2{67#isF+|@Vu7Gg5d9*kQglHb6GDZD3|ab#9+XNt+PUu~C< z#7dn~N*k~^9jQVw^Tcv;p?jQ^7$Eq}AAqm}oX0#4pn1be=B@dSZM2DRb~G;QDozMN zt1A?b-XRkAjBl@W{a+?I7vCEI`aqK~AfE6c7WY>sDhM7%xdv<>gOnFTFP7u7$P??i z5-%W$%UOv_;)%N`8niBi0{~%!hgl)R?pJ}>tfXU_1ZU)%FO^9r0U%E1ILi_!?hZt< zObla8|9b^;yiC%bY9;@~^);JLI)FXpiq}}|wO)$%T$_~p%7Yq`@t87ZjEn;%?^tIL z7f9niBIZ7ZC;vuVqzv~_V}!)p!dU$bpRrd)|B2i)2``2i+iB&jg?N{P<&ZYsPi!pP zLraU?>a$5)ae>D0fb_wIxKV109jLuILQ%LV&G$25KA=$_=uT z$at`H#dZR`cO=PBAgTrkyOAs()k`5cWrgUYD$-tBd0BwBZBMJ#^ z{e7I%D115*zURM~tbBof#Wri#Dc6FTZt{N0{m&7!A`mZCD3SAW9_tt)dC`*VBMQ@0>6`aQl= z5hmP$?8Zv(RD1N6O6aNb<2ihZW2a}PF;BZY;_(6L_?KzeEcILpK>Bd$&tW;AIM^FM zA;5A0=z9SUGoA?=LzjI2&O$va(kz1rRpjWB@fV#Th{Sb6XMnl@gvezC@)xwv#?- zqWONnoGedsD!>=ROuSGEibg`G3{|&pf*TP`PCxiUa!L~i{>$zv7Cv~TSIv7bN5$_M zDRP&Ds6cVc0jd133;L3>)m&%ePt?b~;#|C_l-;1iP5_W0o32iRHpon(hxXMFFCg4%?->Ns_|X~EPl zreu8+t~pRzyh$j}qgWSAEO%DudS`)K5v4{oRTt*L9T)Js(#-{z9F>Iwz#S}PbO<+Y zqVH~z>TY&}Wh{dps+YPC<~wW?>7P#P?5shHqJq~wq4-^e8pq^+zeUL$(KAVsL zgn{|KEg?5Io3`^ub4^bWny4y=b1CFjxV8tuGLxP|%wY;Gmw>MHS}4eMu7Ge$ZHC1D zb8u^b(5C(^YfBO;v-i^ROVv6*&>1ckrBG-;fdr4z1cBoAooBB>Gqf{ed?6ZVg2MOW{CzynKcxhCmmCrtOMa?|e4b8Kpi*(bXA+ zk6TVql&k@aL1%F=1K#O&s|62eBn+J#_0S`$XeXQaHZ#XxXO&3xSfP8wdoV@aJvAEz z$|KEeyA0NF2z{z_5tbSR>9%X{{RpDc^R4HxFG=22dwaudMB17(fe>RGDBNO7-v z;ec<}Dq`#>_szF&HKp%+OdKGk?cdq^s$}`b2ueSp6uzZ0j-fmbd*bKjkB?W;B<{4` zH0dtY^=0l8r>j7>iHV5YiHOPmY#(Wp26aPpA)?3QU&G{ARRF+OnUfszP|N@Fy9i!0 zSSpnz)-#Oa?kcFxaO=!?U{&MD6~X{-dJ?9;R!na_XvKP_i~N-Nk%S5f834K}3P1)d z8DyIcDsme(y8|0q4qKwLOgtgpJ4G{R6nd4U98qL{X@FGBx@y&Ixq2-+6XK_hHMXvg zpPVAQh0&#frin$w7eTdQyCqP^M@=2>M{JLrQsg#UN)y~$oX=uXwD_wp@9`UiISyE2 zf)+kdHyAZMA=Z{ci^jDZrljr1gzl+6E;}#(cUu3uI+XJ=oD@58>k7D=Sh|Cy*D@p! zV1d6ZC)=l@Y%?c+u=fW2r##S8Pim*gHL9hjhVN*LQZ_P(n1S?2 zkf7(>r>*JDyw%`d7(g9>!wh)fJ5ykrQg}e8TbL`eqI1jYPzfOGB^a4K{KI{gt|4n$ zvr|gbP^J|u3SinQ>y@GI+}|VG<5W3EmRx{rEZCoAbmV=G2l)1sY@wj%lh&5G#MwI( zxpHb>5eu)!_}MQ?2T%*#y<;CikBq76a^N(&O-wpZxKIiT!+-8Wh=bK_BcIB5=09C8 z-=1F5A)0)a-+$XxPvgFQwYC&Cxl|q8F&cprnf1z==uH)JZnc^}K?}AZ&zMOt=y5Vr zdW*S}0D|jgY{yqjEW1c0he476U2Jy|mFp6awF-|2#tg781UyU52;we!GrmTZJDkD~ z0*Cfk=4BALYSVXxztP*jXCqnGp#z**J&us?Tc2A*FwD8FF0L`;oIE54}wSCjr z_oKZWVfLvjK0YtI%M1pI!-rMUZpw`G%BiC#{&X#cZr_)`sSBmm+TMS$ec0O{Rx{B} z^E&2r{E-&~oMB=kcA|o&`l+3~ocif6_ETPHr_+lJ0?!`scBY|LhV%Pfev38MM58#W7@KWB;cH4Bs!`}GcJjhn!zpP=O224x7ko)e!jyWREMq2pB>`YZ^zMv} zc->cz}Mc_4ce@JesD;e$|>lQPLaKr0gtHa-J)W>|N&vs7pA+3Xtncaa?< zh6}sbC@(HFCmZwXh!Oqi+Ai)W5{LS`Xb|y}Yk_j5e|h^(l#@B5dKL=jAO({RlZBfv z0s4p5nz^_>9Bub?)MWy@p#Qi{U$o5@9zpM^yo(DPUyT!yJiLM_UvUT% z|NMFIYd@2P1jYOI&!2CHA;<&Zk0i2iK%Phe5BSr?mi*SpE# zFFk;ooIMM}a|!v8{1s~#zMuBZ{0@CzYwch<--7o1Kn^euA=k8BJSd(9A~K303L%Sz zBA`jK)JagDbROB{6ij*+H8qt;Ar%#nx|CYvT?r5vQd0+HsR{XCVjJ4g`G1LRS6j=6 z{-NO-mI~^|rs3(C_P+TpoX(Jr5S*2crO@GpPkr0}SFGJRJ~=)6pLgujY+G$z<79n7 zVNOzhDi1>p-EU7NHGH@do(hBMm}gN~4E(F(g*5(;%Nh^uIF>Av((Y`)c^bA}R#i~9rw?AS-H$`R*@ zV~+uN^7sUzdQI?oD7!Y4n`a2xj}7BdF$_vqPh;0gb)K_auIl7;tUn#M#Tc}R%=Kur zvqDb0c)yAJoAY+PkTdutgARQA#?7+x)zt&VcJ{xu&vp%9IYrLWtWK=-k1i5@v z4x>e;1TLpNQ#d(Dg>eNQrD=+`0!X9@nSplTyf$TrbgSqvYCUFMm~eB;TuG+ok^ga# z$b4arCSKu1JRxZB9TUHjx8Pf(6pWT*31kNVMg}LOyg@X``53% zvJOJ~A)Y@jd;fhLMcv|gR@`4%L68MvlOh(IKISBrI6C0DXjxkLMJTfm5s(8^nd*LQ zPvXO4k?*|^I~@bc4N+Mr@>ko>cVB*}DUM}!rLa|FR8D8rpvV_Eal6QA$pH#~Ft>9G z**aKvS`Jd>D`^39+v{rxQXU#=^58FzX#W$XG_^}KIy5860t`O{xdfS_Feq{WWHT&~ zVeQ0(?~tQUvi;t2i#D^OIc>>-h> zZ{sP^Lu+`Vt4C)VU)dw_^XV34(6jXe9(;14p7}O>gU*>Z^aJtUP)Cg5szs%Qx{OZG@T5x98m%` z*oMgZWE~Vn{RcJw7Pl%#B6G8XuUCnR7Cj%uR~CB|wZ$Pugr5GQ5ANRR^isNEy`OjE zDkgioBnbRBv3hpwoccyDGLaN*f=9NKN~`@@<(yy-r?FCq!NHD;+yG{>QYs^G@HNzQ z+}^MNPL;Cmz-!`6E0GmdIX3PT61o-!pqb+k3M1r`o-FvaVNY2tEf1!{(SpSd;oz^i zIEO&P=Iv40{9~mY_?nLVg}6#8Bm1%6J&}UvVRQuLY|p9f$8qfppdP9GV#6#-a!QA> zRBdxnk86k8d(;#S;guBIdkmj$aEYu~JY-`C=IS@H+nE#=IR|4WL3Ek59U^I*vt4h6 zsm&$$XBH`~!21z5g4L8d6bhMLhIsRsRH(D_+osoc7nWC}sWab7DNjD0-5+%<#5Wux z_$BA*vdhLeH2 zoF9&>XY-4tuUarNr-5@rqy%mi^D(vVH>>Z!BGfqSmGULd6Mu9Y>#=`#-<%2pEOtvI zsh}oRY+m^405+C=Tk2?^QT-Hi>ZJenpiJD~=g}fRS+{?zs^YZWOXd9hR>EXHtxaS` z?*5Id<8QxSB1$Qph4SR_v-cWCTu4m0>q1{%`l)G7D#a^4Wcy6&?8L)oB=8(iyGNkO zCx~BGbD7DLIR&#lI?$w0lcV?g2%`4fnYEYH&ACh*dH#}>kI6O3xIre7i}1EGY?-v| zwIwN|CTPs(g>Dl;C!YhpJX|Hqz;HUuVoOdH|0N|CElzR2w2N+fFUB+_*q2|oSvl>1 zBh%;|4MmYF@7v8#bRlT%LZ-~LcHBsC*pryZ<=AGcAOHB(zlU%5zg_^!^afI*->aqW z{vX9w&gSU9Jz_GT0}}iC&!Zvs8rRFtu}EiDo}kPi8;TO%`@+3s_D9-zl*5RDm3A)a zjm2U?+StDmf6-@_>p)~7?p zjROeNue4aTXV>f+&q!(>?~L3Ws2tFU4VNpHgES0j<-^q~Ad)>o#%JS>{B6aP?~s@p z=}}K1oTd5><>nmj?M?HW{^?ITfn;yI3jzz;jI0aZv#DSe6!^@@dW(qg1k>$avvm2j z5d1m+Qs(^D!=Ej|IwavG7>BiRoJgGwwG}kIMG&ENDR`ILk;h#m+J@E)rJ13vFpS@EP*JPmUO#{ zAcfO8C7Orxm5jinxGYmyj+)Ku75Cu%PbW0iDxCIqQgQw1?#b?z&xX8^rh}Tg1M**L zi9hQS%x7xG6mYx?_;T_^_jw4bD9rnNmW;Jy@;kG3)1%gxloLOW`l1fs$9~x6n+s29 zuQqCCjP)i?HVaKYQ~32|tdJnYDu^h5p7)QHM%b@~oyN#3T3ZD6MszH;=ipRO@(8K; z!s4^)<-RPd$WofCvVyu}4D}sG9hRlOv#)MjbPv#G0qQ;k2F(7qyF^RLVF`*fbq5+F z#>P#!vd}R$T~f|hwwz>0F4zHV!? zzW-RA(;NZs=izjipn)RjZF0yh*2`Z}vA{r#9}dGQ7MpK>{r<-r6C473YVtJ`^Nxf1Y}jQBZs`tFR2!11Bq{Vylo?RXzo4texuD zOetm4NG69^*)bPLvq3R#%ohMf9N5pM0!TF|cpHVfD-#SI6?{!?w1*SsWCN}-B)V%f zI$gvo1`FqPP(O=eQ!8ex53tEuqKGlMr|<`ff&m227US*KhRCa zSj1zACuFDW&Ogbdm{9S=EL?r2aUZm@uO-5Tqsc1vhIL9jm8;R`3!Xl$_rqYtI<`d( zzlu1$GI>}Or6I4LJBD`t{QN%z@(%Mbg$IH>aZl2OCh&-qZPJ|p#N{Y{{u38e|Wr!WN6|=1QpoxZ z-9Moq+y?GkeX~8oCm>P=9#5U{y^tJTF@Yich;YI~mf$P4w{FJCbDYeTERw~Z4BO#a zlZMgTR7@at?{QVv7e6i10z}P@-_HK>8aO1c696<*!^&HE$XhKpR<%!>9udzcASfTR z>N`t6dHJU)llJ;?CdW%EZ~4?VRYrlx(#%-PL67igA69%)K_D7!|LiYbPTKDmVpaL1 zuUyq^*mAhS1#vXh*)^YGsO?#09R+~s6pC>nf9f^9OHr zT|Me1IwlCI*BKNhY~w)TGA0=#uzf)j}oq*XbCf7T_HDyVZY)+IW_f3 zk;LLu4qgx(toV8Z0@fC1^#kCn%RwQ>j=yHOJ}5l#guNaYH=B(UCx}zlr*I~{Ofe!UKa8FBH2 zT!q{JCKd;ZE~*e%n?^u{qXs#}*Ne=h-_y~AMYiaCy$Q-ZfGMC*Y$W#hqGafl_D zjP68^{%Owoyt2P=u}CR1d_cjxy6i(gd`4Yr)wd|*MkinyM{E)mkCUR*uqCErCNN zp>-+crJ47MoMF~5i^p^t<IIV3Oy5~L*Z}MM1C6wmp!Ycj zfkLc^q=sz%*O9ynT+yab7SH<0dbm^M!F1v!$h3mD=qkq97 zexDLrl!{Gl=#U5%PdO-PV?&}EViKcMXz_ibIrN*zU%KPBEt=&e8Z~OnNdkm}_*_W$ zT4N)jYPYOS66Iu%8UYNs?#^j| zUG5@tc&@Kxy2OSMfOkWp07WQ%r(54Oc)I@|c?B;FNj&jg=&K|V?HZH1YqF*!T>+Y@ z$l`s5Mwg`$WBD+%NG3y(5KlVf$q?c({F{pGP3{|0R_U?KP?5-?+(c@09-&|Z-ChH= z4;I1VJKLE!8(6^^p2(is{o6?(<~Dn|JDOXpvh`98`B}4Sg+gy34FUa-LqWN-STHow zoVsBoRmlFsjPKlzm>jE4s>0zIuKwaXMf>$TgjzT_qdH-?&nRBmF_2K$&op*8(D?Jc zN1$1eba~?H(kn&0+E?R~&<8qUw#qh}nG&vfH7}Rvt@3G$PICoJ`cDb(W_x~>Rx7ri zC>%!sZyNZJr8`eQsuXJ!u&Ye=vi9>#uz)3XD;`cT(slstcL3j|ajy7ge{P84bS)Y@^;+&;5?$@k-Y7nT;cveD(VNO}ncUh;=IU77eAW^imlU zpl923qf%`JSnu|dWeAt`w6Mfd@7aB@sL~+8Qe`KE(ce%Oi1cN*v`E?Y>Ezz`nf6n} zd2t2|Oo)dU&LL`W2oX7L^Byv9$S1IIT&&qYUpYzj7gA@6CX&e^U&@Zahf<#00@`bx zif_TN;F5N!^nn7+=&K!k=*~a{LH7EDTtA%oKqUfJ;iZ=`!yv|W*)cf(OO0<(+&P1< zJaMDCccVgvSfr5m>`!stt>YPTZs^z0BEzskE2646L%>}x}}Q? z=<8i6vG2OQIsQkHW&>wDFAiJ>4zqBp@ItLgjtSGEVmhT_Er-sR$k){uA= z|6xThz=CX!r*;Tzwb{F8`)13a#$}u6{rLOjc4IXqq)0Kf!=qAzEhdV*J>|rM&yohZ z{i>Ov)|Mj+63$jvja$wi>4t|{tw!f)4cPR0T>hv;*vm_Xm@G)Yg_#YlPUcKA3o6R^ zxebgt#R%S|?G(mR+Y1>#{HMKa1{(IJs~s@y7y9c37W|%Uaq_U|gvVii}_o=-}^qA(gZ)oME|f4z&?~R3Vfr2HSXj zW_vCSsJ1^;+}bcoax|?wY?7JF*PQ;Y+m(a3)V>p_W}0aot$$yP|7c2Khl1zayPx)t zUc^$$CT1jXD6@9{(WJ`=e13KOwI=D1md=p=xj{zLxRS@4}Ze6JDe_a1~p-#l~Q1#&? z(>cNVikp_@Z>6-x{1|SdSM8Q^hULxszp-N}N@3*BWPGv5dMHIpacrZglD`qh^ zEWu5e{Rlet*@_OV+fgrI7sg9I7tG%vt(f8ei0%5fDse-(5i^%`@aCM*1G=|1|MDi` z5Zrm_=9LWZ8<1qU?6&$AOuzHd(~|VB!ng)LzLyGh_(I*_WZ2{WWR=)hkMiIlI@gIu zeHM?X6%@MBb{qT)45`|aedUQO9uG@qfuiYT9X`>jCb{|T{Z3c)BGDP(m05g`?m@lQNDq9!7o-OGqM*O(#dj#SswD;XHW8LbyUo zN<%^`Dyyn%{;y*jTK2!hwz;X4rJKq`oPm)Me_#L?9~YN&bb@pWe`cC=e4cY+Y;1aT zbsc~9f_&$W{At#b50i zhGA9ZqDT=sJ!(GbDh5rsP}7N)6Mb@yJQ#|nwF)1PAbDgXCqCmpAo1M;^Y#aZKaQ7I zpQ76DSnsXp{=^T{HjhxR`#kHq(bX5E$>HXBqlgqw=X8Ras-rV+^z8z96)#`Yx(p3NQUyodq%f%(K8 zCXB6)JN=;WQrVFp*q%)jV_*^zG~&M#$ce-uxV$U?bHM>|CNoCPEIu@+0|XlV;KeMd z`AZHG_d>yD+LxR^f9kv(2+m517Z`!=NxWluMFP5k`Yk^HOLI`7Aok6kOvzn)DO{7E z5ROfuTpxu+`yVdPJ!T+ulD{_(iS%4iBithJd?H0a5<92`{t9T@PgD~i)+l6 z^>d#0BczIokAQIQ^Se-1&iE*Q%y%PGJJPO0wS+GN1Svo;#yFSO*!9FKQZ_JN zDTw_5t_X&dlItL{aFy`tqi$^Czo=2I*BlzI5IJ_fP@#LDx7=aofw$zCV}pxS$s%Jg zwBxhQLsx1)X*7F9@4U7{w<)wEf|Cbi1PE_wC{b#BvdoU={nC!{V+8{9E!*XAj^)FV z;YWhsBSBXls*hQsnZt*`gsyX=rm#5^u5!y=u?ZZIoFFs+Ey6kw@K%6zpc`XZ42{SQ z08Ki#vk4Qu)9YB<4}5#bk~aHlo)=a|%$6q$LGCojS56CHAOspclVPQ0kg3l^=lk zPYXYdtRw3MiGoN&RYtDWX2minK*;EmN;#oGrT6qYUWTc?m8pgWl~UK-KA|#k^#PBS zfQuKE&5ZBEc}VLKKl$>DRG7$(GaQen@ZYoSzbz|fbM*=wQnj_j2J512pAd9HY5ATC zo_Qb3Yk+bL@G1O0R^vpVMq!+*Q13I98Ijpq>Ea)=#3Y+_Baz4S&Dk%yd375vaG_?6*gKIe%0;O zQ{wa`i)qg9hGh(eD_91zmGw+-Vg3!}3<)&Xs%$Im?uAh248WE7P^j!Bux8;t8Kqu$ z!~tb}zzxb`E7hbr^d^#7&PCr#s42ymu#hC&AkF|hk|K|<;bkphS$yeC(ULIaO%SN| zky$}4dPphR#M|~r=$HIV_DfCvwfJK-f611pDtxtvWkabLEqxBcsX0EM%f*TIMf#<{ zSZc=o*U;5$!+FO5&K`!aO^l6*ZX=7XHE4JXQwE)+6H*?_m$V6V@pD#{jOW~Z7l{~(RM*~Mz%$URNY)>U0_md-;sH#1WTuwuqd#-vRrN?_S@n_-$0xT6Syi6m%~hm^Jh5xC)t^8HL?S>Mv7Va11(J|CCGAMUWm3)6@cXXa7XFt) zh7`&xs;RMXy!AbR!b(RgyWr4&w%=LdDu75j>Uu*@a=WeQ<22!NuS)k?SG~QHII#(J zo)sgAZ=dLjH0wm|Om@@~pVMk2e8B~5!+S_*mdZYZQF9-6D`V=c{J=&k@M1B>CC^{e z=UO-Y1Nq_OMhA`UlNo=J+G!qnf)7Z+E1D0y=LJ?KZ!-#xKiniH@HVg3+R!c1_bC}S zAP*DP9*tyUO#vRh7T6!(sd90Wb$z?g`7iYeNhkPqt2tBZ?=CcfxyKQB;7b%h+Nol7 z`K<3>dqc2Z@w?R51oR|%RFrj&ar zF;WYBK8o~q1fg_icC*ojYBnkdrxRBqO(BMNZKQf^By@MzM0?>^JvMV-B1^RAW{|;dQU_@7Hfg@I zJE75S!gp@lwo#G>8Wz_p(qJ3tkXXBMO3T6<;~+E_m08WVLzVIWOcI3ybhRXTXLq+i zfdjO6nGzSBfNT=NP1k`Q$yEuc7B9h8Kg31>`I87&@E#N(02?qkO_*zOp;egIYlQHH zT4;Fn0tupr2^gaRJn#u9uuVz`7weTA1E*87;Cip;Q$OWe6EzI#&ke3nctbbPhKLagyw$aI7G)XiL`o4 zI0|_uVou0+UIA?vGyoA&9aShGgNGm!Kp@EFdEcQ<`-B9r)+ZAn0AvtPXJ{7SVhVg? z0t)~J;PHitw+Qr;9uzcs1cgDsWiF^^P3TBe8$xaLRdy*<8O+2zjOd7%#exHQS(?!y z$f9VoArBAsN?i9Ev=K_6D1g9(Z0TM+q5;PDd*_X%*4S2G zl8pw}Qpsa9U=mYC_%sjE5CnJ>jAV{a*+@m#VWX38UxFj4K@+s{X67)0?M4iUC_B&d zJlKGo2I(@&$va+WE4q;krm{;VwKK7zU=~GSWjQM^gAGCGNiJdxM2Ip*NCSA8938ot zAL(qzA(9G^0vdo&CaD46^aLuIg@>nwi$Dqcv|XAu019w8X6THRmxiXG049J33vf>P z(w_qIK;^NY#Vn@%JDnMLA%l2;1|WmPaSi`jB;5U~sJWrW$1 zV!k+W5_e-1_kK{tn2s43NOW&@MG+e+DEfzFnn^I635}llnL5WPqM2b-)DK=_NobRr zbecR6Sd1XHbG3OXM?!!laYRMLo07I*DpHS*;UdIIoJ4a=z_(GmB57I&J-wG1UDu+< zgi0=hS`G;6ggG#3>=t9+Ee86NG0TyTMkfT3imcQ~3 zfzdXp6H^EAre?Nrd3h;ZVlu&C4}uvvXG5nEw|?%2rCF+DTbgk~>Nu3St;sm1{8y&) z^f8^eM@{BOZF-GwiW9xb0mRa>nGqbaRHrxcfT{yEl5;tKxTl<>femp1PO~&BTW%@% zN$&PDk5Qacd4jL98Lma67=>pvYKV?1JT(Y>j5=A%Lm8e_iKgT%?J5q|qiEkyGb1RR z;Q1j#XiCon4ACS_u4trm;i{i$DD&he7h|DRNS`Q~s{jIQTxcHf6O)AS1O+t!P(cGl zdLKLK2V=Ma3xH1S0j&$N9U{>GE~loe7t>A}<0qQ1Y#f_d@wfyj}cE4PJ{ zP<5*vnP8z7N}uhbc!Y=lxexlc2SNeAsxLE{6?GsViAzt5`*;lSxP&0MspdZ4G+v3< z0PwlFRoEwCdOqmcb7eCCCl;=Brgmi~kMO{i4QY0mrJb*XS?Lyu^jk|W3M}YWGbMr| zEb3qRs;`TcS@Ao(Igxas(ll{JWg!N#BI78(fMRV4ED?n&%}~8xWWBuji;T&QXEMm5 zBBXYsyy4rimr14pXQtyavQVZtnbUHA6gk(pfUToR|2P^4@H_i88r7f#6Pq^P$VF8Y zS1NHi{hJ|0$G$)k%XU11*#;{!(jwS4QO2-ew^XUG^;(#5b$d1pj7k~&#ci~rh@UYT zv}9SVlrvt7U#EKiot1cQJ~(OF5CzPv%-V^zCL}8z;tP(FaI*=zbWn>$N?|GHPtUy*a5kQZ|q7FD@mb+1^Fs+c{nJvq1Z@8QF4ODaJht zR-Mkv%x;`os%yN)+~95bRh5y*U%xZI<%SqBYsdbDdjv+&K`aj&o_68x}eF zY|0~+3yXw)qGhSOL(32gj5$U|o7}ykQm|}IO@ZSF3osT;!K}rqp5lVa0!UPDG7)(_ zIS$ePBRA34zr2lrjVyD#x*Qwf4&u}5oijV@GKx(FDToL0wL+Qi(ncZ38KNRrY1Uh2K z>IVq(0BFEm>*PS@fgV;kUdq)@lul5dOXD5%K`A{lVaNdsaESR0BPa#7Ahn_nMo}M( zQYLif-dW(WWZ)g31fhkgDyV$OE|ELE8xZNcPUkZP{ws27eSz9mk0aHz?puSH5#pEs zsz6QDFj&|mp2=cuv5(okKBnRl!6fZvM`o}C8^8ciKmk@><j~zHu$;SAOtsiV|AAUlGnjip7txJ*sb>OwVxgRXgT2 zNZNRIBEc)c-L|Ow)fj$$yQyWJGanf+FLn4>s+k3&pDKjofHK5Uj*Q;uiu>r20N)yL zlHDQQ^}`)PJP9y~YMLeoA%H-iE_q9DpaFm|3gfG&9w1jtdQ|V~m0PWLC|sncq4NEI z2%F;`-XY@(J2HYoF0C^swZ>uY!GQn41ST7Yg)G4HE9X`{yQlcWlT4D9^C&g{f(U$% zl%G;9{m3_maXX@MiL8^0({f#c5?I;zKP}?y7mVx|eew4X{<DPuIFi+^@$dv`kgrj@qY=Mia}u9&o+1114AtRT9?1nB z4-R&;jTK6~-dN7_<=!m#4f@*H(M?_Wntkx}47 zs;j1;u6=%e z3ko6=A_@%)8X5}?3bYdw6vM>Bw!gT)x5&Z7NW(}I3%UUe0z0s;p{%3-+S;*w);kKr zX2UVW$iKeqzrw}D!RooY8V$a<3j^NV{oLLF0aglOK@y}62@on;$gm+IMvNLYDrAVF zB8UeLHV17E^QINQE%qWTO-Y}KFRZvq_naUj5Pslu74hPbe`^Hu~F zlqSW20LNLgsLh`A8j~hXkg!2|l?jQ%q)A&Vae{RUvu{sYJM&EcnKEHRiw+sd{HQ#^ ziI2|L?v;C3LC+hxOkb#d^p4G$t7mi~<#k8t6}2D4 z^Je^^KS|`0NVr)tSYehWs9=Kpgd&SO6Ra~$FX}V{&oClnxQ;r=6!Q!*3tXWO6xRgw z7-q3la}7D@lw%BsxU{3dI~P(A;WD~Ra}P2NXt2*W3o7{AD+Xp&kZpsgw-81EHkpx= zK>f6wa#Tt*B_Se}g`OZ&iQuyG`tO)aH{T3lFqL4KWI7~2;9PZ>Vn4bP z04gY;ART0zZ8YR&Nn?3#3ecW?;&2c` z3O(7TlsI*iQJJ^mN*;F9Wj7ys#KAd8bgg~IC3ONunVxde%{LK6UVS<4dTb){9BW~< z_tCRnB_v61gY5>;r~n7t4UpN)Qj0wKP^b)z7cP@b0}cZN4-(N#*uoA1KtVt@#QuX~ zA1G|FA_eA{Qw)dq$jERp$J~-j3JNRm1TGp#z^T9<8{3I)l^h8POcy=tW`J!11yMxE z9U?7rGqGeEM`!Y+lDn>nX&sm&owrk(AQ7F&6o!EREi@t|`C1lUb1KCdU{np9YR_Et zm#b{K)-4lRwI-@}qlzXP7hQMRl~-Rr6#f^cocODAHkUD$Sh1eq+=^9^O;*{0m{D~> zaIJ<`no_Z%C3@br(#z}VsM8ITNVZKvPzVF;6YAnvt!e=cIBP#00(u96~0Lk8BBl#au6d1CX3KKQihLr zw1{OB^o0nXAdg(w3`p-w1?~C(w=3xGD7_p1+i`+&ub@H6S-)G3y}EX#IGMyb=P`-$ z{sf*tmG3Ju;T?bM=8=l*E&*aYL=sgf9xid9EF9o~3J#zG1XNKeTWK3(0x}SS&;WNQ z>|J|!wX0pNByWsT6r-9zrnk zJK-hgYTi5EeXdot=Zy!6A=y@avZWpF%tu>Cd(xlM6_eq4L~i4$&vTY&h0myat1V{p^E_ufB~3*+&21=K*h{J z02CmH86XG`lu?itH8O_7R2GbxDWGOI+a@VSc*+xYU<#{bB16u%q*f*;5h?VVy@EnF z)YNS?BY_^&hRK|(`A2#zxtk8j1CsPK>uVCt$aCsbwkRGTicwTSq;v`zN?c;0T!h^h zqxdtLd<2tb9MnoWkQzog)h%gklwJD9#=r>P~h*v&Y2^4@;p`!w!VSWJyVbCaIGcrd0jxmo4d5C2BTmTIQKmh@q!EJy9 z*f%;snS83#WX**UjV>4uhh-=j6X2i(eUwo5{YG&c%f_k*0<@SqWRvxo!fPL*E*i>E zhROlg_4MOAbq!IOJ>eSGy!XQd-$#Z=Ra(59^wOdHDXMEpicY8UiK}SFGiW*p(CDRF zAQ-^JH95c;YXyWBzhx~WP{IL}VAZ))kuP@Y>VaILslf0U6o}03SwRR~L3Wssmy?`t zq(XzYzKX7sJdIhN=BHc#iOH{69t1Tz@GHUMpvidCo_npQi6_ObZ7+@IahVBQAeu{{?0@wg{JFMM2_JJ}H8io-b zNC7aQEEy6z^#pug)P{dchA+TnWEIrXVb1PoWLK+KOD6JyG$7{e# z(s)8LCI*+AhgZ(5YQ2raZ6_cK6SnW4&L%i3UVsJ{Xo2E7G2hMz)+CQeiFFq3U`zsG zB_=j8Sukvt7Q3bYZ!&HIjID~*rraqoEqF!ZzPfLXe^tl{?6i?1hh(-EMk3w!b3lCwVOD@7Egy_ri_&7OQn`({=*zAfJyWAk zQDz!p>1azkS-Z|JCA&Q>L(iDE(yP`Aod~2C-L_+_x}{gg+YtCRayk>ar$zO+vJ$r$ z_+#$M;Gw_py5qUSsGmNnD{GF?J-D`}%oD%>ja`HH*W*03jh0~{VW>CRA3UIvOLFHN%m?hNqfuTI`_aGZgnBp=}-S*qto=@j8>ZJ=@QDL≪ioJ};A0?bz} zL41D`6;5XV!t+duUhorh4hryU3LpSv&_~NABzZIdl<^BB z!%xKEYY)RAwIF#nvNGS4Y@`%9f%IP5Pzj#&2%vWyENA1UHg!e5r(5;K52vCn(P6 z793H6l=N^e<`xkbIFn*0hy!FCcUT;Eig!e7L#BBOm3~QvGkOvjDc49WmlX0>D|?k_ z>2`mkwSd0Ji;Q4%)ABoN!fg&lB|VgMq4iNP5kz>{jM;*L7g&Ka^&Us{JUFx-R5M!j zVI?!+Enh-^Lj)#T;uG4UAJ8Ztprv*cWr&w15s+{Nlz>M!2tT5-4WXt0#bs*JN4n33q zJCJaOx|N1I(H*77W^za$T{mgnHZ86+FSa#Py)r0ZqKCy3Jp)HKGdFfj(}KwHXcDD5 za?(?s!75x~5Jlw(?Xg+G#DKc^e3xiLXoMP1lzrKEMRSyL-nV0)fJo#QmVyCtD1v^J zV=AvGFij{5n6fsXQH!>?i6F&SjFxEXmSrHAWqM{Gi%?(>p=};%+@coD1=bdPWa zxZH@`Mfvkw{?w4lQDZ zewT%(c0bF7Fd9IE8_8^i@oc6PZ4PBoBsphl2#CmGn$6g5Z|GT3B57>Ga5*Otx>rsodk%O!!Sj^E15N(5o;vb!M0pN2qVd*PJuW74YNs{XB9Bp zH2}$}PciTe5_yH=^n=E*k1R84`IM3EwSFD>Yy-g+BSDfiYLYyWdw-diEO|BIfu4bA zTR~wxn<`qd<$#xzSyjh}<^g-HRVDgqZ39?{)aDX9w=9WSsz_5M-Wa1~a&QnjeYL_C zS*c-jw3VZ%4T;qPhQ(FNnqxWU8JrO;9ZDEC2%^|2WS8LyviO!Knir?h7O8O(EAbLK z#6!(jtC$rQ{FRy*HA8i#pW@?}ty)rjl}ShC9?d8&i|K~gq8$~uLs}LRG$}pO19d6U zB{Zc{l{!pOrzJWej$&trzIRE4c%>%=l=8}GN)&qTIEM*wq@9HS17r$*(t4%{l%@v5 zk1XSBm3OGSc}~hOr@q-huQr^LQJi3ic=yPs0x%0Mat^&Fr^o=E0mW(zgI??PFJXuo z+SxOnQ|>^i4&348wLI>4j|7xu|nDvc)n0@f8BNqbw=J zF0Jb%QR}X_+f3C)C8zru(lZh0fkgBA$Q(%Idgw!j*Fr6{1l^U$izC z(7(T-3VK9qieY#Ig9_BjsGF-fZg~M!6uLQ!9t>3c?sAAU0=0AuF;FjJ^n@zOxClEGwOeYFxt5vb0dl zy$KEG06-xUJNj#WXk|$M8^8;|coaau1&mw^gI;{+zT~iX=ruDMfV4O(!NxiOG!RCu z@m0UM$2l} zs<9DGojQ!>nu+1cC@a=fH&uOU6MTmw#eG2k01~h{N7=@+XmM%tMOCy&768T}hsK9- zt#yZ{n2VMny1C&87*P={Zv|$e(XA2sR90h?rMhSrE3YHgx3erX=^|TJ$1Cr-n4X!s zcN3sEikQYDQad!H*DF#2XG0ti0WKG1pDbnd(Ivd(ayL~Jg1{);QGzRhaBMv&;ghkm z+Z}X0pD#fYKZhT^6K^=25eR`>v)nHG;!``eikzm)u*u7_V38uwgUY3k?~q=(iC(vW z&FNIX^)s6T5Wog>olY3d0&oTXb20|34*ST1!Jx9Xkej2{zzQ$`)@iNKEWv_gJ9q0X zr`aSgB{sZ`Q3)t$H~eT~qbrptD5?zqHT7C&))NsdObDs^hhs-ed;MoXys94wrn(q)OpdbAj^ zlNe^z4K3XpXSr6IOVfzsmbKVMDXMV5eV+lH#|TI?>P%sOwl11POU?bHRhx@TDsx$z zHAjRV7swx#oEjx@7Exvvwn!bS(NZH}792oRX#^6QNaJQm*IM?< zN1Y#kEr3QI$nznlguT*;O;3s~G1_cgyNP!kG}*moUdH@)6!0Ni9$lJk0wz#ad0K0r zJu z^cv}U=&O;oKr~G7sVxoNlP|obZtKuRv}WxHdO=J>^=eyvd>wzAi6{1OoM z#qRA5ngQRP!*Xb&6gmZ0D2?BAei>$^06XviPyhxta~NVJn}>a^F-_oVOgjg@6-}no zqcc^biyCPJuA7O+*FAePr;Zb@5f+7lrVAT7Q5^?B641^Pb=$PUD2fv09+a3?7x822>~qH(8cA6%9}ES z!0*6#wy@ep+u9Bs+amhe`3)Qe@iXekpF&e%z1>XCLmWiiTJR{>NFOMRezrDA)X~FV z&{5Soin=T*-6g!#)je5bay{CXdTGZ|6`to~v$_rT!YJ0(r2eb1p2b_aHmh!|$TDWM zh@vSjI!dwZDQD}n?a~7P1q?t248Q;npa6%h7&$XYGF{-t(qlF4ezjOtdqe8cZnfi@ zZam7$(IU6NgTn-q21x#H$cuv*T)8m$hPZUQ&941RjE#ZIug9sJ|U$czCwa9|+8g9k<=M8L3N!wU#5NDM$R0D(%10)z-*p(70o z2ta~thywxtjsqtV98~BK0gaFrBwk452&2tNe)=?8z+eM|pJy2CSddc^&YG3{2yo!X zfqq1v2E6;Z{C7dp0NIHIe3eKA@yS1P;b(B|g#NL@`i}$rsDAa2}Pm@Im+elzAL?XD_y zxo~vE6rx4dsNlnk7q7Eup8*RLh?qcu0{iyx3%PGUXuhBcBGl{8ub{sI_!J-kp8^YD zvVaNyCJ>cVQsd!-(Sia9aK(FO!~mdw7&hSF6JQ8p-+O{|H~|;{x+lmJ3Jie4O$|m; zl}(rofCE3C#ARIqoj{YoD?ILqBaWV&@}nz0%EAdX;V7e|I7F5*#b?|I^jLA)EZNpH zI;t~EU(0Zr%q?vt5X&=cRbyCRUw#P?FUwdb7hLb$MVFjn0&`C*zsY0gJaF>zCXNwk z=1)IuDVbITW8qfXqNFkOQbaLba8)7~Q9=<%AAJ-O4xDyc5=w&wwpB+l1wfM|FP;jC zPUrCy)K5TdumdKj7Ug16OEvXWi&3TOYa&+#U_k&`jpUG5wkf0=VF;x~rEyfcCES(& zlHKCwjrPoyijb!W8BJV!gdtfHsDdnLx_p^5X&2L^xr0o~tw0=6e0feTDvM1(siz@p3x zQUaj>3y^3u1!lMh28LYccb|#uc_?De?h(@8Ay3Qv>m)JKSmU*U4(UseJ;u^4DnYh# zBwXUCS#2*)1|ude#9f(~-_mY_vk zfY22VsDJ}VOpJB#RlyB}U#8P-SIq zK53 zF#tuPz(Tc^k62)frphOSz}N=@EMNyesRFDR@G1sSV333SULbS-)x9qwrHj83pG0og z5*0M+e98er2Z-ak#}rO2@N-}LUMIP9fKC*2C`S}<@QDtX0Sae00~GYY2~KgraRT!p zZ8%UsuOu*rP<`qMU{jmEJx)!5q96u8(;PAF5H5n^n3z7;mw_m2G6PM>y+$z><^++2 zW_=+74@g7ObmcZ=!J(5F^9keh@P}_Tp;zRYM1QygUxC^nDnc=g$0$KGwNTfQYQ#-* z6!oC@1Zf~W3bio$F+GGJTN*3bvk*m61dvn@9OJmi2_Rtyht#7U4|zSBEi^oT?Bn$Y z;1pQxU(>D#|W4FdS?|=ou`0TBVR1=?D%~;3?&dQaJ!s&iTqW zEQBibwlP!H0-nHt2T-)4uY$rwqm~nwv1)s|;w-8(``oL8rY<-ocp4L(geht z*qFKte9BJ9l7FH;0gvqVT?GG#hh!mHpK!#BQ{?I1nOo=M#w)L7R0hh#prQoPszh&; z7fXk&GU(nr<-tKY92mDzf$M!b1Iq)y=4i`K4=@Ezp%Sttr>6#svp*!PQC@YN?7g>U(n>+Wn+zXsneP~wgzpt z%P3m-{LDZ30orO?y91|08`;;7kRNU9#RmP+Wqz1IY-bxG2RHz@6xbSZ{iC7v?7I2Q zUoP4>snM#K8xac%!4;}l-NkMfNbd&!Z}H}PVsa;xHAP|ZIJi`R@o<2*pceW@OqU^H zEaz}DH7*MHI>mHLqTmV6kyUY0Kh|Vldl5O^z-|Nf4YXu{9>;Ota#hZdF}2`RP*4R` z00mr-KcH~}D#02E@fEeh5PfHJ^^{pwaTOeK1*3#SOsHZ3m10cB0S!Sa!vb9o;yu`N z9{A@6G=KyX#Q+jTQ5*08Ly?8tw^7_(uWoED(KiEKg*LQxmW=&8Kj}>9JfF>EJBwOV!l!!stHG^V;LQ^y@Cjdmq zfiP1g8c76uN{~bdkY;9vhzj)oRA^>bP2fXIRygF~N*L67i`W%J1cb9=QoKkOa=|6K zpje8BFvu}V9iRYH03WF&OG5%pJ(WK+Kzvwtd`Xvl3P48imyPWq0zmU?K~o|d5Fz7- zeTTFIfTVQfkz0O10ZuWFhlC*F2wbV9Z9~Ir+E_+{ph;^(Ze4@|9FcD3fHK#$Kg*~9 z0T^KzWJ?}%7qd`+iPaB*acT7>4jvdd18G$PCxZqP83z#=aW-(AryK|O7ytzs$ zkWJ^%7X>&bd1wnsLM<7W4cg*@@?bXw7*2Y@Zr@T(wZIuz#sG6?2PVK}CIAH-U;&;% z8fKA;jPell6e%4x2^$gr0w2*Sq{Lo0)J`tM0W@GxQ~5HqhJWRO1`yQ~6BSfHVFU~C zV>eNC$H#_Lkx*KPJ8#%^wqqN5iBgW!845Up{sn^}hzneRWpOum#}-?7fCdPV8t?>F zil%0ZhKnk77{~BnOEQC5HHmz6XOCBa_rfll=rDN2EVfaKLuXe2C4`eXdWy!1b>#!3 zQ4q>95Lo0Rw9tBw*+3;FdmGs~mZeyXHBc%6P#y3D$=Dvrm`a^sU0{_zS1>GWNR7PW zSvC_|_XvN!wjZliGF$m1HkM;K} zRXIF@(o;@UV9mMzjL10!Pq06h*&P42EsfDilhJw%V|nD|Z-C=~QzUld^+393FdR@Q z?v-$+agwcVYTjiku(nC>SNCpg` zV+wMP_y?C`DVK8@EJp^UcxgLw$YhD~FlFInR+WeEQ$Ihle`jEnfw&ZM#{g*sduOI- zO&~*vIGF_TSfFtXXd;8n#2j=s3>K7$@m6^j1{!f?nhW7hsCg^}WKyTNKr=L`h5DKe zL_=#9X{}-Z7+vy87i4N?_L!d95RYOSFt~}81tj?+dq;#sXpl2z00wBFKYaBu{NQua zC~MT&BG#E6*eIW(#f|FWjp`9cMxX%3_Ktg+N7qxH;PFR0fNXWZp4kTl+154jnVsM! zZqIX{z7k?H(k6@33NzSyB_g1~T4+=xZ?@!&azQZ{WQw%Y6|ey@u%inJieM624A5c> z5k`58aYGMgFxo&6#pxLr6Ot&lK2vrJ2?{0*siG(%=T7|2d8CJ(MP?O;q zhIVKy(RrJywnbDL7a*IYrvjtunsfE34Rjl}sV33!B%IKcw7HuHL{hU#t6-w45=&~F zzz|5Zt7z0n?O_J7Bw6wRRvZwWN2giI+91oS0NClQWFs`vM;|)?1=*UI;CF?{_kHiU zx7UZQCZK-WrXlBgkN1Hh^EYnn`Xc_Q3C-z@!k8qS088+ZH53rMqj+kRMy&p@C6pom zDvJUZcBp#(mNyPKX2l^eE%$Psv1dJ$49yZHrr{Z;CK#KSSB5twp$43w6PWFzb_|IQ z$8aVs*|In(kl%z~(Xk->wu0gAX-L<>P0282XFD!MX6Plzb0g-W<aka zVv%7AB)U<_brB2@38zGQle08nM7-L&B?7F1_Av=CBR+RfTbNN>h$REkt&OZSr(&eRv5(W5OvdQI>! z~T-w$XRjos&6b>)|WH6pRro8A& zE6+S0T6hT`W=~=q0A3jq$1@br24CsRvoH%A>S50$Vcx}fIVSt!OZ3kxX35e!G zekZ7fD#)j(EU=NNhs=qqV?h>#R?RUZiC1Bc{IC}w8m!SkZ6<`S*bp4RK#t}Ep9`v? z+ING>$*w6?875c@oNr>q8My%jtPIMhXqO`)l2$!MxCaY3f&js)0$-^Dy{pUZ!OKTd z3ORL4wZJJGkxx58wS3(NMB&#A0)A<|-ZZ0*dwreB<-G7g&27~Gem4Uk3_!Eo%eNF@ z)>*vQM=?m>iqzfPG((df`Vlrbb6o!se}hm6;f4q(FyCh=mf?{IqNG74JiPuxY4i&q z%PEDUsIMin4g}WF1kHJA8>p5CF<-JHJoQT2Wg`^^xF{tWW3hRc@jw^*FL{UCgnSS( z-C&OAkS9uDwGaih=a3-W2{+E9wB~f zL_Tl=p5{(0;ZL3-P^;ENHCiRmf`B1(02bhtl2R%kMitv<;E~{CinCTP6Ni<+%n*QmUKDCzOVHLsu0TFcuHb@3GnCh$E>Qz7n zNnnGWcxeWZp&7aiQBVa*u%RW$N$>@2*8xzVr%3H(y{_u6zU);nQZsjYh@q7y zpzFF0?AGqs@{_S%d>sxk)I{>7ah` zukrx!%_2HM0~i1CKcVrp@>$nNN$rvFD4+5wk05n`1rC4(4Uk&FMgb3?&4CzOATRO+ z-Uu!;0O1(mH5*$mZ+;t42r=K^_z~e@g9Pok@+j~B05jkdU#RoX1@dWmW8uE*@al}v z6a{Ax>o|JH2qN|f!te$E>UfX@XTSxEGaaGH7gGT4;_mLT?(0>+x~{ZfjpG@*9`3E~ z_phD=fM4yqUIptj3KY9!dDrT7@9Nji>tm9^ABhWb|M-?4>-VFoI(~1TZ~}Bd_?Hjt zRnX-q(`tSa0d%nIM@@cv>i3cyDkl;927m*hf9<;N#tMuaNR+c+X!W12^Br#SZf*4$ z58t-M2qB=QPWOdp@Br4+2uooCM9HPE5){@?{n&p7oHPIo;H6J@{os%N43H6`Zf+I9 z{Z)YKz5n<7{^~X;__1!OiBb?{AuwWB`;Slm48+c5Gz$mB+J!l{ZUwXg=cvZL3YO4Gv(k7rfnzp4=tqSv7b?(Yc)IE`d@jd*s5 zCi{l=tO*7Hy6a$|0}cxzLZI-|$Ik!;XCO+9NO7V>1{fpKVA!Xl$Bzvg`pIaqqDhPv z1Nd3lapiyo3MM?EFoA+iemHaL+*ike&jt#Dil|A!2!$O23=vw&bOXwh5gD-LxU#BM zmJX6K-Ky0@PZJIl01Y}}Ld=>(!BB|*X=rELeGX$#<5b*KBn-3M@s+ArG4!Ltj7e&y3s&mhSqe^lB2&_=?)q(>82v}gj8GK<>1xn&D z=paf{wR9Cr4Lvj$RCztcz(x}GF@Q*Zv@ih_7cm$S6e4safCEZh_~45u-6dm78qNjd zgBuXw;fx>!z~F-A1o>Gc2aFK^;E~qYCtQB4q}D+g0wl&%8CZ!t&fL1Zh0oK@}O`*AY z0w*zN$SEj(NnEyCElL0um_d#-dJi7_L|H}|ex0!jae|eH!xafxb>pfIQYa%s4s~QB zt0XZ9D^(7`1O{4VQQ($ab?}6RPYyI-tWY+^a1(o5)j{hS9StzyRUl@?>{4yT6_;2+ zDKL}>XPG4vO%x>cs|ooyK!#JZ*2SYoKGKR(IilicUa6Cjie96LCFU3@NtO)2Ll=yfCU#gIM;#-l2j2y(N1fXgz~cL>W5W%E2iq_T| zH%0-x`_W1k4gM5JI=TinLNs|$HNFi$pyxsz6>)>jNnY5ab_)_Hfna`$(4_n zBg`t6<<`zSgJH`5FM{>xlb9X;&|XG)gVEQ4L8yMD_>U;56w-`!JN15vZ;SL&Oi$D_ z(*);27g)T)qB;zVSYrVfQDR^Q3OqnP*D?Va(smb%6G6ybhEp7Z8l?zP-HUqyAx!L&AU>SX!%<|ggY8ZOn98gp9V0uF zDHzciXk1S?vFL!sh$xUr!R~j=d&DWaQHpeQLTe+VoW!&UiABJsNyRCTI@TyDQCKZM zRP$LWP@|5cz0o=EFk1R%HZ{nIjw$EJ4%G%ZvpZ_ed0mr7mI@@c066k-^Li25%w|Ei zg(Puto22~z>P8`lFk}J@u-{WQ5RnJ`%_oAeQB=^z%Ctqqa32{!yfoCHTDG#53?Kjo zdDOUBDu^87cvzr}bfoyiB21in<2%-emuOKBiLP+P5=byY>X9T z+Dt1TvxsdFWERou04{XVyNCsENX78M2E*{SXuLah>q0| zvmN=Oi~%wwr+VN4A9f&L5=8Y6jG;y#r#aOCHY$Myt&)PROb~+%R~K1E(v~2lV2q@N ztCu`sS2P({0CN&7VL1Q`$3m7(kWdtBu}3L&a1lx|vLg^pYeysLpy-J8lWv7e0lN}G z|9S=gz?p(YE+r!BE)D0STY5DkGz=&Arbe{DnDG}8^_LLq@I!(ofi#zz+8onVLx({u zHe|%!X{Nweh3X7Bxt2+OQ>P)3i6qiIjT-`+Sga^2gK~PXY;Q+S}QNFKmu)O3&X2q(A1VBfP ziy>bUG>I!AtqO|uPuE^y043DI8tO=hQ#jP2kf9`*g1{4;3F`N>dWmGlwq< zdO0pxDu?TvC>dsWj~~u(6^Ve^YKuq^4QzA(q`Y5)&M@7(M5qtKMc%eKv>rM6mnm}d0Wkt*(sg}c>+10}Vcz|@k>e0|7MD#RNG~y__I5L84rV+qw zFEOAq3%;6$ii0`qC<>h7&=iRmq{xktT6ddXXz{&|eec9>1GACccCNW?63(X9Y5wXg z|JbP|6?yJ87}vs95TKGR5@lu_N!`X~Vxo;Ns$gIE_|^iB47a$&;a%vmO3g-{5Qwr` zXoxgfLN6iFM@jMkGf1l;EAm5D*lZPXhkMXH>VqQ%?r%p{Mcf209C&Bs?+ZBcP8R_8 zZx>n2ieJMxu&^T3<|9{Y^I9M{_?*(XLZvdCVG60ajejU-GG4&Cm{dcje9pN(e?sr( zXIkI-%(Tu7b3ntq(*!5xxrq{^uAUGtp7BDgC1p4x#LhV0o{T}f78Gyl@*DvWwC)L( zAF69cGI5=#4)L;ELIoEm2pcEGi=0{ZvVIj10&s8;y5nGwL(98)QX>kwgS+5>|Npm> zkJ_WaQ+YxI7r5Q1;vurAWdblIN|e*)bbIiXLveN6&qD$3$O#Ugc4*>Zwp{l`L=KT z<|+X9g@(Qkn_gk+P3i$ox-VR6N@a@TN!?YBm0#62h{MR>q8WS|EHaWM6f z8!qRD9LInKksGftY}s&g)`2?@h$iTiVY;w8yQ2$55_TLgbeXV7sDl8+Lp;eq15U>b z$)JA(5_QHyb;W}W_7rvbWPYBI8)l+TwGejk=X7Rg2?T<6P=hkcp(eZ#3X-yD3PlhI z_#SlUgEf~>lEGh!CK&6$0asuFV5o%o6JE0JmHYAuSUSdTmh%OEUwr*Dahk7Bzu+yjPG!!7CIn zRsHjO67YrB7+wQF1J_42l0hGop)b=x7zSYw3t)ZLCy{k0MG?q7XL518RvqC-AZ2$9 zCU!E#k%+l~2B%gY3wT(R6Mte?bjXuDo6sNlr#!r1Uzd>yM#2GyMGEh6e;vSbgi>FZ z1Cwi%L~~UcRGE?M!+{Q1Y!-MKw{so!!GMccg2bk2TX`F~kTKSw4Hi`@d89AS*a1+W z9`86MWe^5;msvMRhc8J;-LyIfu!Dd|Aisrh(^#0wwSY?;#7?WM5qJ9<*4C1aeKI z$aGrb44jBym|#ywrvfyf0(f$CoM?7ZCv;o)ir2t%uZENLWQ%3DCGrt7Z1s&SwNVG!WPnd$a!Bt>}G*bv*a0WYI{}W~b6dgJgG=Zc3LoWaGjWHEd zX7PJl1xpVJOCb=EbY}~DcSCFGmZ%YabVmbrXLlVy2hax(8N&@8mk!}4p6BU_EqQ*t z$d$;627YCqaLAK5Ie((4rad`y1hQDOs0mwhSkn1(CD{#?0yPPEmR(eWYUzNd;gu8k zS;=`Dr(qoYS(a3Z8D^q0RB0U)S#0$If~$2=0h&bml0G5Ff&zdAp~DnsfCdypgKLL= zvxS2kpicj3jDq=FLpX#ez@UX$q_tXQey{)(Aa7O30JE2FErFSu2}88{g#;jOu^OwN zxvU{zn!hEHb60&|g9F-Qas9W8uIZW`ryR+F|9);M3Z@ZqP#{F0QwHP{2DHg{GV_}O z!f{G;PH|XspT&sp8jI%Coa@s%xUjFgz$My*iA``#nTVaGsFL0pif6|s--%$zkPIPq zboPXv%MgE_5O)2+C6p+1LZ>_K$pMHqc9O!loc)=yBPkdJ%3m!DTI(Zz zA;6%v$|E%^5)!J7B*cvxilLI{qZ=ARPKAz>7ZeKsd`R&C?xJpkW=U;kdMiNzKBW{h z@Bl`T7MfRkB0!@Di53NE6aABr2`Ljnx&RGXj}RJOpJ@S7s-#QGcP7X^>ocwYNu{N6 zrQP?GC;5o);ibfL31LbK)<&l5g9aLy|DU*V4LBKpQCELBc>p{ar?n6PLlYTLS+wZ%r9+cjOYNTqoJpedTgYK>`os|>MA6F`MR1rbmH2F@!I!m63i z3x*%kyv!SM&g!fP0E%-reaEO9#K~Lnp=ztSb}<8+_L*6zibEBqeNv|0ayVHiNTERrg3Gb1M)pQB^_puNQahGsS zcH*7a#EBNLC!6SS0dR{U_PAPi{|(y28f#d?HvDo*%0`z1YX)3Lb>t2i2@vaZkyo06 zE=#<|!A1|LP6)BRO&h)MaOd=3f4T-B^e>bA}IGEF)jeb-<5dog(z zT5)JurBD#7+PB@gC-J8>^-BuNDOV_SlZ#t)C#J$28-E;t49bARnFwnovk5=9X@6Ot z^D(GO6uJ($h@|m=q8p10n9J=~8Kz;n41AVVNo?DYF`OnyHAayZ3CoXs9+s7$pOc4& zP;#DP1{P3=-TIQXdx+Zf|DOax0|uh3DB#53i?&RgnA0l~3P6SI1`!WH0UL$0i-&Ix zpl_M!z2j`Gjs$Mrj1b!1hXWjYynnlDzx(uW=f%N{|dqXP)+Su*<-( zn9!Z!`K4NNCoOydEwGaMXJYYHIs1CUr+mZ4^vJ8h4Qyy6va4+GfSk}*)h5WTw3XEr zrgJ#p%{1%B^aIvYth1O`LOrX+lb3ly+by0)0qJNHAvypp5SLI8E71ZXeSF4?DWNDd z1G+i^4dm7d36RGk|3X|#qi8LTGci?0JERX<&V#nLfs75tfj&1DeF>Vf0;-Gvabb*w zg8k`(GHnS%-IM(xyM~BP#j6gS+{vFTPxU8HSx0pBq<`#Cu=iC9m~e4SIk}vhej@`~ z(=i1(2gFwifv4-afK_2!st#2tmdCW*ZiiV(v<}9EcbXjBuqhb_fCe}K1^pt;XJ7_j zbBIc0gRH5lw(uUc@NK{)cuscDPYl_G$xXMN)*!i{t% zK|P_DxOl^;$qtyjM%O@}80NXx5u4mMpm68NwJV2Q8M6oRcjgS%uOimj z=y+D#E8&>MSR7{H0+8KO6UrjkYZ0R1{6IUvZ+Sf-^Ei(Up#TC<2MaI(M!-`xVH9g& zqdBFcRK<aLGlc8t~LZ>HLM^C5d1IVikmS7~(*|EeF0i0|LRs_qBdMNdA0=3+qBb}A# zWE>c1|C})E%Ni~nSk0}LgWZUWS*Mz%gu(%65C&$zS7?9+>+?FVld9}cw_Od;1>)0$ zS;jMxUIC7c^gWFXu>fZ900@Ff3;+f1yoA&8--6!n{tgljci?PWz6wszbEinflt>nL zgOokLHMr2&kw!*?sb`94s!>H*4GY~Q9~b_IR0AN_piT>{oQHBuD4TPS$iD8mB|eyc znjpyrd$19A0jNXD<#}`?VB|#axAPfs4_DwTDRheaibdHb=V|3G$K@9XCI~}0PaX4* z9K>xo@VtB0a3@i%q=6K25ZJO$Wa&IV*qeioTY$)tUae2y9vth+8z6yu#F7LQ``IJA5B2) zwrvf_{^W&{iIaQGFiEBvnKOfW+-4%F+Q8KGQEfTnhs*qdIN1HjvGUOo?sCY`*UYW% z?(T_fVb<_Zhm|vlWOs}-eoBw;@U8DM!tV|b2z`QngoT8Hh>41eiGCCh8w`?@lTZqV z1AT-8hKPg$4t@>-hNY&bsHvumtbGBm7cCaEG!_U5IJr2uxCaOaz`wu1z&HoS|Hi-u z2L{a%5zNfZ)6@nL*4Wq1&j}IT-5uWC-{J}8=LrVs*V@|F&k;bx2lDdq(9P1+9VZ)%8KK5jMnr()KH3kXz*MDP)$NEIYM-cpg# zLdlS|JeK_EF~CcZw}{CbG2%c^B^+;EaEX&5#d-5M7yuZ7!?hE^gdymuEW!z^@W`Qi zrcN9@uGO4Xv)YhDE(EhIgb2{8?I2Zf8>fI72Q$8oVknv9PSs)2=NiaPC4ZeM@^gV6e^80>lkF2oFTv^QTo{JAwFu-hY9n3Mu8bIh&GyGBA`aDx#d3b zm%hy*}msKF`|+%)ERW8B9bhYXHCF9!5qLK8m6pHS!BLZ6vHg!3SV zQDLM4vf&}yGR``im!5d*h3eC%I03`c%^A%@D>M7$L=ZI${~q{Y2MH8dDTQx7ts!&G zWqopmSN&%Ya@8n951N=V2+y9@lo$^~!#cMNQfBGG%dfYnwboiW-srcEYz0m+j<(%v zcxIX`utOwOM6zU(XFNaw4TnU`qaRd`a(K5C15Tri6zx(bnxtb_=*A=RsXB&odd2!z zUttsTi_dUaPoVX1Xy`tfS~RzW1x*O|*a~tDcSDyh2v9|$N~bGyM5%<*tEHke(@HAT zq7quZf&?pXXl)-XgiF8ZsZg`vofB0;D~h(!Q=v!9HW-fh`k!VGTd3|!t$a%^H5%Nv zHYb+>;>I%y07G6TX6G1)%>e3 zqbbd4{Bkga1%_MS_&&TJW;dH3}7vAY{3Q?S2=idB{Tv^w^aivqmX@91%ulsoPm75`Y$1@)djo zoFx~5FGLWa51+Il#Ry2sLJY|did)ho&X6QYP+$S3?BwM#XQfi!rgK|*g^bc?3(;ka zZa`3!`{p;S5~1!{@8|~X*1@`Fa>E2|G|M^a^*UL%I0;(@~D0Q#C-s%6hp@L zsHZTfj|@2zKO(Zc7d4L}qMAujJ|Zhqsl+7W37=7XMUgJSgd{70$eS2+CKvVU7Bs*c zFOsx!Oz&U1cr1c@-5R;G;=_L+0P>T=<(3Y9$BmxWenh5U2g$f)OVbW#6gS9JQ zk68dGOkje@)Qgjb8(|-2KpDM+rZFfqj0GL0QWLUfFAICkY#ug4ZcR*pm`oool7Rz> zs^epN5}AR_fepA>L^;Bn88Z}>(IM=Q#;{rgAebV#H@T3mQOr zHXr%)b!g`)*~(1z5M?-oQU^i5*6g?zAnaq_*1f$xw>2VmDeXPC+U{-1tEON}|LLIM9i2X$fU?G_}UzW zU?{ct-!FJ5ETyceL(8)2vzVn!XBx_!VO!hk^0Abqu=RG=0WVvv8xE3jKm`^ZPrDSk35Fsz+KV0-?dh(-+ z3eHtijTPQfMD?NsDTq72+Xc};rD0rA<-2ZuhF>!xlDR&QjpcE3c?e$BH`;_ z`TUEf0bE6s+Sp_X9j|mZ0Aw4X`o>2GzD!@SwMctbmA|NIf zvr*u5M1WSaqP4D01Pb~ff!EsFfG75rZE*{^N`UY!oA@m)bB#C~uG%KMDGDz}_u&j# z<0{f+6Ej!mrmnI>JJ9CJcAdi%wtD!@XB%%=G-O`t2;|(4N{HCRY&>fzN4^lL?^lHp z9#H4)dI{~wtTN&~fb#oG{~(ja>w@kOV1_)pW{vvWv(`6cQ6*V=kL5;#F@C2&E#$lwnLI|g9Y>Qoa7Rfl?GOAkD zXp03w4cW&xeX-HwiEY9B0eGqGiYt29qeN-4q8ZI2S0~PA!r!4)dNNF&EP{s^>!~YW zBaR>EVX9_G{LlOxay5P+=mZ6_V`D3{a5MW6Y*8}+XRC=!Kc5L#=&>vJNE@qIl|)B4 zVl^md&xlyx`u0Lk|9K5u`#_&tH z!)ZD}EJz_0oZ?O-wibhfe21`d2$Vn*)IfrPGoO-& z=w&oqq$>_(fJD?sesndB)&T-C1(B#nSR*`OxF8g=NJ^k4AID*C_)jfx0e!;=fa6K6 z=4!4bYg33zJA!*|p@Kp3796kx3;+edS1+f88#*Rz!BtDLNPJY5BeGx=qSJBt<0sN* zRnkXoT~$9z}clR1X`YBHv_g15sX2aVTX&e(ts?Btw4`#~&@CdTBu_ zA`uffF+C@NDxji=(?ekdXA8(Of!~xO;c$5gVijX}0uAV3Cm}ky0t|Xsfyx09K!G!L zl~%$a|8dbFaT~a4*fEAmBXaU*79}TJQX-4K)dwtxWF_@-2=f;TWRgNfFeD`yIHz-U zApm4xN`*6Yi!da8-~j^g07+M4j=^+ICmZ7e1{dUnOO{kthjj{|0jrpM#WqTbU~*~! zc2mVe2B3vqI6tSO5cDMw{lg*_(S8k~4I!6*sM19F5r^?0htPm5W|c)_6fyieINqD+qE5ty5%i$D{SRt0z4^^{Okmg4QaXgXod3r=VZ{k@U zmMgeI12gf8o+Jpcmx`%4dr!%VeK2dS|D!6ATBI}3$IO%QH}B!19I zCmeBzWo9iKvnv+}6j4)QE#eFI1y8>~fa(*U6VZ)1F@IKB5eii@ltwlD>3L;AU*TDB z2nR_PF<}@(pkxN0(J`N@LZD@2CSa*)bOS)yQi?q?Tp=_F0}w6>z%UHtFCxG|EHo|! z({wl3p+?9T3!nj+Kmh`<0dH}WSke}+umb|X075nxuVI7ff`ls7gh<6gFZ5(NS8KTm zY*lz`8@i!s(HkRope`bw5FuC;hoA)NNS2r>Br}3Wkv%>@15Sh!a43S-xeV4q{}Kg; zMNjlZ;W2=!LJto)AK%191hKF!t7qbzC4HFr_rkhD>YXg7+Ov)R! z&>I0YpSr?ef&~#9<*iogNSe|p8fkiCA`B>@0vF(!;)7P$w0%&aX5ONq)JMlS_+pjs)yTKz^Nl%l0E{+TnuSl)ADep9(6QOJd%6!%VWEZF#VOdhA{3IP%1Mk1|HeT#IL8JH{L~BD`?G7p z3~lv{a$J403J-WkHw)##7j;edY9_8by5Tm5B62MC1`(NZ4HrTUvHML(n-tAjW02$UQ?5z8~eUwh^!hG#doV7gKjGP=|F!h8ROdV}7xN1MmPx$G=oK zql}OVY_R}7C$K;{LB`BQbS6rRQ1VnX!qN}Hv@%42McA{KSKBGLavmFj|AEqBmk`}%^M;P#L|MjyM`#E( zmS%bUpjf4hhT*sji!@G~H&EVn#Zy{;L!){_!Np!2(-&&SKq$tcO2)rP)41uHI`Vb- zhOW5Gy3kl{<5pguczQ@757gMb5vo7fbky@>o!fz(_yNe-cs6R%6x9I`v0G5)SFT1e z$*1C`;v=n;%!brcR%1=9+8Z-@OEu^)1wV90^3@_b6xM9$%JL|HFv5@RS}M?iUhS&N ze9g*-=z(}FhGfNdzYEOoY)h?hN-aoZ(ENnsY_g{Dur{|CPq2dlV01Ob;^fc9I#2S4^A#G+MJ(>S8 zkehdTA@bgBg^X&&jRm>DVb= zb0Be@00Po}$xCvl79ICkJq=2M6c#E=3)u1c*AO-lzQi9si^uicca?vDm4_QKJ$48brmhjZN^liHkWpbWyBrXH#7B(TNS1cqjs=d0 z@~UbRdeG))-{;3`myi&ruPBJ$$e!Q&J+tGhxT2cV`h9DfDw?_Eb-d9V7VsO)HQ~o3 zEn&%}-YtRQW_R30uKrL=O<|3ugW$R|tDDucq?3(`QqW1>VIn?&5O*r3k}AJ4EA1Ml zACXWv5sxR)#sZ-s2O`(RaTVwO|Kjg7V84=36LHrDYS$ZlUO^6lOS`md*yL*%ZylbF zn5^710GcQV**-D=6fg=t#~CjF@;k5tvvGv)d)Xo|<_~M;A^R=^P-`C~+OxH>im)SU zZUld!+Nr^#>k_|E$g<|*FQ`FOkzu4lZ|G;-2YUlL2e+q;{y(4G%8^c>-fG3Jc|SfXbv z5JEMM1#M8V3{XuvsJBlq4SRl*?DxIwaUSK)j?>2%?VKt&X}sH7Xi;7`Efd~h73sPh z=Y4LoeTj1J-fo@azD@d2|0vqUfKjwzNdYrd+Qw6Qm=afC_+?=JB|iNoKF5#NAK^r! zqO)juh!!!1K%gNsJ{(a1W(NUI+AC@~9%3qtpDW=T5-%$AX`mb*uV$@2Ysf=uHw@2e zt@RD%od2oWY;-N3|1a5+pHkQ-0-Q{wO3 zzY`q*KE%n>Kt-GseNr4slqgW35h?-!XaHx@6A?}rh|qNEfu&bRNcRT1AlXy)-1Wh1PS86k*~460}L4g zwAe9V*RLa#bp3}QX9vadS81IIqe4*^Cz5CMpR0|s8lW(~WxPJXvt`n#=UD_7s` z{?&Xu4_(HLCJ(M$ev+d}lg^K;7}@+J4UgDu3cuPkYSaWB5=2RmK{|C|d@5`@m@clu9rImJ0Iq2Zum=(YUa=X^xZaTvE)%kF}0&lP3u4; z)nr5&z=2OZ{bZ@9o$@5rrx9>)!emWRloVA`MGygNuVIyytiF9UCRtvZg;s?Z4xmjd zzMjI0|F5ZNY3#AcCRpm3CiWtmrB zo#4Z%2(0!{2U9?C1|DV9TgDk-pwWS(?s7*}Y_rMs&uajocR&+x?v@@0n{hy^Z#sds z-8yIbW9D^)V&@!m=WL9ibO)Ve!3EMi`sOn7T?B?Oen@u;GW$Y;eXiR6bCMGE6Sg$Rm=J zP02BYAcBO9wJgx=g;U!_Z7Mqmz`!8AoH+K8WUF{$GKHkL!xRG3J9>wQSoi^2z5~mIv6jW11zv@3&VMXx6TcJ}9u2F--tFOeW z^2z|gl279`cEzp!`s^=0i(Y*B)qdQLvz2QAA>^-rwqcT$Ejnqs$bl^86`d%dUHj^Q z1vtQfI+Vdf5cCip7%&BP9H4nn0fK8>6PrsFOhHRqNItd$kj+5MggVgfT!BCktMgLIG6T04FLzfgLbF6w&ZnB1}Xi6+xm!W=m0t zVB`o5)M5exAj7b56fJP@C>#_Jzy?y(ixQ#8NJk=uB7E@#3RF@VJD9=Yq)|92QQ$&Z z%2E9uXP6Mc#{y8C;zw|okkQ3sO>Cl5n&u&z;-m>5#OnYWPPZqB2<0*1GR`U!q>h95 z;DtV*0m;k+rk1b+hVPivKTs3A(itUB*hC(vusJH8@J=VG>VWj52b+H_<(v>Bp_|;) z5iniAOKAz#`P_FSx#5LZWXz{N1H-KNJ!_xI8YNn)b-#jssXEmenK_Ch|G;Rn^D6}e z!aMf0kSLV_YgeOE5}+^zl(9yGRQXp2um`7{xrZS4fYWc(na+r5xyuX~-1igUZ94vZ+v|fmEkDRdclGstUo6=tOhH zZz*j+hzaW!M}{qU-X))=u+RX06e1Hm01c5K#EY6?0=JsMlFOLmB7i|QJe~~`myl}% zu274*F<_AD14k`Tp#T%$VF7tP5nm&jq7)?waD`xiG(cp68Ek-SQrdw$xnV4U67*X5 z^P*MdBRbqkrF%*4t%2Y)GE;o-?yzK%ZJ+SeKtHv2p1E7d!M)&UGaf*kCLPk{ROzi{cNvjALLfu@B3eIS5>XA#CQ=Bk;id?q^j@urn7Wds!M z03PhnR>M7TN@XC!6i}lWtOEnpZQSr%LOUTV#JKa zF<<#XNyL_et2Hfvu7U=gG{FMqjG{`W?FnE&!VX|0q$H_`|3!HO#vU=z3G>zM0rgDm z+^V$zXedAzd=wibg^{8|P;yDWFaiXlF@wNGLeC%)?Ttv=I0JXdS{8UQR8je5DJCR8 zt&Q<4XT8b@*YZ#HNU;(if(Ct|VG6%4k9fsdk!eouQOju)g^!sai`f*3I24Q05{4en zSl2Vuy%SKfi4&oS%2U;>2u;+%l%Nc?ydkAc^;(+4hFW!GVtn6~(i$bhX=p=GP#iu9 zN#K6(Q^4}`w_ptHidi6d!3dtkX&-!no(&U#_UMYaN_YZ-bl{>F-7LmAJS7m7!3?H3 z0T5c#8j^OT#kta1jBmVBcDFl)>9~iP&XL7q)8mG=|NHSrcWd(Ga)Rk zh{^)mMGDyCCG1>iYiM={At>Y2))EQ<#64|`xWwN0)`&y=jY)+#gOoPlq)YHk19kKJ zAW1Ds$FaE^`crihdzSQs&=O6K!JW+GAt%|&vLU@u?@;u`%LGiJB0}*AjuCXzgK#Ey znH!XRI>MOfGHANgeTYwdf~Ra7AKbZhuG&Hoh$HI5%is+E9<(PLmdh~ENFKmADCtbnV3S#ztO|AOZ~|5Ttr6>EmjR6o+6=-?wbCWK*( z!EqeMVf7LQpMeI9!37MEanbN`_HZgCra?9~7Vp$O<6vdIhZ;3@83p7~+2bbzu}<_r zdrre3uHzinAww*&Og`o`UIA19F>)G|WI`u1w^tGg<61`abXoUQQB`F@IE1GJgknZ! zR~KehmOuF8VlEZ}1cz2wGIkz90RylAk$`88fM=F)X<27=$L2}oZPCeHg zX5|gOA^~JzZ`i0I3_uEO_V|H~55o1f}U=Wg% zIT?jylvbtSHk>3{k)Q}C5?Dl%|2ArOB5pT^Stxg1$TrsS3}C=td&iF9kP3=t1diYf zakp2&KzNpQczh-$cXLTALJ8!PK8*N2rDi`@d3p5omf{db?)7wDHbuC#Iiev;qBkfd zb2GWO8x7MCqDYFb2Oa^VI>sgtLB5wp96e_<&jC!qlzSuS6nA2LM^Sv+ z)hSQm6vIbsiuqGF0TueWrvXzN<2f)|p=;8GF488AsW1QtwpbES2b`rL4qybrf}2*u zS-sg`#d)dxG@R~-|EY6vqyv?lQKuYGN+uU^FwY1X3vi9mz+p+i1*Y*CsqqgaH*y^i z1~M=du^KTWKm#pcp66MPPZ%Epfr?szPVXsk(8)CPNuS8!4q^e3uM(}&qn`j{Y$hWp zo&#juvSmlKJuNv_LKu^$WJ;O`u4$HPsIXXr;i>v`jss9voHQgGiXs#s0$=l?VAFPx zG-)DWc#1%jR^mqlP$MRgcSYKhsK921^>>zqXN5-za2J+glUE%Fqm7h>3UCDkFr=YG zA)bn)Uq?_a5CTlv0$b!Bl0y&~p@eAiDD>baqsI>ffrQv|9|?~oBA zIB_$RNFQ>5NP822YF_%u5L1vEs8MtGQy6mTVmi|jUj?1V`j9?Hi^23l%Q|5AT`MjKq#(5NQ4NQW;F0(1CV*V+hB7U01t{IeY>J@Q!N8fEi|Bb z@Twt}MGW@32u~6=IQk29L^dKSNlBs$BH#&#+E@7{{VR72q+>WS0Di#OL-nUyq3G9=6X`?F^N-pgqx!v0pvLjNiNQ#DnGGgib*cB zq+H4hnM6ihjsi@sI6@OeY+Blj9Ndd1fL*DRC&M;;oVgWK0X^uZnliIw+gU5rmN5^) z4QR9%AL0O405{j*whEwGCQzwEy0<`FaGI*OL5vsrE52UhR7_RDWC}n*B^=7Dk9L!t zu*#XS(VZlBDgtAzPji8~a(VVM4$kFOTM?U`%W?-oi)I4Bqf5HO3NZqc!sA3R^a}ERowEeTQs|9_Eb>wUOK5i1{JdLwysCouE9IQJ1PiqwIb6yM|E_RU_ggPvajt6 z|FE6lM}2?lF_aatsi9oIPe<5#SY|f zyasiZehbE=WS6g$QZ);aryHMXY?&bOCU)G$rps=w0UJ4O6|vF46;o^M1Q|8?|1D!x zu0@?{nMW46E69%6)Cv34YLU>1j8=yVyd8o#_qGEu@Ca!Wy_ZG3dh-M#8cA|kq6&}# zo7ElY~ zz#}cN0To*t#cgzn|gJZCWIa2ft!|EwIKswQwz2$*gc zq{Uk-967;aG@vW#nBH_7e^%M&@e$3B0ZR=5-*0@G_6^$fnTjq4>f$*wnOK5^8yTXL z7~sl3fvl5Hcmc<2*j^Gws2q9DhNXX)qS?!CG3{y{IXjxy-_& z-#Wq3wN2YW_b*go=LKXd=m0g$4wRd91$__#=sqk{D7>jo|GbUvjf_6@Lq3;!eo7Ur zV-SN*9PnWesDRxO5!I>$TN@eNqL2x;^`|y!<%pcVDl(%=)6^#BGvOQ6wJ^i_Oe26C zZqH83IxZ;Vo~XO#fC>41ejE#-k)58OpoW!|gOmZM0T(nE z7OWQtum~In90&)tBL}$$yazzMXaXhz#ARq45kLmL%pA_MI5adC79pp70eu5~1e4v_ z+kV=kmD%K#1OY9rt+DR0IJC1$&h*T@%LYIl2K>AoylnNV1?!eO4mb$DbBDv0!vpc| z@tP%ZmPHOKGGfGtK*hp^)IwStiK^r&YbH^hTgh@|sFyHHxf}q+4l!aThT#-IK>-C3 z3W6#CGohzXpA!_sSRf*)f(arh6om=~=z;~?|1=1*)F);qbJ(<*F>yxdlc^KZK2-oz zsL-Zq;}-3?W0SC(Ivwm#aAg740g}XZ6-S6`S4&B9h{()<>C>kvHjI@q<41)TUcqt(>w*v2vSz)OM^RpfXA@6Qv?%-pt!5VQ zJzL)4w=*2j8(M%xTB7L#`LIVYuzkDf?x(R!{MGv%yHjLt5>t>3EaR4i;3u9>zkd94 zmoja#&%ghDax!6q3OlY?rkg>$>~c>8z^Eqx8NV^ephUeyN6lj@ow5x919TJCVDGWi zf;s_&^wB~J9+zAP`|Q(C2PXg|qeQZJ|J2b!qn)^rXYmMR9fcN!CZuaRnimo^C5CVT zNhF~VfRiaT7UGnH`Ddj#?u{}41q|5bAWj|xg+xyj{Ioy}Jteilnmqv}0$fr}0LEDg zT-Bihm~eIFA>~Yh=L~P5MHE|a1qBpTawZxlp>^T)r3pI#=7*$#2{wpdlO8tMHrni2 z7?qQl)80t|gwR3=MO%ZaohfSX3Ty`y4p zyd`(QZ^{X0fU+C_gsgJDMeEFwCU!=lc(#7W-M10o%AI%={xSjwBRCWbk^y*03=JQG z%2FwU0qE(y_)3BwCYo@P@4t%S|EI5j1I88`YqZ3oOMEYL}2 zL3^XLK+ZPdP*U%E`j#}^s;s5U>Tyc=vP^f_nFiyF04Yb%0XFWcbCH{AMlG%JY{cu0 zMaEK@sv0v{D#uxJEH9`4)7R1f16-j15)b5rS6({+^;23uu|>fHc*Wq>6GWlaRGk_O zAOQseY@jD$_ntEVCP6*1R$L-H(NDc0`a~a4J4g38SdL2|G*%)-*N}ux8zEci^|lgY5@&84PyexnU5k4ry&a*_4!io ztDnERej$U(&3L$U3v+6zgRMqv(42_j@8Bbi`KhBAa90DJC8 zSM!#^trI*e0v%97%?9$hBDu~T4b+xrY*8Jc@nTl4YfaINgslNA4JFp7gp;Hcukgvo zeW9q~BmmQg2Gpqma$)!;TW5N6YIl;};7Xfh$310S-851}@~(Am8T_92)ZzF5%aHj)}u! z)+;5kX-7wn0}Ea5Vi%;rCI5)wKZda|h6CgVCGNOG4Gc0=r*Oq9aN|l{E({kBjAucb z$E{`XqdCY~Vdy}T$XDTDR`GyNs~S=Z8hE5K(x8laR29JOZ4WY#Db=Ymbk1`!6PftY z#sHq;lm$>=1M1NU8NAjMppflLhkHue;$)Qu_@xgF5P%U76UZy+FaRLkOH$IrH#45C zZ*JNf8lxgO{{?{bE{3}iA2nT&YSr+O~{;h5A8=!;bENfktu z6QorMDIjZ9qjL(CZd@bsE8YN(Kykl85;ga9PO+$iNy{)dG&lNRtElC>i*%Bd$>G2# zX>^=f{i>_22xqBK^+B*^rd-+a7Os>5gew062-kD1JbM|^9kjrO;RIEN17t7rnwiX` zP$v7%T-7p%Rb4~wA|NZ57eU|x z_kFDgMMXPaVqG2?JYV1hhCDqdUfP(mCZoK5BDVq~f zO!d0-DgP-rN*?EX6C*q&Digqo1Il!lGAh8qYOB*#w2>18*3?QL+D10aAb_$6H7cd4Q#Oh`Cs|1Qm}#l|!XV!p!`$ zBO3wEi&1l2PtFs7?*R2|48G%rn=&F7q3fjc3cLffOs_4o9W#vVj@bD59PLSAMj&Xc z<~?tE;IeX+dvU$la9KT(qQS?*H@*XEs?4+YENA;0CT3$=e7Hb0TPP?K~;4zCN1|wj>Wnmh*O;6TZVc}e&jRqk+ zL;rYnk%lw^u_MX&#`jH40ks6iy63bW;G{Hg6`@SPh-otST^=At3go0~9<6Ut;S@!^ z5nclXh^z?+Q>8B2bP}@llK=p9?LiqEa8N1SujA4tr=&4&3TVKF@8V&)VUY|U7K8$3 zfK*s>s7EaUeO zUB`t5TL6XX6+Unca~0;J(qKm!(bGpVE`4Q|GmHZ-zsU~DZ^H%DB_|HRc$fuv%(QdM zM1cMgA_cQ5LXuYUgg-1-WlDes??ndAFalVX8}LFU12B6#Api@&G@z1BtiVvl0{?;d zz%8Y59j0MHk#rCJuq>#AV;J#I|AY`nV_gk#G&VRJUBv;|m4mUM4kOY6MYu{)7koGL z9}1LnF3~CE#A*_-06r9ZK_OvqqaF_cY(x=MJ|TJ8mKJA`7FK~3eP9G8AUEc-C*gDn z0-#?Ma29Zp6o9i9K%qBMF(^NgCO<(`hG&IH@KnS=0h>ZK5>P22a0#_{Ih5i>N(d@N z7-tCO5&IM!Hy9evkPx)c57E*OsS|z+QDYime=fFT(?UV8&hEc}xMtB< z9|~A1z6D(zH%|}<4ZI+MzN8*y;0#r!OP#TSQ^I?+cM~B%*weW8_l47RDPbVWlr!XQUf`pIQcf{0$vsO$XG7eMN06tWOhW94x z$ar#rM0A*iJfUrIaTao6HY=x;sKbg)AUI1nKnFm?pT4ADh$)8t9j7jXkIY1v_N zQMQV=v~s2tK(aWC*_dLXGaWuaJJ^#Vwz3^6=se^?K`ZAB9nd`{0RIK+P$DxY9~!lc zA!Qev5LJ|OSwB~ez^6Vurbv@tcSh_?H0CO3~7`hf(TRsc%UT-ttJ6|QH4I_HDux_jOP*X_Pl1u*1~)t@Yk>iU>L>sp17IS?oWds{BQgM~ z!VuAcLYU}D5g{Wn@`VXG-xiJC)k?b~ldyzOd!2p&sFOHcn)3~J8I4|h5 zXbjbw+}J!gpi5Y$i+CW2JAf{_5So9v7{UMs;;;ZZ;TJ0^PTi0W12P?+Q$pf#PcMQ& z%kq`BnU8o1eLI+9+oL1G`KQ>TPRV%zsi2(KAcAR%pq__j$=Gwz$tfrx0Rv#2*U1(@ z;eo`k17xx`oC=a{a)%=cpFx2YfYD#;nSd*SMSg@7X)`!C8B}ocHENMYNOUMSDQ;b6 zpqwWOOGFF@q^qB&sEgqkyw#x8RST~JP|zoX{7{wu^ZyRHpp|td4;uFjnRaOhU>tUt zqbVqs+k$178lM`7zwZ<+^!BC{A) z)CUS_NFnrMnFb?M*&G{0PjO|N0dW9ZwN=GAvoZ%mC$S{n^xdY}x{8c{-z~__d&B#A=MF<^rSAsg-NZ#SNsqoiz}Cc z3%P@<3)q94lskeZad)eN8?P`Og6hL13#SoxEohJ)c(DVqn5c9c4)n&luX~ahJiEC2 zn2dRVR}2cm*QU}nD~5$X#HCA3po<)U2M)pj$Dlpq${3BrTYQ8$)=6JF7WTB7%L=oP2`5YxpUM?1Xk>33qc78?YA^skTM{u-yX%NzsKy zfksiAMu#F5bfRp4p{mcgs0kQO1JIHjwR%GpIJSyyM&SWFfCTKdHdbhb6F_ybix`Lj z816d^j#Dp-*|W}>Xoe9g0>U|7_5W6K^&`R6JnHgTK_fh#=z`9wf+}1Q_LmDyW?cqj zgyPJ9*N7?wvQFD|oa4JWi$)E^`COL)gfu|0>OlrqaExL4F>QO8mEt8-<9k}W#W8`f z0*z6YYhnyoaxCmv0U@!v7#dI@hypMLwZJZYM+uQd3~}5NBio{~5j56or>GcxeEdMU zWPccn0Eb%0ERCpyTtiONsOqc80LrLK$Yv5L2o);~GoYzYKmi^=22{71Fi8P}(y9DA zCvq{$3!nk#nKe*w%5^I~Ipx2tinR0zIBcW)Qk4o4L? zzq-!_tf+{9%*iZZtTZIdqyIYdxGjk5DkPUKAgwwvoU*17qBd-s2ck35Z~^0NgvuP# z!+Ns>QX8B*s5?8pfV#OCfCB*l20Jkf-{r(N=XrMI&jGr~1+B1IOpT{~UM$fb2#rVy zgFB~1Az<89Xn@9?DF9_)23hr&;UEDtz79xFLn($TEc8F-0Ym}YPu^bza| zt$xfJL_-ZUt%Q&e(5uY|Pnf#A_9c%Z$!1d&oNC@;BY7n?p0nE2fRP>wfSAz8hWJ4P zs@ecNMTUq{Qglcthtd{{vlq77p8(r#0x$uYa@Njh1V|;-0xie)HpkmzNv<3UVpm8ML zlI#I`V|saLcnm%aWzxT57)7JnHbDu34*u36BLNIf1`RNVgyX7V4OB7tks$?DwOl41 za0X9Bm_QjAzlSID72n*gn0MRKyhQ`gP(J|?IxCzorc~jfsOBoGvN1w-(zDGq?6UIo z4(pVhg{qK23jf-3JU^WCqpBvzq1Vz<0(CNe3Ko15bQET=)`-p~DOfZNNcyXJUc2IR zyXCIuAXj3gqIL09eF_7Czq>F#K+$D@RQLWMLn%&^a0N=c6BMAl^fn2`z0q%0tkj_9 zYd)LA^X9g=ehTM0BxfVN8|c&=6g>t0}{Q{P_+R@(8*QN7ToroJP}25 zA%-StP6u3?kse_9p?PGx==+T*VL0H97xE(ifl;+7pR&A6I}WCuu&qt)hFq+&uE#x6 zJNZawa2Fl$@DT~I=Dt2NH_Eu-5`Ql^?742dBR;5;OS#O>&P%c+yk)3&d#KXJL_0x8 z8Z}N_g#Sky-~dLT;DF@5>ml?TkHtman14@enxo`-yFzxhFnUd``-8^#juRX307kF_ zU9vdBAa9p5=FGe9c&jQ`?@7o)(nGT@Is$5#0mdLAPiQdN$7Ck;6Sk= zMFcqDX;guLL&tR%E~L{)lB9~0Drlgya4FHamoQ_>oEfv)xNtag>YO&tRWDWx6eyU0 z#KR7wF(^z}N@3^(Fi$5a5HWPBR3oR1D1a(LsZyy57AzPL;sGu{t~%|c#tD+OU^})h zT?%!Ah^2R{QkBY80fiki2>uIr$_@hxt$d-~g*E`dGpnp!TT6K@&6otpMU*&k;{Q7p z7U#JeUD5)Am8e(Jz_B{CJp-^~N0@D3w(Z)uBj7$@0H5#Q_TbS_XCYIfwlp(UDraeu zBA1slJCe|%4?t757=YmvV1cd$J4o4bKq1y*#@=_7%61TK!piXD%TIVM+cp97^XsSY zDFBLcE1jlMJMhfIK|R3zHo^%Wae#&`s0_BAU;!!c%P|VQ(hxb!g>a4q6IsN8M8uVZ z01YW2z>x~3wOFEwFoJekafn=IB@Ksb%-6g^kcS&Uz1^-e0#ehKn zoZ`S?3uus7GO?^8&pH_BFi0T*7;+pa$%SIvuZ`qL&MtToWWokeB*g%P zdg79nGEhj%AyQU?@)z9;tSmer>Xx2U)NQaK(5I3T9yQe+Q;3DN@u5C?EX!y*kZFmFI; znirWu7;1P6Ed0i90S6sKe*g}s4Q%}dww{#fxEQ5fl1C;Dht6^lQ*8eE)_yBy>+I*; zvw72rRpk6r4OJIYR!SuTRWXo3p|peX%2KwZfy;p$9+9(A7#u}Hc%WQB5KQs!OkTbw+SpHI1EV$ zL=q8-fa*21@f&RTW*fc@kvF{o4hMM0J6Ty|MFVJo;&jC*MkU9Ea09wpNFqI4aOah(L|oG;*nV;0|~5V4^%glak^f za7aiJi`P(yFA)lZ1F;JLYb-*8D|qNR&q0LTu4gOL984WER7Vpkg0RG-kCEu3SfUbW zM{i+<5d;_#kv=vRI8~)hcFE-cC$O~%(MxJ-Qa}S5F#nc5oT*x@+|L625C8|5ATDyb zlF*(Yr=d_VmvLg#{%jc~5BAAW+W<&n#<>cxxo45B{6;Dl^(ZN};%#rE8;u~xopW&H zK)HJj5{Fns+2HM;v7v|(Y!|Bpt>{EEs?jWF&{013S`V?c6ouhLm(JsZdu0#TVx zIL`4t9n}vWVW&q>zDON?M36iHc{?Bs@&Ggt1Sb%<3!hlSP$@h{1D6+qn6d^9tf?eR zJmf1)?l5lL`{X(drh*YPm0{{=1w*IGu{*9Wq}giJkcNpQs_cb=adJvt{1OZRYHm%! zRAe8_vI8CMY-7TEK$>KxCJI_}mtmbtUaG0T`u_=Kn0}IuF3Pw$1#qmYSXJM|xVS|_ zL~#J{+!PH$(1MoG6BOqFC2)Qis(lvGRJg&L-wwb5C6M;C1-%DK;o&Rpw zwtzD@Q!vt!t1+tO9zQ4`AY=$rWKem^#ER{stTXNkFO$cTny77;0wnI5SPze=1h$B! z=>m;G16~TC3>3IROwkYk4ydF!mlzf%LJ|NRibSa;S&_L2d0w2x_I#_nm~yQ;4oC4o zeo1=Mn{Ij6z1qbuUvbl2=b{v93X_gOR$TrZw&L!@H~tH9zcE z4~8YM#tVq%{sB71>{qc=l|&2Bao!qR!2iasC8}j3_Z&~E2skVaRX_PgINbm=HoR%# zZ%Q*Gl}NFC_svm4Y>JkkB%sRoN^G4!h0g0w< zE2T%AZ+DNC5@$J*k?Q)!LBe^Jfgt3a=O;2zoblbb&G0p8JDjRL7KJ3r3(c>X(HtL| z2#Kpr$~1^|x!`UlNte>305!EV%moOk6j{@+g|DHI-G?_5d z$^#UbX92fe@jtwSPD(oi(!6r7vNy$?#c{DMlwjLDKow_qfQqw$Byt1@cY+g)DmFmq zK)7>fBBVA4*%LbkTCf(4;hytr!T%`X=N5C$Fzd|Nh(hj}@vTngk~AGIYBO}>fvz~$ zW2N%&2uo(l3>z`aml7IFOTaaW8H+>^NhOI>Hy%nAp(Lh)MmK)*t!jQRS0*jcz$`(w zm%F-Lmo1O=fpyv8rhtW*SCGJOXJFBii*$jzutihkB6Gapx=kaN(^5vvO}%)q0Vx=O z1k&g3m!z?{Cf6>q>6r;bba5t{4A6+C=dQBz(H-`H-rzcL0&Wv7w4{RjZ$cTjOfXL5 zGoklkvkWMXvAeRu`-fr2GNih!3WfGK}hJ21t6y9kf>3cUm%`+K*#{z65tK8LSM^|u~ zY8fZAK6os&5WoXwn#`Y1W*5SXOYvh(C%)drXil2Tt@mo;T`M338kl--*PY#Dxcl~f zM>p4g}9?uF^#%z@mcFpZ;qRf99K{%ZqT*Z>YyX~%l%AQH}DMYET8))EJ=UWrTeqe!Gx{<)=}Sp@BWPP-28xH&!rp z230VET7%d;EbA*nlV4;Y(ekbwC(|sZ(ZjB#Gjn zW{}rO@1-_0KR@l@*L$??Aqb5(FB}8Is)?orTLtHkD;CQt{k zCNy9GCq`p5C6guGCtw|vB!Cr0dlx2qrfwJ5i^CEuQ1%j=AXwz^A!^e*q6lBUAu2<3 z0tsL$M&ySEV*fh_1#%(BSnzmCX^0`i1wW=!QMYAQghc}q5JJrtjNy=h8tHhC;31Hg zR7s^;p=fX>*b(N1f(yAQhoCsESRB?fE+}CzwrGpngM#yzcOAKtlL!+8pmHWwhDrEx zc9C>o1$;zvBv;@kzvTcDa15$=jS1);G(ZY4gBKq5h2_XiLy2o;h>pmoGd{?ZFxG={ zc#knf1Ml#GrcgE?Fln7GY*$j|i4keX(=W?EjiI}625;2utE6I|S z#T-0zaTdUyfjAPwfspJqajF!a{<#b@AptALd%QVowp5gPVOIy%jKP#vebNWQV+699 zkz*qhT394lnU%FhV8LfJzKM=$Eu8lyVk>7$DBZ{y-3C^c{-xM-G#QXDZpq}Yo^MOp5ZmI!rcI8>Pk zHUBpHs{Hlv|}O}krB^{e|n=gMP@{)RT?Xyi&SKQzIcU%*rm_# zmqH4ks^McsI&dL~a3;8@I+!auiawdyA61kq=DrNr1( zLXn%MDXiAyp|j=`M6)HUsUZ&FHTD*X&XU~ zilS%3M@pJ`Zb?JX({|q00sI#M9Kay>pbY0cnrd{<_#>$~23l?_D zK}50&E#sOS1*etve2YPwxPYN{`i;HWl^iNyeEM|339dRRsN?FYkHS6Ys#@vF4!~hV z2GDi`HL1jb8j*Ra42yL<+KU_up#HjV04tawiD+j>XJto%YJ(1zg-KDSs}J$2y3&dR z6B4$fi7Nq;&~|s`bG4i~gsh+eDPV+tb)a^|tz;Ouc~KX}McJDr=aH8S73=#kmy$88npe9Nv2^ii#EE6`bi!4mah?Rsv9e|^Z$YCKnPj% zq&}A)3u(9M=N62|spBcI0H+Qf!KiO}AR<_8)blV9lNnQ+BeLs4+|e8p8-qvniqbni z{K*La(FkYRe&K4nJ1G;N*?m(Hb52pR$ux#|VF^|=o8XJ<+^lWW6Aoz(%P1uLi30f1;4w*tFptGHFW zsocv^xm%*+AVp8MLjmHo2fGdm%No=(PC8nlFW7bQ`DE46qZ{moI6?sbg=v9XP3Gu( zePuHHOLIdL78Vi!3SbJnMO?FSCWf{Y#Xc;)x@Ka;B>$otg?KZJwduxr z4ND1g*l{&*A5<8g7$)v6;Pv}s`h}J_4l~w)Fmh<9aY-clvRCwMd1z^ue`_zEno{;L3BlT z)O~f?1!|68^>oEV(09$fP`$aV+Ft2knLozMS!%1xA^$GJkrE1g5@{(<6^+4rEqi)- zT+F<+DEcVP7FluIY>VL8$n2ewhSpJ5+xUhfk?gHrg?%+$j!x%vGzWzr#0zIKezr}u z(YnNrU>0&^71lanmHf&%OxQZiv;S<@NxZ?Ko!wH#A@Ju(;ImYv8`2G9Xy$Nw83z&$ zla}T{w>yg5?M-I5TZy_232|r~mNit_sb9n04c4sQ7>#Vm&DS^blPTb>P2#sqmyDR( z+~!@+QKCqG@Fni?nh%b94h{-a(m7JX6q3tLep@x>4c$lL&rF@&dp+Q>H3>acpQpRa zdt{v>ygu@_ibP9UZ;!S+HBtVJe5TsBjRhZ&=N@V3<2UrPkSD ze%3rbRYfI}thK-gV`#F<;KuQab2vU2CpVQfMebbTQSQ@=N97zlQW@<^Qzhp4O6Ge! z4g$(mp~+W4Jd|y2-cFd#h}{R;s10^*(ljBn-~AO>vd?TztX+9vp7vm2@sL`K>T3Ns zjc}JJf+CHcDX~c8#tb=`1jcdG`BkIQZ&T8JbzJ^$WRT+_kVd;NQShW@OluI?Jm?392#(7wwZ z7jUUTfGwfrK3)kJpQ8Yt?(FUDo*sMP&ad2w+YE*7Uas&O`4T8_!y0bcYCf`n>*{LS zt;gO1fniv=e$AKRYWw39Q0U4+nX>}l&-7DFhc&w>|M4AtanG(16YR^jI`O)=rHuH3pNDrCwWxo@N48}2)BJeQZzI;Q3u&}%0%#**p$?Wl59}8Zu zyO*h~^R&(ziMj!y7ob0528HQjM3{WJ5t8_^{ zxo)1>ZQj53e(;7b`d^;-ieE_5PVJQ%*E6V#t?Fx?4%(gn&YvEn;l9lz|M|l0)W$D~ z{pHs#4Xn0ixo&^Ca6dr8lmcVn2kiXh+X)jCU;-|F7YVjYzFFgHe%`_l2n`Ji3kw5% zetvz6jEsqokdcy;l$Dm3n35++c}+DZf3M;)viU|YK#a(TC@4$`(w;$p|L|f~$#RgO1uqB0MBKKt>0-;o z?rhP=RL@&OU#*fwD}V*tNpJhw4Ge|ZMyG>k`aQ1ZRch9RE7$Z}IqBulqf57RZqeug z8dA_3L{NnH%6d@}RR1vYBtL}w6r?C5nt=%qqGhTj=LbcA3DZD#Bu~K}Kz(-oqgQ5h z75JG314wYzbPSe893v>SFu(w~s6qn*G-OD_EV=wtp;Eorhk|d-HMkZtJ)Ht!A0(!x zVp>)?gH>`SN>^fV&()~oj$Bn&P9FpCpn*IL70DSuc_lf}lH+C8k4Ne)paGB$m_UJ8 z#LV|iOnxX(Wq*C)(;rAr?3W&9n*AlvN}aXT5P}NI$K#w8J*ZO%1RPc2D;HX@%ZD9a zfC_IcK1e52DDothZzS#%OjvT(DI;=P9ctQ*r{!qrrko<g-Ksjm8K8 zxcu3npB^UFVNbpUV4t1Ovh!d!!+2z$>UmBkGhN5DCy9KK_t*m%ralEl@(I(&br0Ah(z$(n8-D zN>6*Lod48@722{}Q%ix1H?&{ze2SnjpBuJYldgOCIx{=?_~e)`7md$AVy7KFQ5S38 z=wz;>vB014Ai)B)el2oTPTATR6oce5rbw(pMjlD2qMB?=41El8oR??LshxW-?vpLb zf5@S3Jt1F}@ya}kQ;HpK$hhNoOG?a)l~SKgfCRSU4b2;gxRnA-Ab<(DL^5f!+Cucwssg#`GjyBa3~M-@3ob%~ zXp9-83`a&#SWg%vgw1SJfI?l|VvOU9T+rIc$3FVeI5@o5`%>_}dAQ_v0`X$*Qk544 zXn+t}gNO-4Qx-hh5Q@7}&;s1UfJctWSOrQTNYcZ=x#h1AQo6#efb&P1jU$b)>=^}H zc?oj-A}O#yfC_fGOI`L!gL3u#HrVj5E%fkb8d+{eR10;qQ!V<3Rev=X{aiGRCl zV)p>(jrf2{0tY(-LnyW?A0Ej+oM{snB`75+5zi6FWY;Ub0;yQm(<@JjCw1T$3jh1~ z!a}g%fC>(v0uGFzmnIaHu2`r?7wYq&5N+l9CM1U;4N@+IoQpYA^1D!uPCbrnz#%pu z05gEfbx!nNGrY-&DVhKYEGbh0SHe36cGQ&l8xng~3D1ab%8a9s zb)EA)?q5}zU-L3IhHm61V#fkn7rg=p(>*{04$uMYGW7u5?QTMQ!C7}y)xjuE@tjyR z069o$NET&g1K67^0&g@VEKz13M9?}eX;Z&%9UF@ufH3{k&#ntmq;UC4H`sEuU=&ud z<{(^&#@5!D7S<&PlnR6hco_%=H~vn(_3u1w)7+aK5QB>9c#y|W?+x;P=^Wz?1ZBH=1WnT5@1p6l^JU@ zKNWPcUG}nX_|9M^(cf$2QUE>IDiJ$4)QmkAb<_% z2fq5!N3#vd%f#mL{93`9){XH^#Cm zSaO%H+?=a<>MZdVZn`0 zyO$m90T}mWI}qj$yj|sC4l{^h5p&b085^GUyzb$>^I6|}&Vq-U(1&jHhA5!k5F>;C zLciZ)_kjikbil(oN_n#e&yaj2*m|WsX?S*i_mu=a^Zyl&Jf4~TLEd((1*UuMx3}Eo zNo~c-Y(IXByc_)ZZ*#2g_4}p?{BuszLzCx4h=)q;;TUbjbY&Dw1K=fQGklY0VAv-J zqf&8M7bMf>ef5`r2`GMD2OU9meui~DDsoR{7YdGY3a@Yg2Ecl(mvSqoVHtJ+ngugd zF=%<`P#m~}jbqZ)BTS7@@K>tNxMRkfsbrU#a@^Eokw|P9!B3-D5 z&;W*%#)u-96D62fI1@b+HWjMT2RlIkyY`fwq)1GWSB=VLlO@Yl5xHfexV4E4<%u* z=qD;!8|tWm>`0P1^Nu_5in4eDD|eG_2mgEU$6YkY3Uyb9s`iDBU~?u}l=`#?D3Bn& z=Z8{aTEv)Zc4mz1bO^IUNfEh-gmpurAp+JA0~){`CZTKDs2vuiQ-38S6ViR1Xp|=j zN3R%*91x2*paK{|8!pp0G4nXqgILkkhF%7Duh(T_24X58Vm}E~HRF$LxtL_s2*Ajc zwiazb7l4FkjMpb{ipPvvWru7*5r-gG3_v6)A(k7-WEH4=FUEb{2WXthn3-cU(ItzM zHJbv3AsXT*8}bXhk!p#H{PpK>q;|!4M+Q0M^HBrD=s_8EqO+QE91`-}juN<&NkG zoE;wselL*n)sLkHfigV>V_7#a-SNJs1R`5cN)ni!flqre&} zh@VT9VUSf&ytGUIISajjj)S8sXGEZJ*#WLMoW%)$#~ETPvyVDsiXsSdo{)Pv+NDS{ zElIhd-Pn}F2y_TJh>G+kk2EX!k)k--e5^!CK!S+zLz?UPXjjKfscEB!@uprXFTvo7 zJ&FSzpj|UanEZ)QP^FJWI{y{uhy#RLZV3C{(1X;1uUb1BB|NZ8xdbb(2y$ zr4E`DYLr2)$P+V(rJTv7&|0s~q7$-~aYCX)e>Ex;D5DVQMaG9paxegp_%$8)fzPrC zEf4}kwgH4-p50*&8dY^xcp%f+jcJ)&C26nX!-~?%2NyCZ~ zKmb7kc(n$Ac#3_MxoAfC68mEU8$bgH>x?6Vlr2Cj4p5B|Cy7?rS50%6c|QsV;nzu?M8)OM50n3#@PKx{b@ zkgro)mdW^R&4jhYYJGEKfPSEK-no_wo4}o84Mt!Oq6u+0g{SV5eS9Wq18~0>9K_%` zf-`FYPFj!kcy4UGvoUO((*>!raE^5Rs5ZO83D5zOTd6R7lRG$0t|t(vvN zqC2`U^#8+T+{gfwmKmp0)tMcYn8dQWQC_@L0swUZ5XHP2F3M#c1`{#*0X38eMjR;@ za*=rmqIDdLm5vOkqtJ>xfyU=bk88}vy4=U;b^wry1GBKbpp z0AeL2(yDyUPWHB1n3nu((v}voDQL?!*>;cnxCAX~2o1Rd zeUlH}0pkk3;H$@ajLZ|=b}p!L7=5S)wX#YzSuI#~VFbBk=MY{uEX zjdv8b2$0OIWSVbJNzP{)816YFBZYu-+s;|?5Wdn*8ik(fgxnEaaay_+Lxf~e|H{`ct^X`~S}-o9 z08y0GP`)|)BLG;S0HPuYtd))Hw5)QbOkbX`elCh3%M`GP18aWjE)Ldd9^MPS=1g=%`ekWjf9Po2H8%Bz^FN1^nbwb~lUA03@{og%n(S z)mOq^fv7a-N1fTvy6fdb<{V7wgo^6oj^^^6=8zlJGX8qBn9MV{Wj!1uHxfK8hGXoP4ZReRR(>~b|Y{Zs*Tu80R z^?oU8s1ryDy-vF3s=mjl-hT23-;n#lw3w60Y~S!FfBu~)d#=sBo&WJleeY@c>#r)A zh>o?%7A4%6Ac)uvxohyyJr+!~6Aowu)oGqfR>_B6@z?I#fJ1bZ>vhL4A*qu+0!!KAyD??&f;lr&<3F1 zqHppEnv+m!lf`@jve^N=lp)rfrMW1Sa=p!$U-x$}&R2(ENbdKKO$hDOfZSOaELGTJ z8w|IC*vB>ia#5^SNA0G0ni)&^Q&Ib3!|~pRj+`&<*>BqM?f=4QAK&nO(8zqV32Kx1 zIbA9s2N_a(ZhwQ>9KSP9{dAqL6@^OkfG_rJb*L<&EddAv3krgL0}cX6etnC6i+zxh zjE z#*?1O%FE2n&d<=%($mz{mdAY|AvgvJ-rwNi;@{l~-Q@`p;_4CX?d=8;C-W!o2KVftCp-;zG9|Gm8w^)SgRB$5V2~3Pgw){P!KSKM*pJ$kBpgIiizT+lnSsU(x4!f zPMtS%&D^zhYc85BfoV`FA)->IXw#})%eIpw0)60Sv(RCj-Mi%QdUIzk0=|3i0>_ir zPv5-*h!NvJu-M>1gaH;d3;>C;*~=22QM8CrK-ot>D3m@T)K9> zZopF&R+>KjEZ87mMD|RnU--<27!X!kSV}zb9spgt&w&~_I$fULsYd^sRBy_ONwo^{4%(Q?U641b#Z-zYL2t{vd zf@ma3UGcyvtCZN|SF-&Wot?B~w;gwhcIv4~#ssiU2U9?aS2^p2)81b4Wr-!0T5gGu zHj^DAmzZQ8X(lKYT_oYBzy>SqupM=GsA?>Am=&hW>SEJPeD>5~P(#%b93#QO7z(k+ zxOiM@3*<<_F3v?7OLent6(lZT{W8`t4gV4=@4U-|Y5@+WqKA&E@A>7|VTd7czzA0+ zM(~zfs(?VPkuU_;txDw@(XOGON$zH2K{9AiXKCD^ z1`?Pu!xbdf%*)5K-87p|!ECA_k{So?ro>{7ny+1}=9Q{?=ERfbl|aC1r9djsKm&3_ zb6V17zNRVk*I^?y z#ok@^oFLoWEHAN`wL2&mV(&txfnDC^LF2f3I5 zSgf}Eg5!&! ze2=O&h!1~-P#z^zOe-zmMo17qF0kApu39z{_0@8l_{?W$bZNFLc<7ft(xF!-nSz4y zj|YW3#?2j>*y zm{+>9GFe;Df@E1wTK{^@qd4WJi@cRBM+B#cz-bXByv2y_cngaUK|$PB0t`V)5tw)? z*HvIKhy|#`4@2C+C^*Iurx3NMlMt%0ifX6;Dw3NHTAUvgumhr0<#y5Pqid+CGhpyQ zI}k(PnruW?;9#q-SN)AymzmR#Vuk<781#Mc` z&VC}Opw$fnawGsUj71caSO5haV1m}pKoDxp=KCHZfw+mKpf>3v4~t~Tt&iNLfxAi|uX@c;5{={6 z-?Zqbi}-44XzJPLLWKW|AziFDM(S98*~0)M1PBKLWDu3KpdpzxOIz%D)Aky8p zWht!OmPDYT{-f~Vh29(wH6UB(z!LjyW$Ia=gh#vbILu?7DRJ-~I5=UK!W20&YgRm*O|zOQVFpA< zc)<$BRv{V8Y-Y1a6n3NovSJ~hKnfB`Z>?JDwR;c16*F`y1Q4lhP82X4dKYDXjyTnV2Xh?}-C6`*bJJK8pn}p9JgqF@Ld`Pfz+{wA+~eo z0v2Nda$tZ0&lLdTAvX%<8@q#YYlUnk@Bo&TeaKdIoG5NH2RqUPcF3nZxbrbZ0zsPy zhow;*6EJrRHUSF|VbNH5OveCvGmi>(Xr<X!f|8Ckk$N*x4$ zzE~ilB4)8fjC1rt#^_Ns!c)cpiuPy`V`yPUu!B8?4Q_~F3aJdEFqFweUYkWv->4c) zML(sNKjv70#q&1lNC}&AjUS;nhCl-h<^WZP6au(;3-&*Yg9w~w1l}hN*g*dPlUO(t zh+VRSF8re!;5Cg}X&MxvlZLba?nnbbsf>mMmW`kQb+ChGpkzwYI^$4yBXUoMg zLRE;Gv5f%7hIQC7uQPgjh;2MJDRgoL+Y%}a7<=bB$H=GN2zI(sTKhGXc2$qS4aV&qB#Ga-ndm8=L{(k zbN@De^EgXE}f=ExPn5NX%hI$(7O5-|X$Xl(6yUcj*c&8C+9NDUA{0D@pp zQYn`NX_cxmWC^*U!?9wSCsq@dBgS?SNC9)uxL|82Sjm}B+<^k3;)>&kpG)|qL#PjHik~tBBICuc-Ac)!jCA% zg%e>YRUrt{2pVM~KPBp8PZcdG8Yy5gZJ_oL?sytV!ZJbCr1sby00gQgXaf95o-^_g zHCI2qHIOz#6Y3HS-qlb$s+XP^6h?6nm=OZmfG^;ngkMUT zk{OGyhz}zfS>r6tE|OzN7kD{X*MmPED|_@$G3AYaSP%p0fPmiUFAFm=m_LGimFJRqG*kV8i^0# zqaRZ{lG2^_LrI?|tERe7TooLpXoAOqry1yGr^bz)m8GJ>0buG4$eOGy`$cu}7xB=a z_i-O)8lbo4LH%JMz^JX~GpCG#X5V_J4;EG#$ZQi}VPSQ06NaY@3kl5@umbA|+0qA3 z3vf#*K=LC9HWW}2n{88>K)AsJ+ff!rQ4Ew}W@=>|Ni_ePRH}88z_#w_uGkq7lQ>Yk zMX`Y-8+9q3c=>tZA(V~=VNIGNS~Z>6!nVouV5>N+*`RR9YJQNLvL>mL`1OQlil%Am z7YCrZiJ@N{@TNNpU~$@R-CB%6drRYnmJDV@E@u%!byTJ1s{+t{KNGBDRaB7nd+D`S z3TBatYdVT#3_c1(KqMBxfHr=J3zjH5)^w@DS5v`D38#pPLm6|^+q74TjWm?1en^4! zwl-RkQQf5)1e>vpiYPn92s;>D580{;aji#Pweum>LAdb*tS5Ig7q!l9=O_5jb5 zNTKxr3TAylWn@Pcb6131N-F@?x56Qcv7j)#JkV!NWw+AwH(j z*YF#o3aGg0ut{aFUK>rVigQ6?l~q(lgeAA-Sqy8|F(XG>8Yz3t)_pYMT)gUNHR3yE zwO00;#;K#fAuv)(=%vakxoF^URk9BVtiXTa7eFvRx@I5)5Wy1+Ci7I9dAX3LtHGN@ z5xL4>$aEIam?NcHUd|<2_Got>`)@l%zZj~;E~0eQS9LCyy*%ohHB573VZ1CsG9cEy zJ!UgMhfSsly#l0Ufs1N;c03?)ODV4zb zkQj?$AR(|2fjj`!L&3cEycnFwiX3f9@xlV|#k|r7kCJR<6(`vew`VISGM2_;#bVgI zyP)N^q)aha{1#=y1F0Mqqz9L6lWBnS3c&O(H%QB&Fjh({E~7?j2rYoW7JI;~ojbCx z%-c3oe9Q;QsZi^)*~kblY-j5R1)OIBx?8r3@ROp5Y-I3;s&3s0%jF#$PMcq8640uXAHH+VBjWu`iRth zmAGukDC)*5{aP$V(?YQ$;lb(}zqNG-fP&t-G!3!Q+;=<|zBh_qsr-ARS|; zs!;5mDS$YkrqY599AyaHQ!D?9B3#ifY8DVH(!{LVU-35g>Xf%T+OmCiR2zbPjSXSE zZpn2BUwNygh@Po90H#1%p672=eHrA@zv0k?`@q~>Fa=$W2GYF`Y4kzvoF56?$0raF zpUEW$VF6YH-ZX#^*~$=AF1r3~-U~{T=`GO3fTIc~!W1F9qzc>G*fAV(V_~He6yS7j zs5cWp0aYP~q2OTP;$nfNslh7=adTJ6;%B5M+0CJ8CcRzaIm?;tn~~fbFxP_PDvJEL z#Qu005&(f-TW<=4Hh$6)$xP>Qousn&*I;f)bWnK(0nmTm#V30x*ZkwE(KijG-zCt7U?1Hwk=6S`SdDsWI+zMqcv`yfhr(HAE-U zu`W{#BE1!mnR4h^4ie}K922mo<(A6?jat6UZUpqBJKUW+qqmzL7M(8XpneueHWVg^ zNXL-yfa`W9D8h|qt~_O~)7gTK!yO?&1N^HOvk2Wl{trT)nbXYy{DBzvF&~v{)|A!k z2tW`Q5IR;f^aC>Gk#Y3Ye(_t5-q()p3*861lZe8>8_X8ti~w_^E`rn?0Ma+ADX4O~ zD&{b)a&Go)@k{^jdu|B%2GW0S+20v5Qq^PnV^t7i@t{$m@j79ZK+S%Dh@S0ec5jry zvl_{VKa}z|n{HLF9eh|k8Up7Bt;czlTwZ-oXG-bKc(!y4mcmI5yC|=UnT+ztz?vfd zx5GLBTndsViO1k$08xm?-s8DUJ|6(FT(2`HAZ^(l zb}1n<2>W_G(vpslKn#H|9?!GB0N8>%wS&C_2m^h71Ac>qgnf#Oihhodkdcy)jFpy* z5*iB)4GRCAoS>nipqr%&DW?mn3j?i!hme0PICD~>lZMZI3}6DnIqJi}7?^R2eDzYWpykg#zsL-@ z0)}WWLF1M_V&IiRSZO+K1zoz#l?F|4RW;C*f>Wsmn>cyuq@b^ezMoJHkWdL~;j}ax zwKD%EfPpZy(k3uoa3~u%Wg}&llqG@3roE#=lfp~76e?7!T)i5$7O_rPf{ICPTu2(^ zCqscL*x5GLfE}};oPA|d5w~iwhY_MNfx>QKkQPvIPMK|H*VwIZR>bZ~2YU6w+e^@a z--#3Z-W|ZPo`VVw2;j3HNH8J-3l=IO!0{e_#EBE>mk|Og&|u(!7PMf&c8i?DU?XWw zQ&daYRcPUb7-p#9OpPdjR4>AbG}~8(SS7#%hE&6p9luzD6j&7aM20UENbtx8QkhWQ zGL9s-fmh$82#ba4@T8h1tE8d)AGLAC=?z67ufB##ZCz@Us7 zV*;SEg==7Mk{TDgNXUdZidZbLLJZG_{#${ zoaG0%zhKsi1KeyQW=jIpu|toAXez*t*06+>ODTqxVUbIz)(VoVI60@Bo7AGlXq08JTFrXkg7lWl_>imHeN1Hc&yXm1i+S}Jv7lPv$l=72Tv zFONaxNC+913t`Fq8o`*K#wZ}m0wxqa+e*#!L58Hg7~u_}jy|wVmN1{BW(x$c!@+o` zvdZdt= zqn-T8lvH|x3J+H{@-X3OL7mh!V%hu4N{v+Iz?YY!8I#D1WMVR4qJ?tT^mDdsCzjV8 z&YK~=A1dTh>;kh=iVOT`R=mDw{-IQ!GNP!Y4}@SD(NO;c4OWdBZAbsQ*=ry1gDq%5 zA3}hGcXW+B5$J~j{IQ;h@P|JfFp$~kQxP1rO>cXH8%S~$pZGlRBEbq)2rdu;zA*?{ zCyY=^n1wI@x$uQBBoa8XQNO88V*ug%kO|&}mT*u`06XAOSeQXNq&NUuj|hQ@f?=Ck zP;Q61>yd`2wmMb}07-OWQo-T`r`qx56L`@;`*t@tVlZX~wh_`H&WH#FJRp5S^9I$H z$Gkoe;EJK?3(BO rU6{;b}9Q_9&LNJC5)JkI?2xS7GI3fVvLYE&X(-WzX;W(C= z#vmR*sNEEgT_#Wf4pmZ=(s5$~;nNYnVkn8LWi132z`+9Zfe-%!oFD=VEQo$&#mfR2 zsBW=jTiXagOky(PZMf1%MlQmUjT{J;c{>(LQuvw`3XYZ7%%(O^5)DHdgACfKL?IO5 zI|hU+bdQPAFDQvQL@dB3zYEb{ z@k=AokitVL@{1|P084G8LW4p0%!t4+LI_giEnl$Wq}Wsw0R%`YSuXIYPdz~{|6##h zqOCw!wVOw9zyS;1t(XKjrUpL}!m^f?9VW!nG}T&7lT81ph1-m)T<6NsPnArMHyniG zdNHK$IYOPja7>UUnVTSvL~*`YCE!FR0h0X-pi8QY7C`|!(&&XRUeu!%TT?Yn`T;nE zVnx1+M+o&f;0)XX5oL6WRCGu)TdL5b9>2Ipl@Ux8s1T!SvNozwrS(%U)ExmFXAIF^ zriZ4rXkgEYh|dzrV;?g~2%rYMsw78DgfdITtd*28_Ek%*{U3wEx(HG&03q*?Wd{ag zARKU{nHtfX09&9z8n~Bk6#)GpZrh z7i1ELAspvBsq6rW;RG%nsVUCS$aZ$3sH~h;Ry`ibVE{b%uK;_S;6lbwuZ|*9nS_De zp?GBn;gX^uirU@Ew1!ZY+X*!YfmjeVtTLa&F^QiQ-bpC+m?0n_S7F6x_xd@$X0^b8 z`@qz)Q;{_rC)O0D-fHf+;f;7rniNp~y>K1*eI@*MzXBN6kA4f49PB z{FYx8mZ3Qctq(#$V;}n#+@^p@EEYv(XDi#ya<;}J!5=V+R+|P1 zgBuGVm!BN41L&Apqpt0nI0uk|7<caZ%AWCLut0BK~?8gifkP07yvBGdLTegyo7t> zPNVa-5kD)s5^3e{#^J_PDnER!n%+!etl2D5yZq(OGIfwW>!DwmWn-+y3QUW~D)C<_{{;8VSpTBTH!hX&2 z{teAevR}j?2*T$JX0Usea0at+Iyp7~l0g)L_YEau3?V{v6+(eLVQP(5LaEniRHl06 zwKt@P1NbpuZ?hQ*77NUSLY9zm$3}K62UoZkgEH8By614@PzZh^7P?azZ$vZ6a43CX zEssKCsg!*x#30WXeM$3+|#gLk!28|g9tZ$uPfcY(#>6?Kq@ zcH#|jCIHy78lM$3Mi_IhXM-FidKt$zBG-YwwSgeG5u6xlC1`>RXEU!Ciiop<8PtLs z1!^rfgRIz!smM_mh;>FcOuyU9a5BUQqf$naAR5~c~}^U&zOSQ(t0SEa(gpz z9PwYD_%f|^g%yTOEQpYp_JXe1ksi5`HJFf}vX4CEh0fp=Vm1x~ClY(N13##dE{KH1 zm~_%NSx<*#v?GO_kOI(kZ3Y=F{L+g$SQ%K9@Pk9-6(*1f7FlB4Xn@jWLiT58 zs`rqv6kifqg7znN*k+OIP%LPbXK^`-g;9GSxtNTJ9a&;2p_C$B!9N^h4Au61MMN9c zI4_8xD6@e?l9B&3FsT-+)KUHdeM*QLZr60O6Lr`3TAhV~mj*GLK{5yRl(ZE)1%n!= zfh2Gjhm06kvdJKI_X|)UDxL!*JJ@rEP;*VwFYdG{_a-j6H=8uL8J$*Fl(>4Am~wTc zf+8_`9+44xgOw=PAd1bagPr(itR3!O56?DiYR@Fh)D48zAUfS3r@QU~GpP$m!n z{4<)huoffZ3aFWyr!g?Fvy8I!7e^*WuvvA(iHble5(Kb*dZ7Rl(0*!13aGJ!aDf^n zQ&MzQp__qSe`0=x!AN1I6c7kvg(L{X1q=l!MLKnm)>#uMieP@}c^cQFRtAzjnoJrY zKZhxawAcS&?AfGF3Z9ZP07gJ4JFo!Oa+%{mkVDxDxv>G#K@?hX2=ej(SAbm@WibRw zmw@S5ZUGl`L2h?pFbz68Q8yO@kew=5YC@W()u|45qzRqy7f(4QAKHc@>ZVHf7Op@T zC%UI5QB=XeqO?a8XE0&^*CR*KA_7@jizAT!I7NRWjE>46B4>YpX`V_7dmu3&@l|E* znV3xaq_R4zsoEg#R6oEV9B?TVld_eh12m0v9OI-zK5?0S;7NR1tCql~396u{z@W^i zM-U1aN{6R;T1KP#lhCpqcf`8N0Q8ahQBi;~n)RuSFh=4-@4NB2{ zEnyX8paK8ax5@gjJJ=Qonqo>vu1xrZu34x56nS$;q3^1F7`h05N~ho&V_?*VL973` zE4vjgGkC$(wScullFA4wTDJiiCO&a<)KUz8OMF$K5}ndqeR{2nWwT@nd!-7br;4zk z_kkBswrV424%?8h8ftFayo|Yhx+8wrn4=v-ets1sfJB*{*$seXuR?@+T$@O2`Y%Yg zxGc+bb1JRjI$KI7xsywqU2C~W2vBqyvz)sZxb?Z_+H1af1%bp;Fx0g;B^7=5Al$VB z698I3)G0`TnB0gG~I$O&j-6_BYyEg>Z!5M6!YMPySv#RmYRmfYo%Dbe@ z>%1)Nik>x}@+e2R>yP>*M~uU2Jx90jW*Nblln#Tq2&chTJJZ^X5~}}@*vh-^ zT87K20hc8LPjJLhSulqx#BgDv)AxQoj& zmL*$H@SrkwJ-v&YYsBfv;d=kXdz4$Hys}E? z3b-Qy%jeDzc2g;JFB_n-$f*EF!7g6fO7n)g;Af3X^9vgQyJ@S)+*(X|CUTZ0o5ak` zAcxE$U^e<;D|UlHeDlm07|kKg0o6RwC##Au_|7oxU>rTF!W%JW7-fzu&VM8qpAm(d zt64qi%i0>#pY|ZFfOgY5tsiO^D?83tbjqkqvof89Jpu*Um5;llC{$r>TiAza0l+0= zMe@YbMEW3kW|*Hh%!oPD#%zg_CLjgzDq2-wrwWQ=RYBB@wqz}~Don^k{ny#V)_Yph zf|#M67?mN_~e1l;@6fL2R z#HnVzVQ0Z3I#cI9$&1z7u@zTfjrp| zyTX#a+$bg3JxbWwGQLlZ*sUWMgzB1jF&KB!MDNSoKKwB5gLYDgn@NVx`25s7;J?}p z!g5t4Wiqctv94dnvW9om)w~fdo z7Xl$&5V*8n1L0oA9miga%nEW5(<~6aZOwt>*D8MI+q&Uuz2f@SJV5NoNcYGrLr{!R-Gx^vXxcfX@>8k$YxaF?j+JsACL z&GIWwDWU*5itEr@oX-De902MVDBx^8<)(fBsE$hr{tjZ^ z>RwA_#L@y6piE)DUbRl)Wu4q+?(7b);&Ze*tzd44EwrhyhQx-%>z(8e&$U<7Z3v@= zgl@j$?56&5ZYOTIM@vZLVAVhK<3jZ88Z4LC(`e&aL0l!_>)7sw6WpaLH|%lh`#$sl z!RiyqTd~()fClCf5fB}q0_BAy?d z05SAK@9(fO_@=sXA3*~JKg|$v0%D$SnLhtd5nJ}2Pt;k`;uJsKa!%|^_H9hP@f`p8 z-DpQl`Lb%rMd!G(>e|_gew5x$XG-goF9u#XHSG4<97`S6Tsu4$g9%mu*@IxqDc$@<{`&M15Gkj3?iJ6TX7%B8T*{v7_Uv8-V& zj@Xj*Wf;eT0q!gOG=hnwy-Ro}P=L ziG2Z{0Ra~+7b*xG2d^BlG!_;iA)lS1y1TrFrlr8AsI&+OuLlvx5fKIv9VZ->hkmS_4fDp`TG0({r>*|3*j0-upmJV z0~Tml$Z$al4GS7Hh$vBkf(92YPE2uSfCOBa0*V|-vZTOG2P0;zD6yqPhY%IYgg8LM zm4yZ+d;~ekpD3f+B?jx}5+`;=wxUk{Fh!ZPbeAJV{f;bgI zoIE+j#E29#YTUR$r&q?HLj&X_A*IWUE+;lf5s~$R*ROdCd8j0hQzjQrA8N ziLO&hoaaBknovb$HO^{VX*mCIT)|;gDr$AB0BqL!JnXdGxYCE%27 z3mWk6j!Sz2+AL7^aW00t=FfWA2P7(sF@G*e|8sm2m&Eh*#?3b+wyVSt~xSK%@ z$utv)FFBZzWteHe!*AE6sV89>qEK2wEqUk?ovOViB11S8bQ?%|;-^V(yaAV;jFdj= zkC%;bLxT!Q>cwO<(Io%SfdMq(IU|9;6j=%Z-646v2*-?fRg=tcNyDmCCfD72@r~0= zT2Vlg9;SdTwclWSCadhS%+gb79~=Jpn4Jo0;2LYHS*C5EFTLi`Qi7b??6}2x;-^Qj zr50zLhJyGSq66@7=VL6s=pwkNKHKQC!VnWqbUh{@Z~{FV5ZzW@QpjGe_#vj$HQjWB zidnHJ0fckSJP8eSaCs@Qzc>Uuu)v_cC6tEj1JTAFXA`&Jr&H6eUg6~+dP zT=rF?hI}wroiP6_q{B&V)7=HdzzW30Y@J|$-W&5}OQw#rFqU@+R5fbZBM%H}m#acs z+{#9^eDvg$SDsj<5-45TymwX`;?Ax4ysc#tNlg%iT8nGB|8C? zR@3_zB}H#dY1fpV5;i!|iNhnoX8U+Hlos47cUKphkmxaIxu;%qEGi5JMoh`O- zcZvn#fSP#X9gs{__>M&X_DRNyx%&L{*RKzyO5^E zhKZ5*tatytSgnP7Z4p)4Xc4{+h7AXxI>8hYFvRl>3=Qb1PBz^4KHkNTKM0JX6sI_x z;zVnLB|^w#Lc~R%l}>aHVU0(+VnCu?kc!L_*CR?3lK{%@jkOCSWh7`2e4Wuh83djT z$45NljcSDF>mKrW1f?tdEk=srmo*4CmHFH-0sg~(nqbv}v^!ho zCXcxE+SiDIgIN4AeI*>E2~TK%E1*z?e?x&MVK_Zydhk1q%!_$&SVAaKhkQT`6%i8< z1;qbp(uC45s>zg)G!0?@F~wkOUzFNOergg^-CR8IdIfgo_T@kat3orf-C2V@n}>sItrPt2_Q`j+U-6FvRr; zknhYXC;JirCN|WGj}qlVhf35G#fYDfd6#4q(n@TNt|h>nZ zU&;=2lF>kdFiOlk4Tz&>B2G58p_Lu|F<^+pX-!ocjTJsmqb_|ZUB2@wCCO@5)Qsl9 ziYTxsjEu1Flm`2Jdd4t8@v4xGY)7GWAcDB*O`szb=`NCji#UWJ8)6Tp3Mko^frS5! zZ(J8 z%8&%@&z~8ks#VuJnupEBJ7Qz5b4Pa4Y1Z_&pi0j+hr3_K6sKR{K(2CqWgbmJ*NBFd zuHqDoNP0#tyZjBYh)V*k4Po)3_gw(h#tS-vb{2HD=_xlyj8$Cx2~HkbE$HgI5ZuY+ zKxU;eKWs}E02fZck|bGymu$k6qK$b2SnwzC_+UP+f>YsSi-xzX$w{I^z3~6T?qh{a z<}!n+ecw$9L}XJFs>#MR4bs*F#ds&i;>*k%Oot}e*fh_=?$1)2V?tsA8{IV#&-r;6 zgtK%!cPg&8@N9Bm6D%E5S=YfyVbxqbc!5U4S&7?gMG(2ucQM}aBB|s^ zpL7Z*jYh$E)DbB|PlJn53YEyBoB(U-d>PIuVl_NT;RdEqj?O6~4!wPioKyFKsowSXC!guLboa;VL+c|CBX#SOwz0Z;#1AZgP_XIqCl z1eKOmdX-9h+ti87w5rODmvbjB-A07&y1Bg5Qd3;N^-Oiecdp$^9NcOb6>mZKSL=WG zk25Of!AEv|bDoF0XwX9~oLBp~I8G+tF}aBx42^Q9XN@OxX@Lbeb$}3dAT5se_{T#9 zDv@uy+qlpWm60O1VW3mD%NQ8U1x8rt(xHem-*U|b?%_~^*z1TV>LaE#o6b4hU0meZ zjzLSM=#4h@~vejFEemv31tF_29 zM71k+e=ew zw00yTD%-X=EF?ILf*s<94X)Qr&v1N+Ls)&ce2+F*>}D|T<~WTN7&>=;AZRq%_a{7X z1uF)BgyvM@XKN!;5P}0#suzMO=N0NV0I#D|GXZ)FA|YC26IX*e)AuD)#6feRfBOe~ zdxcI~c3@^RY1XDg1p`E)f&*J;bKo|E4;D5wP<#<+L{l&YPe4Q$rhEx-VKWzaniO1d zVP~K;2|^`g=1C@!>&S7<+xh;xrXiN$dNe1uM;B28&GS4);{Z^a|Qh;(QTZbbuAc~ekQK_Mv`rTBkBG%|)& zL~Zwl`Dg(7SbO={kMGnLUD8rP=!S<^kxF@1osf{J)PoGsVh&;%)&e3paVI-*ltQ?a zA`yv;$292zRt~}$u5}Zrw4IJk3-Y}>&9_7HH!lSNjelICE134@P=HOnepfdD8NtG2!F$- zT7`m)2BB-%dnPR=2$eE1JFiKNKr%14XqoL95Yl%qb;v-z^dZ1xmasKOwHZZ3 zQg^q-o3j8P&C{T>;G4BDp@6j}?>;Y`{VFo2Xp9=e>k*PMEBis=!GGe(L$VG9k~ zOdL=+%_T6B35D5d24=vWAa?@X<0Q;SSeRr)ki1qv{ApFX^e6Fo6P^P* zU4d^ks_S3xc^RG;7;cIPkAW(;E^Q*8PQ#q*|j z_onT*p~rJ}&rnXzu!(!~49ra5(8GDzRXf8Z)UE6MO8+ zu4wR`yY(FBd7`;keFB@bx-o)~;eCd}ErcRb_nCSPtF-%oOsvUD^m(g5vmmsQQ7(%{ zRq_-8Km+fQCC6|U5kMYjXC6019&oD`o`^PR!;-!gfqXi*B-^ak>ZU+s4uN`Ig9>)S zFaR<23L|h9%;lk&3M%G$r%#d$d2vbJd7M0wsYH7YM(K#^Nsw0ixr}gHkMTMR(ytiN zOP2w*yb8Lc$~8r?epDwX5CR)s3tO>@p!|mlVt2O20DG>W1jwKa%U~7aQM_xRw{Dxf zYmtcw;0#W}r{h{MZ#DnDC#x533JV9rvMu|F+)5nXpoKCE3yC`pC@BqXQ6Fd^MD-E9 z^_QoddcWW$x5ee6aKDEF76*ntFG{NS1a5k1t zdKt7^Die244;z?fn{hSN92c{;YiqF{th_n;NaNHbDRp4y(KmWax6fp;$2turQ>xti zvbPy!@j8rkaV--Jqtk6rRWP>&e7Nkcxr1fgRtebuQi-W$js&OJq zjK#z>La;;82n%e8tV+A=QjHQ!wY^#;o%SAda~CRb02JFC*4xG?Yq7~Y!nDG10SL0A zQVt?YNLLX;cIp4V*ULPb>lcD5h)Myhz&Z;pIu1YpLS02cQYQwD;^gc z!ZcMjkR<=NSh2Xz>>Ml2rmc{(vG5iVGfyOTn`nx-u+Ydkdrsp6A35R!y?i}3jKeId zvn_oVIomPqyo~P*$^mVpLSl<`C@(Rwkw#}N_-qjtp=`YI&s+J_M@oai_ILqQl?nTP zR-=6cz|iO!GYNWIS5geDpaK}3(HY$YuW~oq+|eH$(z3E7$e=uc)x6Z?D|5@ov4^r} z@zOc_4L2j04K2{}_)QaQ$utYo=L9xaq5?jUBSF1fINZC=)XdJ@9E@xZ;wZ079jahm zq@Q{(nnQ@C%c}RREgFH)#N>?t-P%_?h+ye74e4)aZ5!IxVF~os0ta3U$5F z8odA4B2B#GQ7b6jXp`*6p5mvK>qsoSoRi$!$O^WXkmSEMkdY&kj6>96@6e0 z+>i=l2TsggLnDC3jXb%<>cTv=)VfWt@XXt(*-%L;Or;yOtAW+qvJyc9E~rW1_*xu< z$V(rxr5HgcQiGLP+6QcXpycAKMMxH%W&v~q)OC$Lbp70HTD*QG9?4MMp17&mJ-5qj zy^4#&`8~0?HPPq&+9Y9H!_&)Z%*dIY4Yx2ibYtH^9n^|@rzxGb=Fk_a9pFtZ;Z*lB-@SXb<_;N~nH5$B0fgEZ^}eGGV`0WLpzR2->}5Z*<=pX9Ar7(N zrr{*iGQ}jvJ1flr&W!{sJdW~aO5ZVy`0z-`NH{zW%J;&+6Pkt%w1_qD@5tNaS2aJlD2abyupaG(z0WB9a7K*7B z7Br)Mu(7hSezmr@xVgH!ytcEy0U;r*#22IieaOGC$jAh-0j)GDs*2Mzj5r(|2OX1_ z95mrH10k@_%fGwnegY1D4g$UN^!4`l`1$(#{Qds_00RmfNRS>oU9kozRH$J=!vzo@ zrdZH`qJjn~6exhWaDcLOv?2{o6^Iil%8dUB6Qa$CR}`{b$+J(& zpSXH93vj^{sG}DUB-O+e0Vk(U58=SEid9ntBe)HcWT{dFNP`j~NHuoRAP$O*y@J(3 zR9j-L;;!Whl$TIZA&xam#`hz$zR;r4(1uN^g$t=rArQB%vDQP<$c1Qut|zQ@%i6t* zSGTk0&!9t#9v$#tE?6BEI;^ST;er$m8eEh;F@-`2v;3+f&AYen-}QQ;VE8(AY?%%x zHeBvdLr2_}O#=tGQdBaxh+7=Cdi5zGsEkm-<<1ln*RGKy2~q`@ksxXaNXc?5YWw)P zD@otYs~7Ozp@14B-(UbMJdn}QFA2Tw$O{S(1?#v*9}0! zDX28b6b>rjFc>!2s6gc+76?PifuOWP%>^oO@<@7>0HIzY;}NsT0ccr(Utq_W(t;~* zW;R-MuRuuTb;G2B)>z}wARa4CT9rs5{LK=fgr`xs*@Z?%D(R$@qGZ}Esi|h-Yn-N- zBB!_c1WiwsmTIbReC>84jtv?2DW|KIm{U%f?s?g%jizJWDB5W!sFQ^uAQn?rrKwj4 zNLc{i1sseJ6(N>HI|!h}L_?M!f4Ygxs@LgNUt9lmsu~)e0rs(|W%UWl0abwxR_%5N zD$*bgc`b9Uow*iSA!oSu>+ipn9wdv4smXDL93`#>k*BUg#Dj~~eF*Tx6#HYNEG_W> zD{RKW8f$AV)w(Ce%lI|aF@2^LM@%-ImH1h z=I9zgW%Plo8@}TbsoT9EiGmmcQD#ewyILND*kIa>192>iE*(<7FzyR!#b~Fkc3tdX z+DB>!zx3m34A-R4xh6}z_TGG#E2_OYcKT^;3YX|yN4EMjadju7d_l_NJ?QN*HA{`u zG|dVP#8wCJ3`7T#uq)_*WGRwu(ZE>O7k&S#GukwsA3X!L(M)z-6`?p}eT+1YEkMrG zx#`Vq*^lyV{PD=oBRs|gNFc$(#5I(H20c>W6%%M$GlMo7Z6E$Lm(qFaot zgg6YC_h8YID?G$g$Z;W%2JkTFIq!j{f}nrsCpHLfX-@g0+BO`~zyDcr8wZd^0sFKF zYG6ZK54_<|!uX<56ss(YK}Ee%R|@|o(LfGEQk)or;wTH{@Q!$#)CmcIg66e^Ap=m@ z^sdLS+7OWkW3yEr7a61X{qcw9i_P_5RU-Da4+Zs0A{jR+pivYhiu>z?&c5;$0ivlK zL*b4WiPl6;!f%YO!#eVdk-!Wls+guI9Cd^TEks|BFk+mT z*oFrZcm^FCD9mc|Mt;uAQTaZ_BIT%0ND@E+bl#`Q2P&hLPK(nilp@773F3bT@ZaXL zs6b{Qi!4{NWh`B1seKwP7>Jn~0>%MGV06oqiR5MX^i@1-I`p9_xs;-!`9~5V>?W@v zWN|<>0NIhvG7t@EXB2rOagzV2H8SBQMqEfD_T2`Pi7Tf+<)@dTbP+x}^WQtyQ_qtP zV=-_M#!Q*k&!JW>8dDR8l-6j${wS^%B>m`RL@3g#TGe9snng4-mCT#S5F^eU5f2D} z4$MU7s%RYvNipUUl(wp4Fc3z)l2iWW57p9bwz9y;fFM+%&dr z+qP|6jcvQJZQHhOH+IvcZQOS4JkPto{b_!~%r!ITb>7Dj8v8Zano5V2E*MK*g_K6x z$n~12J{LFJpDRkEXwJ^} zM5IQ6ZQ*%?*&riTa0P3x>n2Y7$P_m8KoSwdtaUWE9s2hd|wi& zE#hpVT2U?uk+s^2%ap8OS3dVBGH81tysOO9YPg4oelDe^*0%>>slf3WcXv=dlQO%YE*4#!a8Hn+ zmaStQ1In~XsRkgIidti85HgpQA}*O-Z<&FJ`rn+h-7cAe-}~n)*a32AH2wrYoq|Yt z9Azi9t}#hleK5#Xt>9-VF5Z<2ey{P0u2iON*FpAPS+s>fM_VPlaJ-c8KCJC_aa`|Ictz_> z5&2)tsrj+C(+af7e=0iBOXRVne|gb!{0v8@SQP8L0mpTR!5oPQ9>kLB+868)qjtjh z>}uIh`gb<8w=Y@u%&VfPl67q(tD*Dl_pE4s4bm)GgcBt}l1N5%#${F&RhhT5k)w#B zjRAUbG+qNFinNetbT=lglso-<|F4EGQ+?3-kKDQQdKbU3`bvLxY#KV$V!$}HGvbkb z`HSyTR;u{jDghZ7iN-9&LoZ;5im%X4(JhJJ7^wU0bS7s1XFI=)wG&X*s13t=^!a;$lIEWc-M}vk z??S|Sp5HI_4=hJnr5pYU{#6fJ{BwukK$<&oX&^tVUv;*>?6X$878*H3=|f@1$K4&w zEv(VIY4wVgib|JzN7Z)wt|QhihiN&@@c1~!-^(rHgkqz+`Ro)ZqGi#pNhuY8R~mFVYDa<^G9XRyS{Z~WBJNayZoG;( zqAs=*rE%&KjC~)_gBDml8BFi}S#!gb1Se!T%D2Nr;@|q0FVq3WWG?(V&ZXyu3mdMCa6CnM*mBSF-_j10V}Qeb6-YKa$* zicK_3CT=*DPl!Y)0f(pPPXdH=amLF~pa+Kb6cW03)G>CnC#=7*OiWZ)tZk%i`FS)= zIV6U$L|*1|=*J|3kiWQP9vLLai_L53660q1OJ6?KEHrpnG6m+|$i+`T9{Y&;{$ z9$PB2LXo;8$VD?;bv&6#ngaLNmku1~K98uytN{2+#sckll*dF#$!MxqZ=}<}Ju2=` z-9bN7Q<^Qi{gW_a_9AoQ z;Y}MRa!?~v2Vye)js@CqWigXkT(|TthH|G~^G-3P{!x<=ry8@Vl2yjUZmea^Zs%&+ zeqm|J+RM%>hUXb;W?`_*hS^qyT!;p}7LelPBgy7Ps`GphN7|4vlDSB<|BC$&kI=S9M>?&?6eB)I*gn(3jS0TQstDaw3i&L7Aa2^3*to_ z=&F8{z}?R9IEqWFCQDW2GH|j{rYy)vN`>Y!?^&ehL*uJyRuE$0Zn3m2L=m8hG?@=rWwrN!{C3 zGS^iISII_N1mxRdwWu;{o2uKgVX~7IG1nDw2$fki)%P^Q=rdwGv5?ZFEOV2U8WM9W88&&uBcgYc4c(@r@l?eyOm8n1~tvClcetEd=y{ps|x9x zncT8s`?@m+ISVP}O zbgbNYL#FiBLwnPg^eWPT?|E}Zn>E|J`Q~G6-``AGd>&eewuEBYOP;3|M+Rc8rq4L0 zM@g;iXzA^1Iz$dY`Al>v5Wtc6?pq?y*Gi|Is&dna?h9$3J7=A&?VL<*n~D1Rz;CN$ z&TL}d`Ngsg2}v7OR9iF}e<(!H0We6l^_z=nMk< zg!yU@W!)iP?Pl%wd|z4~x|RO2+19AmY-WUJRDpE&8Y|Jh-j;{4Xj%%wKb<53%|!TV z36iZHp|Zzg;{2#e+`DN1s3({h04xG}fA~lL>8JeU3*_GGTQBo$-WK}TF2+E>L-29r zwXRcNKVLGwS|)D{n^t&EQY!<0%ztk(3%_AzwoUKPpf3FM;`@{zR0iGN;50SRR6*NP z!RsG40mJg(J5O&r;^YXlL4d`8Xq6FPOK;4dnE(O^>JoI{9o^I@VjlVBj6VZZBhvVD zOxN7agc0@t8L0`)-XN`mS`f!X-}*GDXzrh-ZGc5oslZ4%QaA6MtjFXyd*4VroYh40 zEW*(2iNV6TKdRYzuY;xqyC1Dq=(+e7ewovbGP! za&Cl?G?(9$Y29HaRbXg)PL_JF({N6jER?LtV4+U{c&@O3%i!DjFnqh`Q=A)v=)9~? z52c*6jI%!rBP%Y~J8{7`_pUJF^N3_v*9Kx7&pw{3-9saFUg|PM?(AK1@tH@E8Op_2 zp1d_4>+El0_&^mblNBwaqpbgOX#0fZs6_x-snwk(G_~`coi%e@&@|kz3|MdWkK>h^ zNA7nUGeC)3AN*H0BK%3|?-R?yA8DR>wAiX>e|HWR#WhFx&3B6Aow^DCvgsp^`aIWV zT*nPd$MuwYRDy(sl&*Dy`Z4AfF{G;*bH)u?L7*n#j=CVwL}lG(zO@4{yu`z(VSc>q zwm3xr%@lgKi7_#nQ7QLNGOo-La?&8wQjFTIfXBY&Z~CpNggxod?b?s&brL8tKSOi8 zePXav60pA&uu&zr;oGN{?K8%jyS*4YN-~?&o40Z)xPG0#e@nQnqPUokr9@lTCO=Da zsXI5vI5=&%WyGUCnYTqKuqRd}lO(1coMR(^YU}%kk~n(Rna^^wHxjbD z_^_Tyzn~tl^F3g{OmQ8dXn8MTy~#BP5wYvoF}{$CC7*DETxgwK=plJN@-<$z47s51;^(PTg^oL0ia_+CbBDxzWt8om{*~Cg;``oXa*V(%nH83Xl`6&y z;=uhciTl@oXKZ~A7XgGn_?>|YTgHjs4E}96_EBd+XK?Hd#t2S8F^0EX5`dL_YhmmI z{?5^Hm=$B{B^O+;>$^x8jfZSO^lAUhBaR;3fm(nF(G}1X_ zbsfbxY_KY=+Z~+GG3{U+o;wEaI5eE3JGOBRJIW7u#Tw1G?O%sgU85F!r(xMF-cuc) zznYY&2w9u%iMT@q+S5bNFs(=*8vT%-zy2z8gqUzO`XDV-J!}5`sN@sO(!oKe(0w@5 zv9{p~H>z~L?(B%rZL0i=kNmzW;YIJjZO7g1;=fx^(9KQ$@H=*R6W3bE*7sMT(k2zIp$o5uL8Z`hSW9T`1xnc!uo#GOPy(FOUYFY%<<2 z1>Tb!{4Q49Mo3!0Q3w@hgIuA0E<_qjvTm5=Fxr_OIA0hzCo+CoNIb#&3;mnHw@9g< zx>4&uC_z+sCT8JB%siS0;TZz!uQt76M3o6w^HRRAcbAs7$OD%igD>+sM;J!Gxp4Y_ z_o7${-Pi~n6a6~}e|`)-xP>dcWhHvU-oK9>d<5wT%j>N8GvJ@r-C8l;6MQ=-{Iav8 zbUz<>&%UryoA9CO{P}gzJKlKy5B;}d0!2SzAC5uVH|>d`7sZHgUrN(;loGFFiT^y^ zoeh3#fI1(j3W*VRzr_<>&;D_)^!Yvi^CRh(#}dYq^?`PuUcoTOx2V`Rf2Wm`+qai* zuLaESc%R|WKU`#?5g5vlQ1qBMgv7*8h$)DmbWlJ*W@grhc&zXPiV#>jYr(*k&*ly7hS9-zy7&gC9Pz!@WAQ5uq5Dg)d zBx6!r;;A~3lEfD`>Z2JcnNIn5>6URR;xa4MI*sT2Zz#g`-gIl_VxdS_q#7s3dZop; z2F7R#mlASRWi~n*UQ%;XQDRB87oL{d%^J<(lDw)k14^%Z44B#HpOnL$&VNx8w3tmdf2Cj=_sn8f5H5oH zoqRx7^?0+@YX5DazxS!6DmFGYGaip?qO(#7Y_EE)U9ZFI`kg1md%Q+fT`K-}J?~C< z$$VI5aA~)d36m$`mU3v_16a@cS!4=Pul1EJi}E7vM8WJ>L2O=JUbFNQa9<*HKIU&s zt0`aRr->!Dtncf%#vAKo#66s)80z-6ojvn$oIA#^O(lIRqJ0QYrhWwC0A zOq!u3MX1gzX(gKZ+`}OvRSU`Ge%AkVY*XM5Xpck8OvMxSJ@;f)k1mMPdwn>+rN!v@ z6lzRScJ7(7{(DUP3U#n`Qer
g?Kb$L=;GQ6tGKYwqs6?vi)rWpN)_jHSkGBWyO z&p{EHSdj_ep(}==hG42^zfb;|x$qG+-uCO$^-W_cjC`p{tl;Sy878T&s$T$_b~N0g zQnjkH^2lU*K+iJog(FEtjRJ9bxY$0mZHE0__hp5?Rq0V8l%Z&PmbHVrvZAK7l*v9U z*1$tTn{|NEs}F@Hbv1Ssc_CVj0wP-v_;z$L0+w|wlgz?a2od~57P%lI4#DN2u5dPr z-Ynv#vrx$Pou4ES3)`})hY}|mogjg>4~|u;`?bK^;!z!O<{w?4{)#K$tRd4%4L4{g zsLPlJNm;Yj90%qYNFXFJOm`j*AXfL7L@_>XSwzV;sNUr;it?sbLBl(ZU+oeFs(DhX z4f-TN0nJVySeV=!KsBrJqcMjNKS-zT#anyn>e%$B2fdsJ21Vt}#P`cQa+a zZ&5FTKwElk8iaW7JYK_W{G*4m$l|r*FemJoi6c5=9Sv}9{@Sw@H-4GiEI0%5&K8?A z^5p0pyR~zd*@fhvr}d3U-YLOPY1K@4 z4##ODOP&o7a#5;4qmxTEadQVuFZw*YaXbl|Hwy>_;oG63FO$hElP zsXGbL)W!pnHi( zY4j^ZV~)(3wTcA`k_~9gje->76OLrtMJTG($P>)CXm*G`*Y`q2%h&~oEOf=!EK42)&@}L|Yj9~WLRj>2d_l!>H(~Y?`!iZCSqCHEDj-l?++O=M157fgk`Fu4| ztHyp7$8)icwPutQ8gHD{?%?yreC|e-C zRxh&u)+QyQ>6R%kZ`rf~OS4*fDurA10lY+p$rhwnJ2}H`TY253mB+xITGb{7#Xkm} zW@^1brwe7ZDFZWCg)Z1KYpC}a%9D!g768CIhLuh$kIT=Lf0aIUC`b|r{nNGLzmG0Q-92@I|<~d4i-N<)m z7AMMkYZR@0B3d>N9#^^3UZD6U#DVNGXbfkm&G{kzSo9bP{!6)RvN(LIE7`v9f{jcD zZR9WXZH3CoRdGj!8JM1p`B3jxkJB}(byb}i%eC>!<*Fck`BYGH7cL;;_tnq3H02m1 z4aBXljQOrj7EbhayzS9=U%Mn|Dz|%Q$ZH{TH4l4TWRHvPk1ZXY`Aor6Y)X6k=Z|;e z)c!t?^iRMr&7?|>(`xOJJ+vqB_VW{?6RcKAK_p72ed{D98vZaUT1>~{n83pM&);Rd z9rd*n5q^?*WbL+Ex!4qtAZ~a1*U}|pqUa)bJb!UzB9fpA$Z~J8N#_2I!(k(`tlxRP z4#VtikQ0j-WIuAo(>Ue^>N#nT?GpEde&fK)9_CqB6TT?3^}9~*pCp=$pON|{S(3+0 zU%gEMzi-r;rn=azmb`27xwrctDbQxCqLbUPL3bk8{ zW6DqChknO-Xf_LmiSR*?(FvD)R*!cGJqjcCzlQ*r@p;%EzfkC(@LgHvMmafL2#$3% z`r7>zSQqvaC-J{q5kBeC>rZCrTiwrjN8T1c7;LeV|Aa)?(>oT#0cj)llbIZhQ(9e>6<(z{&ImqC~aM$75dr3HVso!0cbqXq1BM-mOt)= z-eryA9So*+>mT*we(~en3Zu}1_zBtICPwNEo}*-p>r*ZRK1Ij}xhY6gaL7jr2OT?D zQg}UBt1AQ4i$@fqsi-cVBTT%7x`UBofWGHxlrv^d3!c>S?3_lA3=1n#BAQC>I$AZA zz8({l;?l;~he5bDe$Y7KqHsP4-Zl-Y(czbVTvgFSnbxQ;(KKneSXrc1R$p>Xc(J{_ zsJcXpJ1Kuw_>x!Y4^{y4%ysie{VB!2^l8NwADjBYh6_&Fuag9aPJM}s4(`l~i;s@` ztP?lz5=V;}Q!mClMXe&S$@SyWrIcEhq?73ONymgmVksp6r6KhSF4w-v0IR`V@2a-C9LNz<4v{P8djp8Us_tac$zqT z8Unn(s83R4CHxQof@Bbdi&&Y(ge{-0;?r|ZD@>)DS(;MS`c;%W=g=8U4e!!&DPun2 zk~W5hA??S|?KVlB%2w@9xXMa(nu0-{(<&Wu#1gW|nV0n%$E%w+m7O;yf;7njU`#S^ zfKox{Rl#~qqvUZ=jmej*a@Rh#TCho&C>K8L_LSLBQEBsFj)XsH@pjlQxa&sT2oL2x z3s;vZ2s8_@k0kzziMg+9nscs_yMZDQVD8cR2 zDWLwGF8YDEt_Y&s5>n{f&fb6Xzc-avnxkIX{w#!pkazL)`&cyZTt2wL8iEa?rG<<~ZXPZ|7XN zig5LXG??fhTG&*gO>ocrsz2sXQZd84Xm`Q$Vj-fjBiG1Rx{77*sk#+Gf{R6hHZjwX zg#Fh*=a(yt3}Z-qkSvJ&}bHaEyjI`nx6F87LoO*PHv8^CdfYns5-)WeBHMJ9D4GQdlbo(#V{Z7}k2($(lVnsNG;ZZOpzIc3IaPT5essSmZ&NM!uZ3AU^79T^tz8XHRt+Q**{ZqAzY^FWN7F_J ziN}WOg1fdGi*6a!=|uI4U zq!H=uE2^zB)vJv_%4(te;Qn@Vwv|NsLZGZ7M{> zD-Gb2bV14vC~_}pe0A4w&(H0RbIDLAhsAYI9YN!`a|rx&SoReUXwg&fzwD#=SDI4z z(sE{d|JZlufLyCn$#56qv}7VzD&3i6olz}%oZHy(t33fIP;DlIyilzv($Nu>b^d*I0e>a~38sPt zrT}>b{f8YC@l(@7lQ|-h|GbNE>W0(hb<*~f5xs^3vZe!Vnj2w}6u~DD3?kRyyrel; z?(y4r!*ytCn&^5-bR(bRL`UthzpWK}>EW6gQCSo`bY@t9c%(lTX7ktDftGr($#N(w zvjZu!?M>Rjm@?@3qc!Edl^RpG?<9QuNOL*Ej+CY#uaA#-y`!Rx`eew0@N>wAEU%h*G$_R z3!eLqah*bDky`f|@<%?IYET->+FFk`UgX-bs1Xx5a?$VK)wT|p?2suUm3|-K z^QRR~s2yaOL&90kAJPMgDC>Pf=p&mfA=yqOw1+z)L$K-sO4{+RsXgO_8v0rFyJIT1 zQa>WtoyavX7aIq8Zo&z1-NNg9lj=h|&nF;Vu=Aq)@zg)y5lUO?MVB&x6oT^O{U{*f z0BU7P9nsup4?bgmq|Rijt!X>ad=w#I8Tzl?XN?noQ#1cQ$kgioGMCW_e*ei-@X4eK zd#S`}@o&D_fSrl`wfXG5l(`u!9KT`5q0omaz5pccJ2AZm`o#d+rM)^A{9RbZT{EE* zr$2TqdFR%56A0he6Xvx^DA#H3W>5ZNvG0C%dO%xbL_!kSV1l>UaY&b35!dCd=xgp9 zmh`fY_+%{#h}{f^C%QUI;fnCm7gKQfhr93u68yA9g zeJQG?ir0((d!NA$oyT7?f`fM{v#YU~D92!`E2ytj_A7p);<|G-RyhZn=5kt|SwT37 zvXmIe)7mD&ZZyk#+WzC(Ck1!EG?o)Ulb_1IyAaq@eI}*(N>8VJvwN`BvMgfHO2002 zs;u~ZnB|oH%h~k&FvWY&^qt+p-+i0F^AV!kjRIBi!W)Xl-#u}opUG~T8rEy?9yAsa zRz7}J9Gn-31U4LEUINC$0wcFCsYk;v5Ajg{I4rzlu{!hJI|)-c{&b}AR@uk)T6AN) zv0({Z?JGWCq!=Zj6~js4IT;E*VO>BlFnknXf9wQ6j%)6Ck_z=w27ep(ucEBPx*bKkc_WmX4?>C_NinFKLwEJ}x z#adV7OsGJ__wrIEHg76qhLu*ju?d>5cbpU6^#wnvzhXbSzaY#%&;|W`{|rY19e@@9 z9U2}P8W$Cj81pqb9F!1_7R5;O5ysMFC!&FhOUghMp#SEtl~K@Wq!Bc+VQm4OU11SD zZLLu;ZE?e69bo}e(NjIMbF(wklgsnbZ7Y!Zt?ixJ!2SP-#}0N+&(6<|125*UZti~E z-+-12Xnut?y`q&?g76@CSPU}FMIl2lpD-vihMJ1SqsR)PRainw#^K3Wl(wc^PS6uf zxUAN)P)NnV==fw9-Uzzfu2*I=dHgs)lWxN1%r(0Rdg*K~U&M|>tZ|Jd6qkLD0h|uIN!4fa_i=BX-N^-4c)yCb zrrVv7#4{2}Y>!g$7Bf$&4n>Fc+eo)1yD6TiqMSah+L_@wTn6Rwwq| z?J)TEg-z=?<~i*sh#%5za#6a#CbVGcX^WI;fpke(Tp%fm?qX`1C46~?K>?Q{S!8&3 zJjbMgIF*^%L^Ku0X3^z&uJZ(KB`>K;MIN=sf{n8E-#;e@qT8g8BofHwlPZ$R!O2D? zS0Tj!Us8zR!*Utsrw=6qh+#?1-_7&-siwiYD_qq!X4P;W{5&hh%k1cBG>!z76pd+>0O7|o@4q|l}67z%#$!APdq zR;>=60c#VjYve~@`*wWuD>|@@4M0x?XYzYlhPwXuiURld->WLpjE`#?+K!LwI@a}% z8wNLC-yc83WB*BPGaa9{KRUKgI}V-SpLU%m8K3vm7JEbBkxvu64*Z|LKYt5`WqSD! z#`fhXn!4fTIG+3N)ShBhh`?MZ2M!FxBhs^`a<>>Fu&CGqCH-o!SxVqN4Ne z?WSpx>HW6(U366b!Qw;=e+7GB`9p zCy0akwc+gT68To5m_HI*kRfxWKxN~l^SUEoV7%LZ-SJyYU-|v3R$}k3oB9aFFAJ)o$s{2hv!(njf zbOuvR#iLOu!Cd$MuI?-Lv|X)MsS8^q{bUmw z%GI1LQ0(pazT4$?b1?761!51FbxPdt?Rq$wN~Jem=<9Y%t_$lNlm65Fe-=T{2}nsY z#Q*yHUVmM#)*3Ggxw>zz&UO?k|Ib*-4EiC@utQBZ18xqq$ub9Rjuw0jiVJK2G zq=AD8&)>rTr@8MbqaXTj`r;^>BE#l5hQ%~bBS5CCNnMR4sAA^_TM8HrKIXL44m-S+Ygnp7%dLO z)*ZW*B5E6Qh7!6dtuHI$Ec+De?HfZ*gru0&FYa>J`T>YM4$%&Qr;WO3L+<*TM1=8J zKty%S`?1&4*=2|dsP7aV$m(+ILQF7=;i`y+V&Xc@9iSkBh}Nc(Iz!Ui<~m3I1LHyC z6Jk263g@VSo4oMNX{#b=PT=<>3A)P9X^K^M_D&3ChX*O4Pbk3?Kxj<&ZknQ{s7+(x zzmC$H#-G$T1o+F_^x(1M@kUi)1=^*Mwe9iuus0nuw$3L$IoCqxuA%P)7!ZnVL}4es z9LLfxyc{J-3wfU;sVBZ{%Stx*94G(!tFge3>hy9_rmysN9&R7;c2zD;BnH>u$JF@k zX(504l-;nw@2HO%ng6)ydBG2k5q$rq*z;rHU2O(&v3s}jNRd;y+WesJ=Y$*4pSv;a zz&=G_k%>Qqcpu%P|74mU^5^JzkCF9zd)x)nZ=dHhmkDkCBFMi#&tF0w-ox_1Vk|>Y zFhfw-JSKp@ox)oW${|Q=-@s2%!Ej0_A!uzPU`p>{h|hg6LfJ5cgu2%^x!&%1))*QW zPUJ6qQZUPJ6DVSvVdx!}Fq}D35O?$t;si@13c(S=U#~8-pNN4sEre1-l>=ZLQ&@hM zP+U)x$p0>akiu|B0ALywRwU!OV{EUbafY1acomjXyzZMgvPa*_aSY6A>7A_v}M4 zs=SHmF;Zrb-kizL=CPPLixhU;OLsJY(lJ_koBJ7)rtYkP?`rOD-x1=-tpY_>%S#z~TeV~&H#T7iz1^~v@d92Zaq>F0S z)@atca@LxBr_-LiUT^VytTUar!|trnYHoR~HLz4}y$h1n`W$GYBCt~_k{IsO!!lk%9?=eQ!93^ z3$TV|AEAbT&;$S=xicd&3X4AUmKL~6G8n->co((rslB7V-Z9Eg|G1{8tEZpwQ;MI# zIh9v8UDJ?Dru^QKQf3FwRD*ME?j9)qu=g;55h}xvXE8CH8U>No_|dxqI%m$36W(}3 zCx^eZ(N=?pqp^tp%?m~gTbEu>LFKvE8^OBmH^Y<+_l5R6 zFEX{zudQ>1J+#bn?i!N(7$3})W88P0Y-9QDlrNhWZT(qZY(l%|cDHl*=(?uhZM`_k zP1bS4VCynMWBClO=>tMe`(d}AsrI4A7{+YQ-jx5VhT5CK|qWFWla`af6OL%)3bZVW5qCQr~eyEUrnWt77qZk$jy3fcPl?F}*h z8pWvm>l;M%?B$FrWv`mfyboLDh1pk`+qVoJMn)8`Z zKooHcxY^xY*og4M`YxbML>vh)5MnAuHqrSh6v$z?zVNTrk@k;XLR8%WthSGyh&o0P z0X;_{tha+_W9Ndp)RBCl`)X!vM@PE_kRxjZ>$nHZ)VBepvXQfi{mBFI5b$Ys@S52Y zC6bopTL+nE%!%LRQ|YB2VB#X?yX0*1&yaXn#ut0oxukVQiI$g07y)rHYlXQ-LaM1s z|G5i)OpE~WVWEI@PWe?>#9)};uv+t(hM+WDol=GHQJ(>9H3(^7$%QACg>Q|f8KyLd zLj-7Y7NBpkQ0kmE&2_V zUjpk++TBY5n%saeDj-psaB&)W`6e(#+>0X8d=1Ni6x%y(%t0R0&ly%||HK;08EW8E z{*Q#*00t1N$nk3h`q_osk(3bDeV8gw#KmuA>8x1g~Iws4u?LVMBhOwPIby~2jH z8AdV{@H-Vqi~RH9RAVpY3s02?-L1rj9p%v3NS%R%B%mG{r2-kHs24DsbHqPsJ!4N^ z7WOD9(U{xPAoDDKMirqDNsvKPWd2kXP7?&Iz62G58MHNJ!Os&nViTAD0_>KN>w{B} zMpeeC_!dF|@Y@l)62jjFu$3`p4vw)W} z18+J)twsGLnggq=Vo#GpIJ{XJrpSJS?4GQGOV2rZ0O8FPAcLh3cRD9p6L|8*A*PH1>4Fw+#xWkdxKa8SE=P`@?LQRXJ2sB5qu)mV=b%2Do|#YuvDD%+7sz&c_ev`2jMX|yrq@<9q78Q$0uwm%bns;M zbAVg3%*(ox3teKjW$4RLi5a+4{;8$>`sMPpVOJjsMZF{oW`Q9df+>;_;EV#OCV>l~ zfjEaSvRy)g@X`OGcwm~c`?{c2o4jBx>`@QXAsRrOB`{_gV&zj7-elkbRyyzjBbi-P zTQ)}b)$ZGtyww$mHUc1e2u7il(|3ky(Q*TK2i;ia`b6aROy>^Z#u}e+j>zVLP4cE_ z`Jy}WdRtw9_jznXUvX4Gw{7WB=s=^P+`cJr!fTO4rHx5NNbrMCT68)>cMj4vEE76F zeMuHTnSXmKA~Gb01Au@LRB}>cQd%=}2wy`7R&rjN0GT`lzHVXP#b~oJ;sjxoNl}1Y zx`js0R?ad20TdW98W7BV^j~Qgb|622Nva$!5Pr=g)C1r$BrkesL|vM3<%6P>tcK+b zP#*$+xppq~01_-IgPWjHQS{J~SZGw@vCqJ;Cfa;_C5Wt6N(klCJmpo`fOGG1-JbH3 z?acj+G;C+6T-tDb=PCp1a?(+tN-z*T0tgda6&@KJ@(2LnURRb0uYi^ z5CedShpcFaoJw1=Xz;3{_Z8KYj6!@ES-A9KJFrbX0IHe-Wb#}&xdQny?IYM2#s@xC zyi$>1Kr$XgXB;QI=*=!GM}b2Wq_gw!IDw0JL`x}wuoP*rmmqADMA{GZ_fduEXoid_ zComZFnFi!V7e_@7YXq-hWC9?^(&K3YWB5Wv+tu+!*3YhK@8!hH-`5}6v7OM#o!QwW zQ0x8k;^Jw_7VT=jfyOW1a>-}zFv}krQH8Bi>ZS`| za|WDur7|{G*8K+BWZJLE8$0=My+!hlnG57il7s7%e&?-jv_1ZRO3YUT9R;~g%R$J$S z!{{6|OM(->Y)DtRLSr4*VrB2-b6Huzb#2h(hmJW|P8LS}?7#HVg z`6b|c4*y0tkiW=}ySFp*eE^5rWklV@g3G)T%R&3TggHGw`n@~^6Kd;KmhG^sJC_sd zeheoV^uRyzZwHMkKAP5`gJrmvsZNzOudgqxkw!A3&b<(VZXIc5pRy~vhgfo)jOF>%lrBklFsjmr?T-K^Q*hQQ)oN~^m;`u_cVuU0mr{XQRMq!_NF z+(Hw#gikltNgrSUREJwXt~>>cllQo;CxN;g!LoA;cL(ReQ6s%tmO6%^`kvCvs!q^7 z0K-m`pa`+_Nsu+u4*$X<@Fg`VEQ?T@myx?*?ZXw3>>$I1ZuTZCe+V(!gh9u3fH6RU zLA&wwk1L5(a0S-p0w_VMEbgT20G=UD1d$ln?n!i)28y#ZPp{cn_DU7+XaMdwo2nOq z8*njBPD=*;z&14=A1pjPy}ws^xHot#zF_6NAWc6?htO7o)nq%PLL3Z3ZlO&`2;fKx zz}lYv72a#8CxF%DFRl}=dKkHi#f#_WN**`Ag3v}|$!6-Oq)$>!DanJ)veL@~#N-5*W2=kj7gls-m;( ze6=H3ur3vCEbrhPonTtsN|~!PDw>dv7(>ojeBG--b7}CeUU$N(DvJP_n#6C?%iYfb zVLr~vhk!1^fvSLj8v=l8QP1w{c%Hy^zsC08-rk0BC4<-*Vn>ZOEWmf#PWh$i>JyKs zQ6NUegrvF)2zGUou`vh}T$mvLWD7&+$<|$01AU<&Xvp%QsmAIC5WAFraIpA`4XD
1$yMoj7{py_Oz2lF_8Nzxw}l^2{BVEYyWsh-83SIN|nu}e7>Lr=9|uFdD~ zp0l~{4?AsDhNqOH7BNHX;{wR{A)I(tKOW@ko6)%Oz!equm#K`t$*Ze);m}4(zLg(e zl#CDpV+?uxX1dr&VsU+P0+vp`{W+1sv{}Mpci3CZYf~9aI~AHdOgNcL+_oGrIFf7K zcw+}^wnrV@HZ;ugY|$k-X$d+oI2sgvd~U?LbWHPA*CjEA6MJnXH}v2poR17v7Ei_{4w~K>?DZ2-$LpqH`IOxIvN#_ih;(al%ux38aZb)(w~a#dgru4KA3@?BTAkcasb>ve0b1Cjh2n1!GY^f zTZo-FDTZ?LMbNIunGNa}85>gQffT!xq%YOUpk$_%CknV2V!otZ(^B44fQ^dwl=%D=`4zgcK&=$Oj86{h-ph@f5Xb_xc%xjvWLEpQ z=42$G&#UH(x63pK=5S857X%x8(Nw?Bu8CyZ%14=3;-09zXZ>XHT7!NMp3!D`Ld99< zA$ig%KmLllAe^v6YJ3AEt({@a6Zi^I4ch~HfG?pM>n#bNBf>!6yfq7W3mQl7{fHmr z68jA3h1Yvd*hLGQ$MVm(&>0b4f|%KW&H&_Z@-MGJFfvZqWG?~s7`2}x*ex}!?z4yA z&)OOnIFc{Q*5XgKt_2Uqe|%qkkw7mYmMbH^b2 zw8q*Khy(s!0^5>;s_KG@{{*%*IeE~{g+=Y{MZki# zs-Dii0#Z`!Py;r3dGIWb0faOU2&bBomS%*ST~pju(|B;Om-DRz6mSY^%>nXQ;Y`iU z&dPI&Y@>Dc9xc7L{RM^^QmN84jp-6&U?Hz1nMUJAQW}-$h&0pg*SO%YCz_i`q=A5e zV-agIEvH?2hR2xBQ4^UBvAJ)1Gf_2|1ByT;f>`Pk5deJu+M{i<9ag=1rE|6bZi8(h z*vf)MBilwc4K(fvjJVP$qcu2t(@A(x^ll#OQX~6>076@ zVa$DdLlRkXE{{hPejmT~;Gn3iXAALZw@($3>0ynS?xEH?qDYUlbRHh&Ze7ypWdTX` zYpoWyK##utYymPU1nQu zVQ4#t=`y}grRV|(++7arBd5yYkyYW`^*Ig8+GP=;m(ssQmph-L%8*$~m&k4%g@VMJ z6w!tyI;Kudh&lcjW$*RWkM`O94}53tS!;c+>(7a^tvnPUAa5RnUrs@G z)H){>65{CSz-H(aU;r8H2(*Zej3WZ$pWG7v^*U-0C^!5e^~r!ruqOM9X9}_D=glo2 zi%R=yAL`%>BfgUO##yH3e0=xUbf@%#KJjKVj{U-Cc-S^;dL@Q^A!q>VmVYQZagEl`{Cd7R2Oh{!(-Un{ zDDiW4r};>n!?@+?yDfc~m%0PS2^tK9fZ{nM?8HNsRS+_?HwjT)J#3<22DTVdnN=3q zV-$$ycs-sdQMfmv&v(0qf8_l@5}D22tm|{3QUrT;>RpF=$?kv>GGj%lSNHzSS3F$V zxi|L4zsOmVfK8o*=_2`jw>ueZ?zd@()%lX0)Ss+<2BpPv{ETDdK%e`^xtujpU-ZW9 z%ICYi?k27c|Mzb7R<_Ziwp_>!1*TbYFqh|L#?f0vFlPX-JtJX&(f<8ArK9eQB&s^r}@m<|f% zMe&cMadwqb3)1CVlVs^(otBT{e}b2RGPue(X+vrr_gm0vspUr-DDl(eZ|d-A(*ccX zUO@khx;e|>s=U(aj$@GC8wn<8uQ*`McWRkb7K;(=wtfMd*c-;)CL$D)!S`B|md>(? zT%CBUa>@Q3i%B%SgSuw+7Xsh)Njyu7U)R+d6@n=$8xIqOArl34^#!=ou0@Pq-k2o# zeU|6T#N-d;V`5o`?8s;z_NRU`ow z4`L3JxE~}b(8<>P>J}jFcWtxV+fLkEgXkwZM%|1rXGq-&5MnMf)n%-wL-EA$bH^t# z+o;VXx{~R?#1AD;W9aqufWQpF_qTio=@325l~1DFB^ijl=5j+1zk?gUo@}LB#vPgV zbOEkNM*<+(?qL#jRL$7=x6vpbK)h4ernt)!+uu%KeVl>T8j{$Q!~q&LIh9B{b0Eiw z)wX|z>>OLU8FGMRh(!d@3er-d9uEsJNoI*TuXdwpu)xSe!7s{g3kkBzrY4jtM4}mX zIFlbQ9wtu|2~-%o>Yve|0kwq`f8*RUcoKfty9@KgFeC+SRjTu`Sbq$${{87RrE;&4 z*L!p23GRnDi1W>*uMMf5#VJnK&6hG;>~y3PCE53K;Ko$son7M>C!@mwH!p3;?QHxgWu=OY)uEL}6)i&T-jW{|=1d}y zZw4!a?rb&b0z!V5900RuR+vu=G!d5ygy1}_cH})e%iPNo0wB9hw&HFUj_JY_z|&$@ zP)wy5=m=->;4MZ!snIE=kwusPvw}(!jUGaWTn2H49knT&Nu2>rESJlKyFPa)59I5! zH4zj|jnlx50lb;F&?}UJ_19r$uM@Mr6Y}?`+E_DdLgrq4grP{5Uwv(P1Sh5I5uPC9 zE_RhgL;I}_X%Fqi_u2HGY1hijN5qC^=q5$*L%<}Q)h>dX zZ2Vo5@t%WT($AN3%&EJjGEAl-!d9%(-2N;%?YO}_R3!HCZk`DT9a@pk#9QJz2pA>o zZLN}=+uCOVO2ka8Y9ZYK$U-1@YjJl20vND$BdiGI_I4_vlW+)VJ$^Sj>FRl1iz%8v z6-s_&zH}X>9TsXFccq5_nkERv_y!)f-I(>2=u@o!(p?1*ajJu;+LTf4X3;MnIs>;6aG(faRj za+LV;w?zOfzfm2z{AlAiU7Fn9v-Z7HSaJ>&ndA*e<-x6m)}F8?`D_{oowq$elN1;# zWWKrH5)1&aKQtNPUlSh@Gtww9*mnaeq(^h#(R|z&^mQ~%$?uu4t5mC6V>{e!9>y*M z`qv7%WW_K=#3*3J<%obpJ`Pm=Lj?*bik9wM)y>x=ka)UhmiFZ(cJAIt2Ge$vf8S6w zXa^ir{9|P(8-U-H9h5&GG$@1!+V$o+mL*l=u44R00^Lxe^j6Kx?s$lapbn>HFrS>_ z1ksB3lrcmPkuoBlHiF2=vs#Gdjt7_v4Eq-zMbf&l-78I4P zgxLUJlMM&3fVk6@*!F@FGLw-2s2PCfdDTruEO-J&lX#})Rm(wJW-kZyQjG>dSV7Yp zP#Oz9!gtLZtkJbi0MS?=vrdrQ1Lz}70cj1_q9vmHTpG}wH4SlW~*T>te6f|*W z#NtPQz*jHPYa9VhY>WYB=~u?si;uKXWTfSh^N;gT3_2+ML?WULwD=kcH8-nQKmuTN z>`huA3x*$9Aev8SD&5>~;ZEEMb5tgJ#SZD)jS%*hG*A`1UZ8nX%=|fPP?hyHPfg)I z*UKikR)0{S%O{R<_}uzo4fZ4LE1QZMo$};e=iKJl)iVU832HeQl()dh=T>+OfR4~A zsSU!}ad+Xi09$*2Gm+t6JO*n4J{$qYZ&K4}XR@v^^PelY^(|VpV=qBoKN^Kx4)~sv zSj$lT^P!hn+EXHgCNsD_FZ|!R`Kdh5N1Syr6TeeFM`jjh8W4@9L?}@70;@BMYvb2g z^Mc*bTCBkKErz}^7q=lX-G{=Drhwt7d}~Yy&nZ%N3g+9Ku`cs)>?4UA{%91g?0FC5 zLQ>&TaNZ{hiR3)08_$_xWl#4Kui%g)+a-{7e zD-?@sM*ginf^uk!_;oQ$6L+?r+Uz_nfP{yvwf2*`8oFB@E@NXZ+EFMG6m3j9G@FgX z%brBS0|T1?+(ggNliWh=B@&TZt{!>+@J-GDitX2Mo{CvA_^4_|S+(rQv_oGB_u$45 znN&PrwrkF6_?B?!5jAOu$P^Rz)MUT^MgvH&E}tqWv=cDW&)6EdlX>n?rY}TG(ROJo z6gM~Uq$#Q&hI`?xBG?&iGTfFIU}8+{*NGTDz+Fv6Ptp=><&1}nySycvqC6d2ridQS zh`k+nr+7<1oDa+`Q~48cAqueX8xSr&z9FY7gB`pv7!(=kk*#)QtKJcPnd!kR99T88 z+SG!?N70558Bkl?C+3l|xBY(F5v2owj(F_VfP$6{f!i4{&1pvLVEKtyStZ_Sl+_2u zh1t<-tV>t@Ek~n~K`n&m)Ucy~u~_hyrnRyV-OXBUg3v9ph$l@@v#%OGqo(k%lFzv- z&q$VGnT=dTJF`s^?R6STqW_R#cWNQ z-()%8nDf!wlq8t!US%K`8D@zBy1RWoQZ)v&Ww@fl zKMAyIaWYv_%`Rc;*7q}1%8U{f`HbjiOh|D`jQB z9%idxx7=eNSO-KSz|t_b={cYbDNz=1pED&P^`1O57B7nv?nu)#B(Fx+Jn0azU4<#Xm~e>w8?ePFP}X*wp+`GvrGM)8TgqI!H@w@y)?fIJ07 zY}Xg8-uV(c33NR&+^%JATK6uZB>a_l6Y7r_oOy&Cj$2Ncu7ENwndax0^aq8?umKuHB4>^|mos4!Qvp|)0W<`dtytn&O)p3b+*Tf1d3=XixNpce>tB)9XR?ejiuSE> z+2rs1P0Fwbn8TLz#xf(+kqqrQj>*q3>LgX81~vQnF}+O8UbsjBd{bC&&7LpazC;Ye za{pMOOmdu`rA7RDh1RA3-`+7$YdZ609w%Pw8WfeYxKwT{YPkt69m^maAjgxMS)1H| zxxqo7_!t$j&PE?!skFB4dl>rF`mwmf1VYWACLGJgdlaa8Y zMEu>lSOBe4?YsNMoklDg5_eiW;*WpExRp(Q-$5<>RyKF-H9s1lbK>ZrE#&;hxFsNT ze_E54$%Yy`?XA0;SVwC~Wwv#ysun&^O0WcX*hjrSrh?i%QQ41r2rv2fthhTV06w zyAaBwJ$&D!RHiKfb)79h*qw}YNU1wA1}_(5Tg_7HKjqxB3H^r(4?j|_RP0XvhA7RW z>-5RdND|eOp%YWAj)ygS#Q`uHRd!U)4O6mCiBx=ttVjfXL-AfcaJ}YoN>c zVTOob8s`Bstx{6+AAv783f?La;%qJr{t;z0x63tXle!p3MCD_}8=YR{at+=dbM$+Ehx3Rdtt~V6jk%`kb2Jc5 z-2g8UMhkNpQkE#|Mwdk_ul$!K;V3=See!X)IjrtFZ$yyfVhDQDbPe^J?h8JV^K_qpv+r_x|kZvqXr&a(DGB$NCO?*F1btT`B2B?H0845Uc+; z+cDDmOs_iE>&h}2Od0jmc;1m2p zaWYR@1Hnydan2%OHhNa2t}6+%pzqhvSCw(Z!PWhzza6#^Yzn<+0u(}&4qBiaCU02i za7v-_hvsp-W5cL8?-hU(+@`=1MPb+>q5=* zWm3fpVpAzi>paQ#OUxJ`ta!I6Xwplhz=m%{14g3KYvM~R`z}IaA<&4vfa?{da09GU zr4shRwqiSlHGgl6v+C$cM9=W%R{SNukpnsH;=xBUx2m*CyV_SQBEmsRFD$skvv-t{ z1;Tcm>?$dk%rbDDw8sWt^bF&XQA=p#(BgN4w+)5+*w3VWjT`ZwgihXT+C4n*)e4g~ zn+Ym+)wfxze3y1)0N2YTBDigAKnY& z=loSG#ri$_dkj|?aGi@%%3c2vyETQdcQWd&q2_2@6STT>C)e`4Cg67+!TBu-dHph` zz)(W5XuE_w@Zi&zERLI$bb5ENTW-0x+p%_*SwpLty(oF-WHUi&3GOtz>G~TElYu&# zLAQ1urU^Q~I>R@u|6au^K8*(2@^kFNVc~3Y7-*aa5D31Q@P`9aGcvQnFLXm`z=)#% zVXYKrrzRw%=H|mNu}};XFh3mv0n*0uHnOK=@v&7!$HfW2fP5LuE#XqBY!g5Q@W?1o zG*y(3+sg~aK3Acz$gRSco>iGZiYO1)Fs>)Z#U6kCcKVICUhe&e{gRB9{4_sSJLa;* zI)inYmEMP&ykvb*7a=!~Bdc;$AC+)_ugQQ@o|{|EM9lirR0XODB-4wRVOBM$q|`-M z9*`>B#3yk9%6Bhf*%ge?x81aC!9Zz4C8Ktq1ZG48cd8r-RmzCSGg;CZX>V9~@f3qy zy6Dz>G>Rxu&g1i0Y7cTz_dm5%v0K~{PO#sw$G&aT5T&us7=Qxb@Q^h&tUP?!K^$MV z?7aArXz^%K?(!}aZFI6U<|WfFb!nY^YiN3ZiQv8V&xZM0>bX;2oXa?IC_B;WByw}+ z3xRevp$2m)?anPH7@@Je5x{hZ!y%9uNZ2H;y=!TxTiL&u<7Q4E3B~gL5sztM32}Py zwXH7p%ltgxC}4{;pqVjFtpDl>s<;D7WBZY*-+YX3O9t z&B1q|ozI*MFK0$MlgfstpO^`Gk>WJjVW*M2(E!~k4hhU6bR}s} z(T3Adt#rmFs2o$3Bg9VF zEhX8Ba-wK+ewxE`!Ck1iq$`XM6AT=ND)g~d2nJ$+vB;#iP0$KQ-0@z8nSoDTRfd~* zT|si8xu}q->GWtEkYrBQIy0}B6Lsvf%(J34dX6VFnnc})fG0|pu2WMqE+sTj|KILULe_of5_oy{>g6PQP16fomCk6Ko*T<$Oe#59|W(QqUH z-j6Ooon-vZ&NAL!IqW!hN+3(hf?O7s8d+l}pbrVW@S^S`iF%``nUOe5`kYR$H$TE= z@Q85s(h_u($O@ENG-j6bN@mj)QkPt$)qAZ{jud;16<(F$bepz$r^IoIevQgf zek@u_-CWYuTpUy~n$-Vbf?g{9=+!9X5?Dr;IId`Ds0O&MV`2fRvHr5lwf{D2Rp@%x zS$3Sx=0WPKDT=7iQLsn#%_)Y|p^x>!L4!~(#!Dbl@D>Z8%ma|fUm8271E;g`i~`HU zHi+c^nePAleF)}5{x;}=NCk}M=VHFT)DOHWF`%756rYM3`SXO81_z9QxJK$eyJN4= z1po~aUs^t*xt-xi1WUyOv3MbL1!1)9j_#m_7wJ)z8iiS|ru(Vnh*64aV)ucFwgCwT z0(Q+jt)IPSjNEc`N-wHsKIUVX`x5VZoX7h%kS&rg1MhGzVc&`=a?EavDmj-x&_Rxv|Q>?XQniFD4?K#(DcW zbelHJ^Nh30<10zXT(cn+xYNd+oGzlkW&qJ{RVYNaeQu*>pe`Nd;JS)NdyMPDnHC@Df4Viu7v_*@ZI z&|Sv9kSGQ`8%=!OSpSGEUd#GR0H}}&&%}qlP5asaEW!tNpZ?@NrzK*9v*Cv@tK;bZ z=twXy@7#f&2>6<-@=c1L>d_ix0(h8!k=cQfJ#*VslZmES6%}!0G;5Kob>yO@bPz}H zFxlN%RiuuRM3cLh27O8H0@~rPwVFAH=j$ut%khbg7|k^~CQxXdp#(ho3A?ylrDu?+ zXU|clk??S&bnpvQ#Nf=07{N%IA?Ai<*KOxZ0ies$r&VbbKXyl;DSwGjAHCuX`pk7W zyskZ9KrrUMT9TfjeJ=Rv<`xl1&L6vmB{~qG>UQ< zeF(2*EC^-20$8@LITwr)qWxN$y^iLvOYznM?Iu)sk-8gg=up12gP- zI{m%QZZfULGIyZcD0!z@a_{ZH?{f;$BOa9r;&sfL?+Oh&CvH_Ki0Ny&$cW=ECYwgC;uHV0r%P7PdW$QWXHggJ z2}{$93U&oD?o&>=8@8XdTqJZdj~Kpz3xc+D|3KXdB|C^nH%7mEETiYAdNyJ3%X4DH zUykLM>Rt5PF)jTB2~K8|Oz(SyI8`KJM)ap;fVH~HL5eegwnUT3i~O^s8^jIPM0y^U zC%n~1+m=B^XE{W447HKc02rmQV*hH_G9Hfr=}bS-=}<$)@QKcQJ>huXboJ?`JKg(q z=&W4;@#eIS;ah*HnIWl!EH30$(;;y}MsU*L^hvp9PZiV$FDyMAY&G>8aR2%;?Io*3 zgqh+w^y?Ds+#!LmaGT|Uxov9R`2q_V(0FiJCW^&tR!K}to7WPKx#u*0rGCI$6-{+4 z`#X)k{Cw|`5Js|=U0S$R&+TR&tjSaNu^~aWL4bygw#ikp5|<^M$!z4got3rSrYAN_ z{D!^hi_*2oQ9chbWJuz6HFl)l5y4rwGIIv(NuvDAA zpP9Ls-y6IMWs*Urn_;EQqD6N+o;^Wd`(c!ex)Ia~-I7D&m38lc43$6d*l*fQu{_Yr zx}o}k`9CHQZtp>;C372@JqZtVqA)xSxRFGFwwFEfR=zS>>F3W5=_bN8iNes243TjH zp9Bz!GBi*bDvccF;n_Wv7YmG+0?{$Ft~B?qeSlmMcMYkTR`_5=e?Q0SECy@|5Ou{V zK*;77Go~zgfanpVmk$vv$D{0q!93}P zD}u9v1Vl(&J4`|@X1vBkxfECW9aqU4>6rSh2>DY+PEUdpB{n#kNM{E_0T`L^lC+|F zviBIFGSL_RN)3xDM=&^V98!gl)|%FdndbgE32C|ZD(vXhw#yP^0eW(d3k;@AWLpGF9Ks&bD3dybhz z(#_bJWs`|<%%7qQs&X1pGzdUcCN4HGR*CjV^oYps;YRZ=>N2PUQM@DF{NWz6myMTU zbjv86Q*AmKM1X8s{EE>w1|wAh;riK$dM#gLZJq`bRd_assK}@;L(oE{la(dHQB-*fgRMULR%u z+=BU;`A^M2xv{LQa9rG`-cXR_3mJftn<1T6bZ8#qsO`rO4|5-V$fr+tN19ito8f8DL>e^2B65(K?!J^_q;lDy->9a^)t|RV2|(LCJjU$8$Xq@W z&3!|c{@68T6w7{-fS71eEXT##1~GLC=5wE>3s4Z@ZSaE*YJQic_BJ7|ZVAQ?fUH{Z zQWJcxIl#;T$|6B%o=xq&j%1SR19NZY=CTA{8Hi!aZ4E(_cDm#!x2hI$QP_R>El*#n z43zFWP-BC;(~4UKn+f1o7{)OGM8NdoY9KFo+>gvx0X%zJNEWRUaHO5qW~k|plqq=# zZj)=ijFv6@aLk|gg2^aJR==@0oed5Btk8U61v-+{8ZT^;EwTGxNT zj&ox_bmlC^qn%O(R?Ej7m~)NSinBOYB_n0DjCBTyS0Df+jSxZDidb4(i4T?yG41n+9B zK{6l0a9&pq2bRJb6m=*z9jQ-QGP-{zR^=#HkJc6NSzF!Kbd(X@CRUzm5F$jM~6Ed4^$d6 z_f&Sf*K!*O;D}U0I_E~XE(QeESr-7)5N>428)w(yvYEttTB&sI9ktvdqD{;jW>sV>r`kgl2H72)Xw@t6o z)^06aIM1P~jp?=bJ1Em!_5<-yR3#jHebClSV1>b*Ok6zWfInhMC3WT>4UUq*5^a(= zigOz2o=h>?^&~6teTg{%bR{fM{*)_4ktbI3>ZUk+yQ14CmRP(6g&T(4IvZF}e)5MT zfB?{ZLtS+tLus10uWV88e$WCdO~0;hA$Lh=!(pNqaqaV?+lH=y8^|J&CQM+m(6=t= z+t8BRx9^V{dsC8-OwB9^S4+WY}mWJC{h(sl1%aV^`5yaXrd~kvJhhD#ncQ71mQI0ISMbA zcyy&H=_74*-D2Q2c3FzhR5(0Z@70X@fTC$I-S1%3j$tb$9j z&FL@!to-5q%L(|gBfQdw)OnDY9BD*;%Xb8ggF zjX9uyiCja*dzYz!ONr}t3h+RS5oJvk9Toq)`Rjb)8v_2M9g5D)hs?@q8A}exdLeqb zzr3i0Oy%$^l5$-iNW3MpGk>2Yik{iO+}NBvm%DVe{*UBVcmcfe(O|?>zPDe?N4^bq z%?;`ymnV<8MljS7)l$lILHx$;V#0(!NsQO<8l|cX2S1fzDz5E=1dhQn1W0>Q@%{YE zvUy~~0Ot3i9w%>i?~FEWd14_2{8V3#1?M(UJ_`z zn)JAltnx;IkHTkTEr{OXYvy|}9vQs$XVM^z;PQD08RY5=4c;g_LB&+k!AR6v+cOEd zA@zSOfM;@PW3#9^R08WB__J&3qFXyeujK(r}2{#Z91a}@A@d-I?Q*(s z`S<^oXb(IWBFfYqW-RX5nl7>v@50Xt@ZH|m-XBnL^voRaU*50eVv7uvlPX5(1Bnv9 z$@dnwEDj<9=Nb_E0e}FUuyMM;0;nPjjIxaxy@t5=j^y9{U3K`<*r&C1SwCjMuX}71 z`6KLPfG#;?kJB--8C+-K?Mqh{z;dXHOe|c>lCfG5-$OkC%|ismSf~=FV@A}Hnb*&c zONX|kG~j2iEeP*v?VC>6um|HL`*b?%Otaf@yImYMx@V~SY`U5*J znhz^Z&cr^hwDq5skk$cp2b}Nt`)Vw5_C1z&_#Y|iv2R7ofqJf|8A18wD&#(6sE1Td z%6xFe&Hf(}$?(O9^)yvi+JUp?w|g&qGj|4nS=Ui-5tf+`;LCbH3=)?=SRrlk_{VaS z+rFzGzVPqpi{SwB-v*v9(>8}%%suWX)Q)rpB+l#=-Q7N0 zT9}xTvZ@jODky*7#)PY~Q59 zUx}+c;G3q0F^5OTM6(-XpintjY&1^-6r&gp$z=yhLD=Oov~wXbeBr>#)QH-;+Guci zL@cSfEViot!e`i!+S}LC+9=id>?Mi$Rb_kk+wqCX4y0Z!1L(!`7w;CAI{Q}I3KXhR ztAN`dKaTEvszfIy!YcTH6{E3pTYSfRpH9NR@qxi-^mONUT;jgQKY$2!osaND}?61^cQv9?Q|DXVQtW z4w}ghUwHXIED6pVQLrIqX%!=T&TSjkm7x_unL`1XD~vNn^1cO{=4MrV0XqDgL=qio zJ(P)oFSau#HsWqWG&-})HWy-h+u7RgJ^Q3}{3f80)mA=^A=%KC6D?;EDdR@_U`jk% zdr*TrU%xw9@`FYT{ol5b_Lu(=A2GPTztWm;bi6tBZ&~lPl69flU?m7Qk(V|2!MJW-}r|!jMw2ZTuFR{Sb{Gz1MfJi*$=^ z)8|fjlwn}0wtHy7COJ!=ISZ7-#0;>}5@xB>xYhHTH20J3`y`9#?T#6EfER0|MGFK) z!|p|qu}f1g6>uf89lFom7MX=vq1f-=HsNI>FwtOwk$_S=PPsVk@^u9)ZO761e#IX(I$%6VtO(CHv*kPRnQJ{bBFNdTDf zN&5jYX5@Rbyhm4P5*8$A3aXX#WY4iQ`C23b6J#aUTF=h_DRW2yqk*Mi<5hb_D z^3w$K*ZW6GDEaFd!%Zl1B+`16pk;wg_#qvoFjK`)?oQ9I32@Rm0S0F>M@2;?o@&!& zbM}LjX`u3o0J;PKD-8p?6CsMjyTg_x=*Cyt4+$R!xL(+y7e%9Aay$$eB&d`HOdGP@ zzhY2_@v{M-6`U?M#ZJTOM$2{ZkXbZ0;X3=At;;UI--Ca7+)n=E1uEKSKV>I-V*iX1~U6JBy)#J(Q1(#b?bCIYx8yy@Dk7d4CULe3uu$jvtw(?EpIw-JA^l4nWz}+b_ zQOpo4jEb!d3>UnS7ipane4m|>^Rf>%%ix#MEG>jkhA_tr5b)cIF2&%-?DycW??k5> z8DJs9KD57sWFslbQ8XUu18g=!7@j>}xPs`M@p)V(qZfrJw+OsNVFH~@KC%8eRF*jG zMx$Ff?81!$jaU&P?YDh3$KbeTIvgGvSGaXo z#^11qV;xrX!YSw?dfl@QiWonP=}61R3eNlGG$e)cu3Cnd6!s9{j0yYTkd&?E%Rh;$R{B zu+7U<*FdW>k*4407<_x$vR51Fb?2E)r{h3C!|90|J6)>sdVD5)zwkvKj#mQG-I_#i z;Uh?A()6q|l@jg#w_W)qKhlF}-yCa2Z_m<0@7J>Mt%CAZ+@>ZWNxYp?2h}LPXlX$c zbno~5q+uhw?0?2C%J-zjen&;Bn7PJ1T=7tMxEDElDd%MlpAMR^pZ7Ab5$q)J^_VJN zZJ@|Qqa!5H6#SWmesgn#Ggne9!RYt(oxc_j1vm3;)VA%PNovBYxyrlV^{P}*3?v*3 zJ$*WuyAW5ud*_DpKH8MS%l^t7zU&eg@OiW3+=^K?`O?^6RZa~dW`PF=?LN=MWK#v) zidec7Zez*~5ZOmH+4sv4v}7H1GeUbdeghKd3#I##qZ3{ghZrv|ke%(r{}@wrcp?}> zlQ`GO#Y3hA?s@Z8ABk|tC<5A=y|Yr$!r0QCG5)*Rc991Tk0NrerzOLDIdxuNvmcz_ z3UiMjqNKK)VxU3uo%5Ia+Kp%!6ov+biR;TvmWr*vw1WCW#pjuBwc4mZya@gc=oeGb zBY_iL6MS*}0QOqVt}9HjEaw{_#{)3C(MyvM@1(lqZ?Nxl5V&ivnZcVoG&1usU4<*5*1F*XWh*w;wuCi)~sHf>+# zyQ!xZy!!*=k63i5VpTT3#>_`4`ghTh7tZAv1%bMpMv7$nF!epU6$V_=V>;V7*zTJ? zIKPaV5OIhv?mE!+OL-`Q3VFD~)bMA@6r$kxs%Sz;3U|EiH&S18QFs{?JW*z+XQ1(p z5kQBxmMJikfhuNd&8Qm+O@Mc< zzD(2Tna;&*Oy-Ggz}Qv5TI|2vg(V+v@cP%&0)w^%OZBGF;=gGzT= zLVdL~ScF3!DnDSF(mc$yyWiqYV55T$g-9%-kY{k>W^V))L{_ofO-#xxuPH3<0G(!F%SK!yAm506Q7?aHer%lRFc|)4Zl_jmxw)Gnl$14XQOL6{y82j(V#ycd+6$tk6F$^X0_qB!Cd^iq?)XV4Z%Gq6Po z7G#QdXG$(*9-m9EHOq>!(XP$Wmg}XT(j-gQnTac;f9%S76Q6zn%GR;Z)_as~01sJh zy0{k?F+Kts*Wgs(9{ID8x^-Dt)l5TpQf+YN+pZiuN3NS{t}8rCc2jNr0g=nlWPL9K zmyn|tmvyTzmdFxih@Ez)nJ#p)OxXkjGu)q z1$j6&&-gv2)`B95rGlQiyym4Mazgf#AGiN_?G zzT{xEXucr(zk-q#@AR2ZxvLzdmQE~6$Z1f%B_2grt0s1#PH^;D=Y zS7`jIz;RY;sZ|28hKg#H28ESIJ(VWQm8QQc%{Z$pI4|oh(_;7i9>rBT7-_BU;8t_1 z@I6(^->Mwd_?$wjJqoLDC05_=srCt}cKcNwxL8PXYEwDuQq=0wjp{NT>heSC3VrH|3+qzoYDt{6C7g9- zob?qK+lR#32%p-z!rD@Y+Ti;7nqT!rbal@{YJx%<`fwFCJ{6Y(8e9q+!s!}^-ac(p zYk&c(+uv4Qs0!OS8$FgA#~rAR!w%0{I2$O-RrPeWqs!0UsXbfYf3~6ae9PhaX2|nx zhnjiuXFEO5T9%(T?mzD_s-7==-Xz`_o%sC7r{N^AVQTrsu4NTgt?HsApb2e)6*bZI zHX+|v>iR&cWSZ!&G@~7x*+QE!Ma`U!%?g|Va6>#7R}24@7D2}rY4Kaa2vgIX7TB*Q zCf|z6+c)I6{N#HT6c9GbzO8DGt>P`Ms#jVif48dqj21L%dwv?4x#rFsl#vF;7)JH-S-`Y zE1e!i9f9vVg08rARWh*-Qu$ZdI*G=ek)fT@j$KiqT`@^rJ?@=RMV*fko%y+4nZLWT z8oF{FyYqd!3PQUJ-**@P?k?i$DV69UUFoTI?AaRZPJQ2%`o8CZad(YzPYYLX+j!4T zI#<`{o<~VN$ya(iLbXd8dIyaoQVBo`5k7N-{!G_2(cAa#ecy>g?|(FXv%h;zf?O9J z?O@EEQ&$9sLOXqb*F5^ocz(n~C8#JhcXDa=uTS+;0jMLcR|){sH{X7)GKT+(UQrre z{po%6@BJ&lpI4y1=Tj}6UqZJz}5IJ}HVaIKWqV$TTFUJ|rB4NeLM0-56B)Gk9fX$m83P zI&xUUgd}A$q!%`P;T~ir0ZmqhP5%s=tqjvQ0mNipi!}i(OxdPA^}*{X?9&)V#f=Q!Y#p6AF<6U9n{eI(pE5l*x6T|8kw7H4Vun9T} zV0>j_q7lGCq5>$AlPpIN7PHAk^~tHe$@%2Tg_X&TKa*Q4lM7DoK1xpR6~CM8d$(6S zAx0S{aF5(m|Bv5j+_ZRNzxY3j-@891@8S5nMgps!CarZDLKVbGWEo7%Iw0*%rm6b_SUJzx zgwNTP%sITAv$#5Q-GA1JXI|qF0>I6CNX>gm&3lH=yE)I?`8!YGSqQwkaNl_$D10Hf zWFh1w_5W;ai9Cx@R~KWhFPNvy-71++e7Pw9a{l(@Vmi-K=GCR_XNy|lOU{4io}?`0 ztS((S1ahF3%MXEEBycX7_9|}H@^Gnfb@}<<Vu{#@)Yp>G>u$VvTog6KhJ{ z64uxfb=eY&*b-0Op#8Tcy|yK(@j=4ngWR1Dz%TR4sVm2abE^M7;4W=zX>6aS%>2B% zAj|OK>$45xh!3WwA8w?6u(IeJqkJhD|sI`w*N`Nw`S*|8<)zLKk`6eM{ zN9WGs?8}`y|8@xfcBC)u-gnszir5{#x*OcT8@9F^DzzRV4fQGoy1T#uW}D()b`$&e zlGpaMp6{k!`jn~hX@ve$cEqRr(ocn#7KF?$62%G#eh2eqzQkp}wEt6W>3+TGZf^hn z^MCuvYx_+apW9qMzm|g5xPUmw4Nu;!5DqUo{R=ww!LZB0n}~za(u24C2Z?K+Dy6B0 z1E@8hcb~!t`x6m|i=~Il{f8@Shim^1@1}l!dIwTQTz=?(xKa9LzyHg@+Ltf?z8pn- z62d~Crb430psV-zB}>M@r0grD~W`r>n6{Snu-6Y*CklIthZ)RUoz<4O8`&YKIr z8NR7J{igQnoBH~S`{utL#^3X=eq~+zv%CK93-w>&t3RIWf4ZoDjviCbpHc}=|2<)Z zg$YHOgvCAi|3R^B7P5H4fu!n%hle3$q5wkCL#_W`jO~m?^u_&o-&GFskje7G|AnzV zIzB0H@9YkTynH1zFueT@@PA=!x$`H@;CFh@!w@3zl)?WCW1BQ556Q@TLHMUt?=;p@ zHJ*2YvGtoHyuW&P<2>QF^8f2IyujF6EgNW{zLm@twAB6|jIFiD3ib^#`c0@i#V%aPEdm%SB`hSSbs$Xj~IvE_|zZa50!BFUy5zj zfye7{Ywqpwe0kqBWImy@-Gt@dCF=iTY;D?I|C&4!*-22daP@rS}_sc%fFAI}J+IO8_ z{x<8NZ=L(w|37qW&$to8slb2K3ydvR>)j?BPdHe(b|VUD(fZWpZ_3O@4BE!4OyZbh zaWCq9`J91J z%0-!%S9_tET$x##Dd&l9DktQZ(*M=@=A3bsiJqQms&*HSBm#PzkAI?=q@PV1nw*#O z73nB&h+cPQhgLF5=cK)YptARQ+ zsFYsedZ?wqa+qn4xB7}4q@f{bEUcCiD{Qm2rn+pWf=)&#sM9jL=%x*l3T?63u4)TO zg=v^)xUnI*Rtw-kEIXuY%{>!Pdtl6Eh?0J10Rz5&NJZ;lD0 zW+k*q2B@X8a5fAZtI0}gvBOvDy9m2`9-=OtAa6|C!iAb_8g~REQu41Nze}>p{f>)N zRzreG^JycW`Ld{2Hv6v2JO3+O?QjtST=Zrv&s?6t9>=`&YZ(7KHOKB&`t-WQ+A8(c zrJ+0}*rko^L@MnzWVM1zU9I{$J@;lPW4kwJJvZtd-fL_9w`Ntx zty~5?!tg^LYD6x18j?%?!w)bt{tF~JF9O5nj(iTu=b}&25WuzYL^|k?r0%-kF5%7g z;4)`jjuhjP&Ibz_c-2PbdsMDQ9*_%PdGW@pk;5HrB(nM$`&!%Jiitqq~4& z_nI6F(fyEv7CrRv!ujZv--8x8{NRx2zfg~eYtHi#zy0oqj=9pLV@^rxh;U#2evl2D zNl$n3qaK^a!9clrME`AQ^Ubin6~ScGgmf(69Y2_$1@xh>d>}O6`9k;t^M%laCF}tc zu=G3y+6;TF%K+~bA-~bV5PtSkMGc*oJpjS2bG~7mA%5Tl@|DnoA#_6f+&2jMJ>(%$ z$UqdQD8(ltVsrW1VIpwH2x3IQjEcwxPgsD6-eseAE9#vTtp^SF$uEjfOr0MA)Hes(i$_ejTn=)O zhCP~3iI;;z026u0TCkv$h@>GO1lR~xTG0_lLB;*R2$ZJHPC0ekme;OvK{&>-1a06X z9*@|;VIuK}b^p|Y8k(m{C;E+$gmefOUwMdORFRR(_=O`^sR%>zp@0iY91vggMMFe0 z8<%TC8tS;d_6eg+gAimxAPEi`R$`KqEMPgM8B0(^b1oCCAZ!BKwKhg$pZws18rJzi zEu>+SKM1BUJ=n+34e9)89aZ|c$kj0oFc^eYG4aHY!p?|e5 zIEug4l7hF~joNB=s&cgHa%vr64&s`@I1;g#<D=^J!rZ1Y{f{gCWRL&~LQTs|0DcsR>qw_Ot~}Eo}&wwXT^1 zrE^T*Y_B8348XvM>eIq4JYXH_e((nw6mKMiN>y$a*Aw?6ZA%Sn3AQfQW=S#EaUH9T zSsDU&*=Peh`-qf>bdz%qiH>@6c#8}yvSW?g9U-HO$P!F%63%+3jIAT$MZjUGWfTPO zDE|i8$OSNT4z|m9w6C(~E1eKa5Ze)|p_~gv-$Mi2F-F7~ubJ!N{641M_?dCJ z!Pwl4m|DolmVkG?Q<{lo$UA5PU?0t?F(qlrpEcc7HaRWiWG7n!JaTx7)$_0-+PF5t ze$INrShG2^>|-7=E@ICE?~tXCB=C`#Xy&|*x$sKj%#YX}VcX;4j$Y9^pmWwEq6y6aoA}Jfj+o1=$83&DFOK#D zHiH;DVRE`^5Sioy6E^I}RFcHkyDKs7q6>iTE`kN}TPeDEi*EX^5XX^z1dZ)^i2olX zi61^*_n>KfKw;}TgC-uzsAa?6g9Z7$8p|92)b|24oXNjPJmcz!2*NY~INpXfaZQ+D zVWg~^dZ%3RH{UsqLSIMB0e6|S?Wg7IXhV@QRCbU5NWC}PI#@H+m9>)Q+?zWj+c`j@ zGB-EFC(^rm)s*pJ-w967!TCyZ{#?65yi@oonAZWOx{S?fUoFN@s6M87A`~5ziV=Ls zL>^i?lm&pwuoWKU ztutH4RW1j8^xx0g+O3r1kd=E8|>J_P5=7a zU-o^ZJiYgP_0c_wcN~ZWTiI7aYOq7Wl~S8jL|QO`6X*n>v|Ql^0~j@dJ@8O*$8s9T zf#jn^mqmb(Wj`BOLLD@LxaT;H&_5S7K5rL76ZlX$z;9)TD(QlDrKWc1&`*LOIzIph zmm_F11OuKlBU0CWUuI6=_D7iWIG>{hMMOgE(|{ylUzavSJr#jfnEzWnAc31SUrLs8 z__Kjl=z*FfW=NNEy*E~zWJ2phg}4_vGUx<4^f@(STN7zwc8IV8M2LS9uf7!EULKIv@Rf?QcgQ)mWqVsUS!%3ldOcXd< zm-7orqDh^ELa10mb%%={cWii>vt~@jjdtV& z5yO(`lLP$dV|lPn4~ag@)CNw_Pz*;=ljM^-28Zm#J}78JQg%S!#sZ`_hqVWkXL&w3 zAd%>mcCEM=uV`>U_LuK~JB;TzKowV&0Dfpz0(($h<%5;N;Ex`pOeO|ou$7SPGj2tM zM^l!C$H;$`OQ@p~Lcy>j+<&+Ef z0{SII(R7mO@u zBR&ZE1DBZyvqo#ICP;0!h~bG8Qt&&~#XioMNy@W`JtcUb6Itk{h{?1`(luRi$WFA` zpIw5Ke26DYxf`P6o0a*JX6O)?!#k}9ne3xd000MVmrS4n03ej3q}Omi<&tBmpBm+L zmxGB7)jmkUnoO{WLFhk+AfRTINj(H{>w|$mQU7oU_ZWfcm+=V@hDk{InVkxj2wy>! z>U5lxGhC4LloTb7f5eRpWpMx(KC?!eIb@>(%7FR@Z24JTD6TCUAI+s4hb9Prs+WfNTnOqFNT!0}=z?DcnJ;MwIZ!?i6^No}s{hA+i)eZ;I6jpb zR8+}iQi?w}*{Ls(2a}aU3a4u3vsI#2J7ek?^XV}IN2XG6gt*G5l)#-P#yh2oOfSHd znH3Cj>SUve6w-sM9CmEN(3%WIl%n(tGE|q3=yJ{omcS`pstJwPfvczLKGOBAKj4|O z6{-30c`Z5{tp-eGS($NFoAuT^m)Zj_ss9b_I7F9falke{Mj1`fDrKb?SG5pkf7*ds zq&(8v0|NM@QbeJ3)PE^;oYy5twWUG+xIR$frGyz6#Y&%FN~QrPo^M5`lrTl&qo`cT z4>1=EiE3Fyl_W60t%k^E;4@bFMW^MesA@on!BDO#8=TsD2*Jd(=vPM8(FO=BRdGMlZ z2C^O$O>Cu3$ay|ZJ1%V|3=4&c*-8|{a;(I9kuY1IGK;RiX>nZIMFf-$Oz^K#R(@a6 zm_Pep&IT;hwMVL$0Xk4${k2dIh5v`3Q?3=dx>#Upnx4Dm(4S>`_(1OT{7YZZlN-rJtxTaudt!(rG4y5nQCibQFkzHEs^ zrfEL_cWl6Czp*2%`r8;U8~=-091m_-y)Qtei)pE?syzJ=a0k3cPS6H3OLEJa15pGH z_(@|C^$%P@!5=iOcAJH^rAbA5CH0C-9e6oPr5gMok4TgUZicV+p|8nHY8_lcan%pQ zFjRW*vFJPLTIGMu|TfR!8mAp{tZ?`k04*#GL6v zIe9RZkyK#-oK;*?WRr`(g1LMIF(Y-U1vWbgaTGaar9uhi6%(pXW!tn%_C#&K1P>Wh zs!XxvR$y5Rs}+n^ktIVr#W-=)JBcTB?PH70QN5cqAqL1C*0HQ$CufHcrGDljTokR*2W zyDr~y8Ij9gItZ-hz(_-CahcG&tvYTFam}_YWlcLnb~~Z?%#7iwaKh=IL36;vl%sc` zafhdAX_iT#Yh8clZF5^z@7y5BYr>_WL8Y5Myajt71DR4*d-L{tGmIH$#wo4><459hg{2HQ51 zz?uu{h>^1gZXK>8w2uWGD^7{cVW~`i3j+mYRSDI4PSC?1{EYVYtkz*jNXx{urPTNX znON8$D2yB$wEt~;4=2r zlNo575NW-FU<)RF#UtIaaS^6~Ex7>EUj?m~b{lGl-KreOh%A|$%T%a@cx-5u(IeDO zm$lW+;W!w|-f?|_j^<(DlMN4@ceb`<8pn3A>|@Cv`OJJ!utJq``iHx} zxtIThNRy?r(Ac}_k)Mhhy;_K7k(@$d366b4b`4}}#+j3)hu54I6?_fMfU(8Htljd^ zUkJR)mcW{eIFEX?K1#%iMaww$983oJ(?K;324qIjMxCEK<`K}uWw3o5zjPYaREVn-uhHlVgMiyvHJ9|ab z)&CqH3zWw6P{<}SD~v?6Sw+Z~LGjM9HLXtr(%Q#Sv1Mzw`ZngPRFF)Z2U3JPUsj{w z@X+V8sgoCOk*uBCl&s*;o=hO^c`60%OP!YmOs!W4-~&xhuEI+GR2g21rLN8mj#M9A z-L3T(=Uz~nauDlIx3p<#?~bJ9vw9JQJN)QUEEjFzTd~i^0{mqNf;*aU9A0tt6`8YU zlQs5v{E|C%CD$yHvn4~so<9VQkk|zP!{zk?BH&C3fi?lK zR}|PCHFUw~O>f=ofY`~zVND2Qz~o7ZdsvkAq|eEF-OOh3qk*70p&16lB~*J*Wn%Ls zv^k8#ze#IPDl+BAZCMU;jLS}VXsDzku*^kg5CXQk`5NJy=3~W9jsqQt)_YcaY1r0b zCO@rHORj|EzsPKF_yY)hEG2DfFNcR(d3<~Td@wKoERcwYJ#CPUjGHWzk9-*=QW=67 zk}QlR0HIPPB}|YoIa-x3TBoL)y1Tr+zQ4f1!o$SHzmCYs0L#qH#?R2v($mz&%FWo! zn#kMTj@97d#u+R>X|-Bvj6dwpC2BpDm#d;uOsOmx`Xw;!0HUN&b%NCHhyRpTOw7?j z)I$p-RG<#RaJ2~rBLMvr#zUk96se1C+SKZy=0_@zp#bC>EZIFl+}%9K~XRH2xhtK{&<(0@h&ShczlQAvx820bD;mE%Nx zs8*p`Np&KqhZfDrb5cTILPz>2)lw5HQz=s!`vDZRiV>t7Zgr8v$kuE=Dc_n(p6rWT zw#%9*Yu+sF+GS^!y@}?$S>F#Qa{-Q$;tt+kSp;G1dnJWkLUw)i9YqX>k(7LV4wm@Q z_(hK%kv19a2Z>_XRjkc*ZFux!qj$Allr&j)c$+)rwr2o^aUk|PoR0c-+ z0PR7F=usv}+3Vk5lOUsgQlZ1#MLPXs6$}emvK=Reu`^3oFXW)kKBkbvL~*wKkRJ@5 z$i-0(khNk|3Hk7oU0;4>0GU?AIgx`ata+qL4o)}$1002gMbs?v5T+Aa_U!i7)F@UMX4BQ)szvo!Gx8%Jpvv>8U9C(Dk=uZ(Ep2deH4otT1>~ps)VW` zAsiW@T9Q!$9VA6ah|;3Pi=PmbLqq9cA_*t}VJDAHZ1ZGKVOv6|Ug|>B zRv4yXl0HPE0)ru4X(4o2v#R*YlEy&jjtB9f3pG#r6)WD=M+2YK$7=;nQMxSwUFuK&7z8tSiO~2-!JNYp;uc9Ls(37q7TkVfXm|}x;7y(!aS)na(mKpu5Aw4OP7Lx3X_N#2ei__GTrIleL(Pt-o^zp#8wBi>0S`E? zbrCLsyO5mu*bz726k`(XYh3=e!VWbw3uHaWpR7nB60fuYOGi0~2d85)FlmKi@z|i6 zuvHs1IAJ5S$U$!~(!8^6gmST&MX!{0wn})AWdHnn*1#ahM9r|QE-sr-eP)KACR(u= zajMJzVAY$o5ol8{^4t%%qbx%3=!fZ`pi5F{Ms#FNe9_tigh=AS$ss2$TT0tK^p%4m z;xG+28jHtx6_0p$@E$}_RUZX)u_az{DSJC$WF845z=;ci4jj!RiG!*h>_JT=vLG>J z<1zCou^(FLV<8i-}2v?xij53Pi2_qk=G+%aB*Ab62Xp5DQkQ(yvOb^Fs>ON0$^%*nHBEwYztH4(61P( zazfjt6U{;@@nmXI8$mo4%xEGkv-)C!UwsQgG{M3mR|*AwPf^aDeT!lb*aRX7 z0`ImC*s;zSuaq3=R*Ap-c`#1a(QZGOKrx1>!%q=J*djkCp*v)PXe0aJf)9~DlMOHy zz6{QV*oo8B+QMuSarjSa~p+oOi(lj1lM8CHt;_Bs!c6K^rko zQN=fM^P5&!MOb_hRv&#G?XS?f*3hW4oiU2;VpPICe%_2=Q-|$b!W4Ma)9)Ml^2f0wRsRb|zdh zh+jc_yRvHcVnz2K`2SoA$hTH`;rby?t^xyf&VDw+@STeMaIY`YX4p(kV)G^8`{)AX zAv?6KiID7kkUU4ED|W@EQD}HOgY@8bw=+qK*j(nlP`6_-3HD(qgKuM(x7v+o6x*=F z>Hk)ZHC$1TZEE>fh<5OSV!?=2DXV&~@cS!ve#D*df)LH#=~|VQ_ePEIzeh0>Iq&Uw zLAXRuh47fN9l!6gPgGZ{V89MuChKmk=YgL0g~u6DvJi^r+`vF^M2lA;T4uNz&Bm62 z{;`bne%XSbP6glZL8w?<>lLez8`1P(pcK{TOXaZ>gzGbX$S(unuS|XH9Vkh%Yritx z$A;Sb>^E#IzyIUh$QAd7v2+qG-)9n?y(8ih5#}?aFZH()!qIZF43mNhYlKRx@+-^{ z3CWi$%~n)~!F;ljUg)74#@ALu@_jaedi;SAkO3Av0c%wiWCf&26i6_#M#yStyKQH+qIm^vvg&WMvL;UYRYlggNd99bEWg=z8_n3}nnoavNN36<%RiJdu` zqse`w`H{eAfHMFE1W=F%`I)CVcAz<%pP8AINt>0Ko4C1~wW*uE37Wgu3@x}MvhX68 zctdoFSD*o$1U8$oi7tQ1jL|ur%RrsdS)JI4j4`R5+_|0Jxt-6+mtpsj)ESdB0{@xl z$&3`)m@s*s2M8qpNsf?*>ISUnT(Rjo!3dDJ=&u< z8l^ufrBqs@vFV^u38Nwkq9e+sUb>}VI$(Qt4G|iWPgYU+eoo8C8hU%E}shv3)nKkm5SQvuYApes&nUhw^ zpVy|0P70tzdZ?VLlF}HRn~9}$I;wM8s-!BE@D`{a%8GHClBvlI1K9!v*#kGZKelSB zxXOv~W;5xv8YzJ>4>BEE^>AN^isP4;Q`o7>x~wybjFEYsHEE>S;GQ~Zo;fXX2_dY*H7j@vHst zAh42Z6vPaV!jH`L2%E4;X`VE>t=T%1(%K9ThpCv#q%cXJ7n_!vs<0f3mS1|W zR0*;K8;j>!u#ZZw+yDdj012xQtFzjKnlP{Rin23XvoyPr{R3tv%Kt-KHRcF#DZkh!TA+nyEcv}XE>i;0+? zdaaS#pGpgoJxQ9qX|ry7vu_)>b;^oxON;x{uJ0PJnQ;#?Teouiw|6jNQrDq8Z+GdiO%Ab*$m{$vSS^J)ox&O4!__Zr}5+kxH>$|?k zxR+cDlG8c8`01YkdWa7?8kotd!rQ;Y>%RbOvtZF|R^hG$*`|9dK>xeI0W7?QOOI3| z8>3(upr|WDYrD^Du;DtIRocOddTmpRv3m(g4_mfh`?;GMy3;D8l=_$8dA&Qyx!5Xx zKEu8?+`iWcm>%3uRJ)8jtf(QJs3;k~J_(Rns*UEtz)IY}ORU6n7>O?1yB*2IRNTaH zdxfOnYD?mKDB>4YoWTuhnP>Z-`FW{kJiTX}#vt6iC9IalKzDF_g2Uh(+-thlOSas) zm=G&-m+`FCD#E7=#6rxN##jw;T*&5fnm4M(49m!jeE+TU%e5C=rs-;~!BEARY{i-! zytC+g1`MwV{0)4oz?odin;dV42#N?~d?*47eOt1d=#aR1l`{Inw!D+K{K6xQ!@RsH z#n8+Ab(Ta*lf+E6G^}#?shA8)y-W(8x?Ci3oFzAWjrs+Ud|A4P+MPYz!;1`UHj2&n zRH_bn%BEb-_C|yk@mMFQDP5xN6Pi;ZblosNn5?SOvd&L zm{XZI^%=-AybL{@amy*b5}R>{Imj@av88*T$CH&uNyG~v$nm!nRvpck+^JD2(T?kaKn>QJB*rFP)-V0Vk+8BY zy92TcGh!OO>-NuXe6T2~xkm}LaJ`cIyVt2V#!U;zpz68q>4K~_S$zz?y>_~Z>dbb` z3|dWrdHtan9oeaxx=8!hN}B;Q-~sRoGao_OMftiWDcVK}y_gM>c(%H9ttnh7EO}9jeu&I65VH&xh-MXi)w%a+7m6qy3E6ZZQdP;-nz}hj{3r0eYO>T zeFn}c{yX1debzRczhT|6`nw9rq2H8CLSYec>=1)h@2(YCcg`?vGR66m4D^`5}n}aN;MJ=4+nkdY*1b-F-@Z zo_b8x`!#G5tK-JZwC20mjlJiL-v8(}L3>f;*^iwv*68SP4%@m4<5qauioV{DxzwyX z;D)umy6wXXp6EVW;g-JYY|hjK&K}nUJkT8s?#t@7e(Osv%;}Glt}Bo z9Pa2&zI2L_Y3)Q0~nh@D#uC!nN+6jxG-0sGz&>k($TPeDK|w*rm(y zEN_$j{$m4scr8Ek?PlZC4*$@+&boMBP1i8*Pp#M?eCkB1@ibrbi#6_b-p&Aj?ndAA z9bfQL4dj=r)Cr&O*nY9f%&oI6^+BwjPXG1o_VQKL>|kH^P-X8BkLVkn$H8v(Po)gh z%FqtKsR3=#W`FmCjwMq?dfH^ec>nj_Wb;9e_U4J6f&O1t-A#wxsE5zxQ@!(mANfoq z_WW%hG$Z+#Z$-jB_^7U^qigNoK=iv4l5y|g9uLW`p82XzKuCXFv*!1!AN!-f(VRcV zeo3iXf8L^R(DKOO&+7Q>J@T?Y{JTT>Fh?`HPyEWy9<)Ez3%-+|Z~7;ZQGJ}GI&bsA zALh%y{U~GcuHP-S&j0=5f8eQJ`ww58y+-E8ocw>*``fzEe+`ZJ?)Kwf|Bzz*Q`Ei# zWdHmR2z-KrgoTEOh>3>)jE#;t0FaWAj*pd$lQ~WRPMVsPf+dQhq@|{(sDqcBolcvO ztCg9NIkl9tlZ~mnyuH4^z`?@9#Kp$P$jQpfhb2;j84N~!1bhrId?f%SqTS5j;Njxq zG`s(^y{&YOmYMa*e(|=0QnLsT*$DY!-o(LNx@el z+O$4=dSuA9EgKVj5kra`NwTELa|mM7s-u$HZMlyuD; zO0=laqePuSlmFHS<28=lWP(IWwW`&tSbK@Gw637fptFMRtk)_BA6;9snyR#klUtoS zeg1R@D;FcRc=PJrOLbx>i%m0b)aI=O6TXNOD_%Tq=gyV>-rcIz_ElT7XBn%qRQ4_0 z$C*~zMX0&7>C>oBDHQ~`+Ec=XQ_G%Bo9{llxJCP`8;Pt~(x}-&dil9{*WC7MD__pM zFGau@HA3|`wYl}{*!8{BeX!;u%8V>u3eJ|(Cz!@tB0reDz5Dm&R`Y>w4I6B!@bl~6 zpGuqK^#B?qmL$G)cUN_ZT|$;8aWV0a2Tph(p>B*|!{3D%W{8Mi+0Z8)VNxBY;fN$= z=N)&y-T#IOcy6I56oQD!(obb@83+J`65e=RSa+4^Dh;%X2LL=Ep$8NKm*kjaCdOe!Ohq?XM~1;z=9_R1wGWCm{zuDs z;$3!NX)?McUX})OiQ|_5_88}(h#Dninnd2`O`?!S>X31Ca^=X3o;BhoUUw;YQ$58A z^b;gd6kuur9%PU~JYO}Efiw8PVBvf$upr0}KS-+UuF9P0;hKes$m_7gF2f{mJf6r- zE4^K^sah#L@@b|u3bY~sP<(*F2Or?LqAjjwFwrx7$SMdnEC7HFuEn@gp{GWsE#8Gmf@$!E<8mXpW!`Db#9b=rt427?-^sI*}FFt-@UAOjSUPz*_`EL{A< zGqS>fYpy6aP3)o1b!v%a`Dh546u>+Sm zsG&yEFmOo7(u8be_1OJ`AB|=S&)KNW3`s#1i*zafbkY%%&F&4~E*E*H$QnqSu`|zm|L;vA{ z(rWx*p{guoU~6WDh|c=+`S~3f;M75HJ(89Pm~7!-brw70wWmxolsQQ*kIrdpd+ORh z4`00TtktT#^L$`D-}U%sXS!4MrcP!40E7>4u$CLSv3M0eLdR(6m-A>x#0~T%PYjQ0!Tu}NKZ}E>4vaM$U^1}FncQlin2ySzG+1ZFH^CS zc*eG!$=RZEYr7!kf~SKFsG$u^!`MdX*TN>E#&q;564jhYMdhd`Kyrayl*R|XtAONz zkfV_VaYnhcnGtgqWS`q~ptK*fp$$y<0cn(1#X2hHgn~(7$?Qmulw`(_eE)3BV_+!5 zLHa9<{qP#6_JOGswWJmfqTKJ)wl=m=QjNlEV;hdB1`#DMkf2n{{!n+XP=3RYs5Ip% zCBvNq+DS?foZVg?NWSx==SF1wVec+^#$K|mXJObu5s_FwL$FJg$ealtsi(qZ8taeH zq@6Q|0YgI~XOQ0co(&DP$arAtW#*G)FE2?>hyBuRsVV{91hKqhPV=1*fg&lV2v1@# zVpRaZ=c<@jPhlwQb=?`wI$FU+q3GpO^Vr%gb1*^5?NW$oJeAtCr9o8Wtb8Tcs;q0C;Ltr>aW1c_4)6!WA|+R*D?~bW{c$4um>E83it| zBynT{9HnqHrU@bk*uWk3Skwza_ht#E@&+~FFRxGBr6a+j;zZD=*BPS^kzrn>qP`+FaN8q%}y1n+^l2rGzbL^ z`gaHY^)D2{FyI377YYbYu!0xN;08Nb!CMfo+Ys!t2lJP}7%p&zH>}|fbNIs^4snM4 zo8kVN*uNSK1Alk$04xYV046ZO85r<@2iw@eK3l?f1xra@^0aL`cvbz(MMuWgPopSX zB530a5y^t6O-$ZJ@}}BZsbUtN{Ip{RDBR$mNm#-P{_}4{WdCXi+Gny;x&lGa?3F)jQ2+fxVF|yp+%JP@Ifn(&*0!EC z+j7loS^L_YvIh3Ud{%`r?7G&xj&!e=UF&8u``OM$cC&x!Y{3q@3NIEw8L};aBvAX; zx;}Qa13OrrLYkK!2wsq@Q{;@ItW%yQbx54dCd$g26jO$(eO0Zle)BPTOBh2Xeb?j5 zY3tz8#vrYqo$Q2fYYEz_LK4bQ25*D6*OohY+6>O|iFSPB9uGOlN3L;%hn!m`H+N6b zxNQ?``^6Nuc*CKsY+RR<$L8)Xw=nm!w><+_Ak^E^-0CsM?sLiaR!DnAP0yqoBC1uc z(7vhM?^d@E;5^+qq<4z$Gy1rvU^nB+cgnVjZ~vR(U(mVO*S__(yZ!B3M|RtHj)5d_ zo7>(Fd)UqWXs#3d;#(iP*E8p~VkSb!@ZFUo_Q^!2D}>%EOnlN&J=IljHnXg@dJ6#{ z@B%=f?>ol1=zTnQzMJX`6NkCBWlnmyyZ-gA7rfiQK=He4y9&5IH|R|-_E}%B$K}3w z?y{IG^*RQ4trvK=rgj7fUfuP37_dgR zQar^|2)acqV&W>%RDr4FeB=OmA%cOhCI3{FS6}IJ7W$?mj)hOQ|<#G}vuluuCfldpfv-n3Hq4r+}%KZ80VQc(7}{$9sfzYr^L{fY*c=#DvPW zfD*z+ZuEeJ&_M6vSQfa2NXLQ5uyoP)KVIlq_jO;_hgq(2Pf?{$Bt=3>qjHi4e>^yc zkY;!6H)t}~f^@itZr6Ii_b^LPYJ z1-WN_uGovf=Zk#zi^3R;ulR=uX#a<{mv?k1d%<^vI~I$J=sRN|Uc)nV`hs5}XnB}- zQh?NnM-?yh;a;Q0f%=3lB6xZn;{ zsD_$FLM#A>&B%{)*ncklQfV#28FSAlDim_zw>#-Cp<+n z2%l9f5BZ53Nm8k#krjCiVCX1fcyH2lhGaNj_LWaa$t57^jwNJC4&!5z_E4Aeabww2 zWr>h)HSl*h##?YNXi+PcRq__oiMV_<sFWu<4o|66QORU1`hlrNqN|dQ=XGAEs97~ihUt(8 z=5i~yQV~)h1s@>=sxlEEF)qos7;$)#%jt}ZIGe+$f@>$GHR+dy1zybfsF+HmnmU`1 z7BTinleyTXyl9~U*rgB4zdrz=w?ksf(Z=<<+fs)^4bG9Sf>^2Uu)Wo6sQ zoh9gwA8B+Yi2s>CS`10ETZT6-a3n6`qM|@I5r@H_r}2G@_@DD=s(aXDEC`_iiJXwC zrA`W+JH|GB$&!Gjd)n$<+4`hy=amx0aTTU3oh6aNnw=jRqqX{tOA$5YDSd4EN0UjT zzSfr&>r3d#W)?(>c~?H*_OZSS1^Ys)Xtqd`0?pJ2O$*lB5x8Y|6=dMmVlU z3V73KheHT+-j;w^`g$+8e~-$kLJCpsBPsS;uMdfRRkp9y+a;4N(M@hsseYVPCXTdFcqJ zqR6+VDW85Dk`4i%76lFM*d7;qm~cz3b69ZXq?Qp%h*eOsJZZ9x8d%zbdNj$h2}o`? zhm%@cesYVp*BWUzd$=U>fthu$jEjbtRS1_ExW=%Vy4z196)osxf)>KOB_&llqO=rf z4sHUUKy_a8fjmOSr^kvKS1WuvxUn$nvL8#6gs6<>r-!Jka8EdccUPronXz$us?f=~ z@ta1U_lUNFnMabh>L{WTS+w>lyx>W^ya0WMTUp&GyxWIS$`g@y@xbo+o{_tT^hK2LlZBYB>0@hN zYqn+E!$%l^z$1ujd3)T-pr<>xwVSnkCw>moJ{gcJmy0M%i%%T+s`e_Gr^%HDteLm^ zH@S+DOoeo6xIDJPYLQv5No!@q%7&$Aqv7zd9*iq*q*m(m119`FOz@|o06(?yy|lZ& zI9Ib9r?xd{gTI)AfXt+0z)KiV1}h6=cxZ$#%dW9&sspHq`lyp?Q&C42#fP%Sky~WH z8>3KFQh>X_TWktx`d;yc5KDAFdK0UkSg$R5!A7^0nbnSKJfq;y5wfy|9-sqnqyGcJ zoB=veM95PsMYE@WOBYK=Ym$K_udoK3{Ks>wg3$udR zi>G@@ZQ}v%CR7ECBz9`2jgZToMa8Bjqo~Y$8l1|5V7yVbl(40@{MM^E%Z5`n#eJ1e zrKpAboKht~H!M(N9w5YRR@RR=OjLo9P_Q2l=0v?1F-&Zsl@J%?u|d70>%Nu)b=E9e9EKtjdEM z82`GaVO)Xiq_dVc%JyZ@rdgv~&C3m~4$QY@U+@JtP}XLB)@S_%KZ69yga5)Fjj@TD z#I~ENzSO8o@TuHZgkI^fa}CIag#ma_!`fDH+wy`Zd)P3U*ac8wPpnl%6N!hSWb$me zm{+W-M#~dO)lF>*K#NiuS)(m_7M;bNqP=e>_@4DV#tFSDZ7hn+;76kc1!sWPw2jtZ za0cVW4N}ks9_@!oY`=XSpnVsJU~9uk0CD8Z&0s01-<$+h0Bbwxj55oU^Shk$YbuXO zUP{w%EYQ74BBqv$JSA0Mx$LIhSjzdl*`u(^<5*A91Q!$wlH3`mQ|FEr43f9pS6z)| z>FrOBDK1d(m$g0MW{qGaV8Udo0*JUzL}nHz=5yNqQ- zY0x1!#?T;=N)|53lPVy&&?EWPrw~=f0{}Vz1!PU&1pWmNu-j(Q#~&@?sA|~J&4@So z*LbkDf=1Zf`r#&9a7kK|dL6HjCY@id(?>Yn(tLzl5M;ZZ$ATJ(?DEbeg5O4cx#d`< zBgjn*4d^$14^Q0(8PEd`G!=@zI{KNchi5BAX5XktD=v;a{Z^EZ-M6ENpZBGG5y>T( zKIonPD!SbU&H%Ocp;bzA2Y>o1vI3u5r8I*o1yp|4>?H*{ z1_9{?uLl=@Y?ps;3xkS%Dik-Mg;=TJYk%C1f8IWPYMX7>?#FYdc7#Q@agMbyXh93< zbNFC4$gUqJ6-Vj0>i85__U_`x1D}6Xlol09LID@K{+ONEIr2id0Kfnfu?_QyAF=W9 z4j=IlKk*V@@f3gY7N7ALzwsL1@f;r;m2T;UP_ZNbNu55Uxb6s_rL&bFC?tsLFHeSA zneX`I47ru8acUMEtOjm<>knKmcmyp{DI@9`av2mtVYI34z>nt$cg?F=q>){KvrQ~v=Yo}eFqdIP$82?>0A7t_xf z?Q_3!HH(vl{b(kQPW=ALh_Lm9&-I1>@m8PsivRS4;8dYN^&uJFmvFGR49cfwxl_pk zPR}MzFV!Uw>c-?IR&V&EfA|`|_^5xViC_AxZ~Cq;^{MZ$>@+V-0O@>i7*TN;x_|os z!~_rfwARV{!e7I?49~gv=jvs}Rk&l&@j*WzwmxPp*kCYfPc>iSrrX~VqWl1uKi3ORlnzOL9vbDIk zx}r&?rvj*~t(?TgoQoKduAQKkpO2fJh%!(f9x!}-KiN#%+g(+7 z?(gvA-9Ozh_V(8-F#7lX{`>##l`se39=U?{5c<1jk5559*s}HO#-!qpfG{p<%owku z$B!SqiOe<d zbg9#(P=DsksVy6TmOv#I1i*D4L>3S;Z0))g2G_3ra-1EzwyoQ@Z&?5k%OV2{xj5Be z%aGy00|pHI^3A{}hnf;L+o(~)7vfc`QvdiuNphp|4Te9YNco}WVg@K*EZ_LjrbIYx z^QO|H0DwS$zbB5h>u|48%Z~l}sqLgYb2G`{K?bH|l9DBh^np0>Nrj#nt91OBr(DD{ z$vEQ+l_^z-4h@3DOp^EK-@Ah!&kRGAUcgLUKhr9caqr8GF>=Ldz9;3L+(R4lj1e^` zJLp4FRol>W+ksIfh~QAP!RFv>4>o8HY^&{bkxLkQkYNrUt$>Wj{HaVL@IA*|r z5d;uW0s{^a239(Eb?N1oV1_B?m}Hh|=9&L!rm5zdY=&tU0CmM_SDbXpS(jaS-o?jY zbInB8yOnT5FrQvMHGiyh7nCue}2MfDFSHOYDEg`l{@*%r@)n zvj0K*>$JZzK*lN7rBVh1z#>bnw@`p9?zg`VTQ0K0;-Ox8sF0y7u-t|#ue{MdTQ9TG zQll@gjcixRCXIZe93s93$PWy7?inYSxi;+ZnYGet>%Z5Rz7)MD5K5x=6oR* z#ulJM5&9O&k{$*Wr>Bnk>N~9d?CY?{9{UaqsEchWWmFNy={sz(L+ie`-n;Ms`VL_6 z#1DV`@V*<*Jn&?clC3Fq9KS`cvS%;5>8P{OuQQDRXUq~Z1m93YGb4~Z%b*CoR=>;f%>#GR0Rxb*v>BK{0}>!WA7WUg8rE=WILx6AcgVvY z`tXN945AQ+NW>x<@rXN=;SF_200|7>i7lW(3#QnD00bb4G{~Y9Ti^p9sGtd8{GtlF z=*2IBu?Z?r!3faU1P+981aNF)6W|y}H@cCIYgB>~=9ot%j6jco1cDMcfB*xyVGVMV z+ZyN)f)KS;?SJslu0dR2u@R)(hk2+j{}ULfdwp}0Te(2 z1!8~%BgB9L6A%G12U^Sp)bp4KEocgy$pan?AeR=H!XcCsA4Twr3k&F`I+sYxRfhAG zAPuPyQQ1n8n$(>oO`vr2A0Qx&KqX@rZ8}CD zwBQ0qy#P{;iqtEbl8OXq0S!IM%5_qeoFdKYNKtyyl&*87U;S!IwMy2qc9oVJm0<`N z5Qe2WKmfIr09gN9S=PGR^{#l$>Mhlo%3MBl09lNp6|Ja6IRrKUIt6M`$%sZbF4hMl z_~IQS3&+XUu?c>}BM0_4$2RH_j)2tT0XTqzDSR@KpiIISu7J`}-Vg;HFjZw(TO|}k z5(RR#?I*t=N*vabu1w^rB$XJ}mFBgFCM9PJfcw!=-j)EHysajuyGvkNR|5$}s4#^& zQ0yv`mqCjU|8p^0${*4k2^&3rUw`s*yaMRpa2D!fdcpi=mhGUUF>Ezp$ibE z1{}%*h;m_~m!RmsFc60mSip*DT_ssebnS5=~504R9rOVv0?n)+0- zX;kV3Zkqp76?^fgMZJIzWDMh?CiSRYOyd+G9MwLwfB+B8rC6=X$_rn3!(;XBT#IYm z3LDwTL(Z^R`@q(vsjHk29;}uJi{&n7`I}(&a+tp?<}#D{%wtZonbnNuHM_aZaAvcd zw@l|c+gZyOuwtH7T+d0O}cD3Yg*E`31wb6(H_$@B7;UPJun;AP0v=R6pGj z&vOvL1sdFt&RB*vm*bplid!7n7YDY)H!g7tJURjqxHO_W5NSq3x~4v5v`ZtMavb0Q zrz$S=p=(NmJO`lAKvil8Y}xY98W=A%1Z;uU9l)Th4m zs6$+wIXpuctf;OmdpVuo1iRS7PWG{zz3gZ|yV}#v_O-jc?Qnm)+~ZF7u^0X3c+Yd6 z)rfMT{xq_SR(Z+)?C3=wfYBy5`2j>;X+(=0(~aM>r$a4jP=`DMr#*FLzJP!LteXGJ zIb5$MWi6To)Y_x5wG65{U~?^>eav(BG1$FM_PX1C?QADDDPPUbh;N+LtR6rJq6k=Q z(?Hwg=J&t7E$-%zyWa{hcMOccfa$5n$?nFXHLc^wE7Vg26fnYl@q1r?Z@c*^Sbn$B zzW{;{z~E5;j)J)Z2@EVD3M1$yJGUJB+xx%&0Qi3b_;wTLdmi^^k~e7)P;!%|XqCnR zmG);XhXXamXNzV5N)-ShaDXE)V-FTd8n}T#hk-VSWv-@TNB4CDxPk%Lf-H!3FX)0Y z_=0JNbvaaJ0q|DYw}U*`gCYfHRa9ppm_kkaHK|f zw0MxGX-WVDm8NNk)@fZBYL+KzZjgD26gXdi1ER-7+T>$0gaV{@Njo=u%hhuUU}~1} z1$r<5x72RIMMMLDLm<`%evm^X<%61(hMWXaRT4vt=tNHRM35Lv{&h?ObxZ;_OwL41 z3k6>JMFBfteWqZDIRtM4fC3>f09UX8U=Ral5Ci{&U;Cv13FS=NB}^i4i?}EP+|>XE z1xyWj_~+{=cF`!po8&vkNB8Z-!%UK7LZh0HgrNq zghR(_0LfE;CUZDtkbnkRK*dLW=2A^?g$LkA5;>7dFln3Sg`Ad=VF+?vaB6|0dX>=u zi0E6-7E5jzH*1gpJLh9909d9KDXWD71Ym1H#D_-Y2ZPv$q8I?ZrAa>tL_@}iO{9l^ z}G00ZFJvU6g_BIF3Pwfvy*VjZ}bj*O#Cfns|kXE9C!H0w9{GnVLa#MHXOu zB&bv{##4_8n~JrNKgC9A)OTwXSzts*O&~~`)_9DEX^5srk7ocUu#ubwY9|14pcVyN zpn0fe0K-R4r$kCWrb(%HhtgRYZg2&E7)uovlvxQxw#9QxGfTw9jG)Iuuhv7+m7dde zo~HO=5^#!;=zZ43i^U|1;KpCYG>HX8OixgiJ8+fo7J~{J0HAo9s3>mar%(Dc0Z+hR z_jIAeB%rb=0{)3m0Y`8JS0xv40=|(P3FZpC;$TIFT-c|Ys>x15Cut;icroQtGAC0U zaCj+)Vq;{Ox0!P}c1BH5nJxxYHHUXMw_-_n0Z&9{kl6nMA>g7?I;9u30WndJr%9z+ z3XknZY}N*JF;`2u?7$ZvPGyjK%MJFXT>Ia zZb%t`6F4DxYF`iq2+(us)N@zR0awsS^@&8Vg|nuJVfgryqE~EdxLj3av{$68Q598s zC{-`nP;a@E=~rL5n2W@!0LmmxSi7qBhF`O)VNw>hU^})lM2aoI19Ff8U|^NuCte(? zd~C^<0YU2ffxqF-0qWtQEX(&TjL{lRmvBWu% zn6{0QD}|4XS$IT8nFX8KxOi|BXnzJqGlu_XUSy`Dt7k`5bN#rPNoRJ6`?{f-ul5ML zv|CqA>S|l2R0o)wfp%itnwZ(RS#Z>6*{A{sz(-stvC1p47JIRu26E4;v@~;w0*oq>h$Ed}kOXKDr8pD?)ga5lUvMT^Psgr`JlWg3^Zv4h@9LI7z$8=oBc6`TpoX2_$$F6j;Jtus^*O^+p zf#X=4oNK%}T9`9-Vtz)2niZIVxttrzX$g?A8C%I5o5`A-$<_O@9_z7mFtXkG1qomQ z9N>BEsJ?2&Y_Ro7Q@~$n&;cAU1>wT7yC#Pk7&i%^PRkXgk)*@x^-)z~NhM3E=^0LY zoXpD1$3-;1GZX-i2#L~6s%#mo+$I7O5KsX6su&8ZRf(YM_Cw2@%%q5`_O!OF_=;lr zU;J5a*o@8HR#5ijmJd}W!5IGy_>2KuzyUfG0OS1603FbC+(Sp}RCDMBtz3C0n{eVkx2i|rs|(7ykFV;w!b>s{#lhsP|iM-*=}6U+BO0AHGcTTp{8m~ z&qTGRy~4hVd>U|V4^?0x5P#6%9rp(Wg4;^|4BO7F**sK5+LW>gO+-AWXQmvvkQ=90 z_($Enu$V@8GNp~+DuF{)o3F{yG3S#gFmzeGO;Fv%5J$f;{oHcA*-BQaOEZY^+MYtB z)Z%>9gUHisyx;a6$3yK0MQz|~eBciL;F*0yO-E-UD47W0ap_I4fj3%wlybpY(U6>x zpGL`M4YDSV)@<$89qY-Q7Rn?$26TV}9T3ZS%4se)kht3i3Ghic;6tWp2B+l)sziO~ z`(qx3o)Sig1VH}*XP{asurz-N-&zLY%X~z=wbP*eM5J1(uj*~49gD_y~?Wm`KtXX0#ESHb55+SYEXJBWC38@&>#w1a00J3ZCFO-gpS8P^qzM0 zmw^eDwNhcwD=z-h9~0Ua>z*LwvVa0PiSMH(2`B|AeBFsUJE z0d63ZxMlxqG=KvJfCEN;dOV;>nS{WR?RlIAWFR{)oOIOHR9LV-W!?enXRvvrCMJ$U{GO7@#dqdvEPd*A zWkoOfk~4kv&<*RgzTXCZ>I`58M2*G_Uh`^S^S?e=u13`i&ACbcXJHzfCPsLDRD~gK zv6Q^xZ(Z%1yw-xB?HY>)c-jGD*r+!E;~A@`ggY)8IKXpqrN)^Q0=8Tk zzbyZvL-%9L*pfEMnS-^oBt30I7f!E6MJ=%Q_bpOc9@-&%Po!OL(O2=Sy8ENOs?q1Q z9RJ#A4sYAGPx$qUVBXCb@7t$c=Kv~j^DM&<6@Q_C0e`N4O?0v{1pBtGRSCUA8fXDH zz>yrefaY&$R)|MH0M>ZaSw#<7Tz%2wYM6&iQ)2{~Su{r%;LD~62sA1xJ~S77eF2J# ziiwVhkdcUfl$Dm3n3K!5=Q0z@dV!vQ)847g$QJ+hjNiu-@HSYWm+jlRaYekvn-;BE8n<3bun+}9fzueeMDP*d zXG}x^2FNr_ySB5hxN}FchJ!h?vmk>MR%l@}`AGv{0R44%4L8|*Qw}=bfpdTgO`NmcJ52!5!~x97 z!_P+rfn?B)1KCK>LJB3c5J>xU5K;tFMBzqC7};|IaRxAH&p{F4^BYJu-C)3axCEF} zA6HO>5ePS25fussTofM)DBW~qm29|S!6-nb`2{Wu!1UUMwdEIzSY!=gR%evm1s7a$ z(Y2YNY6aSs0)733*kHJLf@dX<0;ZS(G5BRhrW8ch)?}6CHRuF%$#wteWGS5W8J2xW z5W)#EV1U6ATp%Eg1XhXS+N8YFrspRz1*;#2I7~@TaL0ah+_Et$ksNg|PDkB4=cNPQ zc;b0u&N;Q*6{TMmE%8#k9m zQQ)ugoQw{x5WT%Q-0A*TLL92%gn`XVvO5l z7N7wh+#&=7z*Qfn00l0*33ISn1n3ArL<|}6kH8Y$=&n($->?j3t4kyYTPF|dxbA?o ztIl$0=Z$Q6qY37yWQfW!h-`#l8{W#^ycD6mGpo&)7 zQWE)klracau=K4@LhidIE8>?oX4H#UV!Pid7ok6Li6dg)_+Q1glOh8mFgZX-mOmI0 z!3uWMAUtZ>1POA%ktLvJs*{-qKL$eLB)|<-LIeK?8Wt5qWaTv|xCoeTKs^Iwgc^x( znho8MfGbGkhF`#eQ=sNgi~vz!h!|5;`nZcfB5^EAOiLNzLYFgoN>F%-8>8x0sReY6 zmwEa`7a8?8Bs@lpgJTO{qUbixtg(#)SP!lUfC3Io;Q-fo%?nYPli5%-Y{E?HCtT97 z-u$LVKdQ$)q*{+`9tWE-YNYJoF)es#$355S-B+=7opFUL1m6J%w&0Tuho$0_)^lDe z3A9RMDm8O634k@G(y)k?i+gt!TP_i^%kwe73;_dX5d(|Mb`^6O$DGu!h*phdE&`O~ za%LsdK@v))gE<_y>gww8&C-7JWfb&>K=l7XPI{cPN*I*t>M)4G100JuO9IFUF%l&l zSnn2DsYVNJ_=Tv%!~jXaNPv8Jh9`tTg;#(AM!sMGr=$l5$-MyzAo|#&VgiszlzM=65ZN11_%Q2+*Cv<|@=v zgm;s{SZKsYnOaJZUgHW&8eGA2PfZ<1hV($$enhH_Y+Y8T6-n-3M>@F6R`ABd;<7F; zTy1R_DonYb^|TrdY<{5xf87crdm+Gp(8%7|sdeBS-WA&TcURvJZPO9zeJm zZruq_n{Xikzv;jg7C-}Lasf#q({?~c9aiIoD*rG8QGr*_RzR;wDOpkgCVjb`Ay z7WFAalf)uE4dp1mixG~Xa87S=g=$}T0fEl;A^!oh96=Rz$x2{|W7O3Hlvse-c?Vd< z6%K8TCp+Qz5AeuU2paE)d5qBUFy|*s%38w$CV3b){$pfk>nX{BSu*Dwl-MUPHp;~G zG*WR>KRrR1nJrk}R6x|fa%}(W8)1#kR+*Dc8oBJ`J4$()xp`WYw;3TI$*pP;qQN>- zl}Wa3l9FOOXE)H{=MX8`M5^?KDh!1vjLt3)X}GjKwkjiZI8z5MQqKbuKpI(LwqrwG zw$R+dEGZx(+ZqM9^t$?O?ky>NE5yZ0$zg7Ou`d|SzP7rL6f&JkZ(cmZgY^tWbk=)K zAcq{(mT(lwI!3NYV_jX&bk0-OZLwH9 zK4?OU5P+@=5P}feV}vORoi2UHg5RGDowD_+KMr_f;MX83;^8-o1?Vyth6RTDoZP;L zA35T)hAjQ8oE!Y5Ya9QD*dKVt;boG1HGl(*9iG`S)rgo=%`ERG=G*K*kq8OSGeal1 zi=*?Lb+ z8D`OUIYkscCU~8;CCH{=8|XR1mq*m_A&r-9OgMQQWM@1Q5;y`7=l3xkv_Q)8NYes( z>aZN77fQ%;9)qBI5d$yd@*bwtR{e2G>oR3_^*%mEJ+RatIPeYF@FoR!gaT50$7c*o zrhLETaEIq?&=>zbxL0M8l_8cTd!ckK*CBf0pduQBXB+@KHxnh4$7T@}g(H)RnV2#< z!cCsYK|V88`H(@d6{@4Vp1z;8!dh)6E=s8_jtx4GnDs)-nI}L24^?2dEB-#1<8;1 zAY#x09o3Q@;1C|c6K|M>BCuyU+8|?}#D;UlU4}?yViSjn@Naz89+eb)fTf2N$A^T4 ze1F(*%{Tvu5Vv*P=oQnKh}D;6dUZ;h6p`F<9`7)Q((zTVqXbLRi4_zwrnOBdz~Lk@vqACqCAIjKbPxiQc6C|NP(M^u2$)v{zyk#EfEd9B z#zg=)urvb0J@m+t?&5)^27;6^Md+B0t)^alK~mXRCml&^l3+LAs3|ev7?~27aN`yt z&;Vq2gHe03GO-Rm(C} z>E~@KXIfAwTe9h4B2y1Jw|OuUT9J1TbP#|ykOTk-ZXV`g9+R3;fM{O{fnT5pS5i+$ zhXPZF5%`2$AbNG4IgA+L28{5bKcqrTgMp)PmyvZZU58N`pf=}NnSOy^g92002##HZ z3j{(T-6$A~$tf=77#}4nmr*zrz$upbUyI`soVk(o=!VbWO4Ab{8uD)@5tX0#pAms9 zVG11k096wNkP@U?YlexPhiA_cdg>Ndoz;^*IWBfcJjH`8M5PE>F-mzzan6@}$Y%cy z2+$iOVG{9KWCa&2AgOFvwul>oSMWm##wP$K5Euty3wWtT{gSB+(q!Q2oHCg($(B^+ zDP=XujqgILdSwc+)E=;^NxVZ2=0+0I0uRSAS^>GHrA1YjI8~entgJI51`rP<0R%b& zb3Z3Sbl?Ufvp^m;tlC5mRCA$gum)_ftkq@#hyX+^A)+@Bq8Skr)bJA~nrNdCP*j&S zOamLF0HZZ2qh>Q{OC*A;mX3k5q=T|vclV1*y=M zY+Bk0oPY?GN~Bc!T^#tS5AvOgC7$-9RHu5X6^k%fiW?h(r`|xE=TNiP@rWb94!B7% zt;3p8=(4=JBb8TY92BiDn@GsfLHXc>$-)s>NUX)0EVgw3|4^o%7zL|&lp|r1h#*i- zK|>eOv-p$|Zh#e7aRL|dT*6p&TdQ?3dM^P`YPT?6VJ9emIgN-jndZ0|gozkv0i@um zp7NEAjFBmu@;4N4Dw1g`m(irMOLqY#8Z&8lXS)fl1Z{D34OdVslK1~qLXwG5MY5Vl zvKvNPY1*r=d3jP8ibuIR2Y^jLFaqlfr{8C@*|B=a6EVeOJlIeQ;j%v|q(`NiszYl; z)lfX01s(&JlkDkAq(lnwB5zWQv5ufhc{2c(x}BSwgAFb#3N)p`8(M09J~3#wxwqp#xs|rLY6%p?_*?j`|qx_=^5 zBbbhwp&3s^MR#$#iJ^@HgTZf@m?cH9fOD|XxW-G0qmTgxhvNSk8bE3;0mh)&oX`0_ z)x)J%V46aby+D$~{MfxBtC}aLvf@j=n3s748377(O&!y|(19@~7PofVE$BdGrGUS$ zDr43s3PIaFftsbfF{g>@ryd*)qmV+cdWZOHZ~Xf_0RmC3FaXAPsS`{KF9~Y>5=5U0 zh|CwB9Gs=W{6}RA!u!U8C5*r)OiC~YO+2|G>b4wrigNG@`@wz8vvzKS_x;Kiik-^8byEY@`uX8MSI)k4gMv;+Te#~n5 zCCIlx6o!1rBaF=!#|TR3vG2#G9K>Oi%)Q9c;9nWe(t?Jto|M61vgqe>ZYDEV z$q$!ETOzYsBGV*ANucTL$+vj|p;e$7hSU)N90@riG7{TGsRRYRkFh=4`jBlnAQS?{ zv;x(wSpyZGJJB)mTH00I7#+f&HpXP!(PkWif^z?_)0js2MMZsq(m{%tk+3&l;L?qe zqw2U{Yiueaz_4kg060y^P|>`oi`dYs$N^kBr8(5*e0kA&)clQdoSnDd#6X|OpAPgv zsWa8eF>>*nB82dTU^q%~O`NfJafO}D(_GesG{Cn!FT=92(>szXd=7Uw*M4eB4vb5N zDJi+20OA7}4p1i|tf~02%(Zb?fKA5`Y;k#1;ezGUW-H$$yv>s!hotbHu}YGq+>p4s zEF424o18Kcbbh0)l%z$(Q}wJg@QiBw;L? zt+#-?d9roX8>YQX-H%P_l={;O_A50LVPS z0ub*GFz@p&@AAF_v*4*Xo(vi+h!>tAo%UcnKJAF?)2l9hdzc7WA)O;BOFRj;VKs?( zmcAtyXS?0h0x<;vF)}0{B~(Zg1H2cn=1B9JeD6xQPG}5P&wH1l!AxTFK7+ zd@O7_kOE;_ftCPD7atV}=!t;Q!OF*?)hRM{3Y z4fG^YndY$VT9^FaP(JJBtI1IQluoHK;Y3wY-AJOh4gypygRm{%TpmOQ*{47Q&xI~Q zh=>PY?b7fKofXB&8C;_?VGFIa##0jJ;Ct3V?(#W2!K^Ov;RgzE?{)(izz_VvZvy3G zJ_C;o3e$B5ym{?jV%jkgKsd_yz$SfX3TELJ%Z> z>t0$ifUBQR*tof>h0XE9h?Y9)^tY+`{yBHV_6GD3G6+rU8Dbs;jK6uCK7Mva_kCwzmNix)K8#3%?Bw3d0i<6vxQL z3KPr2BErMN6av)M)C#|SwV1TBx0kQh)(Xf-W)$ZX(Za#QPa@99@)Q&B(Z3o41H0ed z{{P*+2^=V}m8nmq`alX$$-)&5i5PWAFwqd9Ll`p}7!;vnB99Ro83;*Iq(zK`E*9Fz zGC?AZE(>KmNpq%6j4b~@9@u$cgioIcf{su@RE3WVNPQGl5flN^rx$3@K>DbvRY<1@ zYTY{Uss#%OaB$#2!vaIB2TxV~`Za9W5eN=6Z7O#z0v~tpLWO!&p~8ii2Bg{{uCM?T zhN&S=Ol^TSaM}QNV_+ne0|9=(W&Xz%)1$wD0drf`nd__4s3S`zof>r2y-%Gs9Xgc5 z2%fk*>UOCT=gi)Q1f3K#lDNp@$4iP-e*Ay|+|EzzBzl{J5)L~fe7V7$d&)tLJcb|1 z`(q>LibC!zoIH07=Qv)C0nH`g}6YV)T2s}v~Wp%pg^+Pfe0SR)c}3yvX4H# zEYOZK#>_*H2=D(mqX0C+2s4dg*yyv3W(gMLN@C=o69Y0aFr%R`BDknPj20d<0T|I> zvp_z&pg;hDrX(n2K&_d^3PB82as>?>Tp^Jn6czFva5)iT9!cOOw;W5~eI%t!8^si+ zZ)3^?+)Zd6V&zC99RS3eBLMMJQ`Fsclu|`CwU-4_O-0pJRsAJsk%W3yRi9#UfWTLQ zrsY`+A(SOmSYnBV09=^brKz4yA!Wgz7knn#H%2gK>SBu}W&(q%sWv1llv#$EX0FcC zm1}_JYSpcUo>nM9Ll$WjYckX}s1*UZ?7~AYDM-j+F*P!SA%+^}_+eoo3dT*XtC`peiY%U! zPL3TC0}mJ?)JV^a_w1+-KetpYw8g&$&6+?-S|FApjJ$Nxl)JUGZMV94%O-PSrc~xd z@22VX*I>`IQAuu=4HTwuU4Yk8DzJ6Iu|(nZsjg>*0BF%#jc8R{OpaBSS!m(%$X7I| zFxFTHV7Jq4Kg|i3T}*NMDOI8F8k$0^`tgLR;+TL~s+dgFkV3XLtfv=%^|owy9b5dRJdv~;*D_&L(IJ9NR1v*Vx`Z5h z-#Qn8waIONwQ|}%r>wQsDZy_C{i?g}4JoZTQb*-o%iO$*q?gDEK=dmwc{fFL!Xiz& z0>S#wpM?MkGz_axe=Y$rtN_Mz5Cq6pCNT+J5CB5J;1G>0qzrq&gBee#*~!GAqsKrd zSp7H=h>($v70KusFp?3-YGjWN;bR{XXiy3xh{E0Rj%cT7h|(58#FnV(X)CebmcD1T zs+9yw{43A5=5;1RJnwm7%OaZEx4j6wi6@x~iVuboH>I>?E_gZ0Q>tROHiiIF{~7<4 z4{f2h!SU&E9B5nRAY+R9M5<4CJY3=y*SN-AYAy$0O5}n9yt~P<51CWIWln{vYE05p z4sc8@c*p=V$ZB<)^as*%6{_Hw@>6a@C0o7{yj%(DZgVVB4@>i!76dOSg(FHH5uk!X zB9bSK$O!znh`#no}I`~oq_muN;=PnNc(nq6LZ=Oq&SDBOJLGa-K-Fb~(``%@T=3CKAl7(L^O-8WTLV_?!JrQE^~IRxf=( z)#DLGjB0$!r}`unI9l$dU0F+55Jwgo^hGU|;3WdaVmKgJr)*&C3FCSqSGwM2Q;Y&! zUlsxhR%u27`UtFG2k;9DfX)Od8?0bQM;gJH4t1)d6=%Mos|)NW0H_R}D%sK}KC$I2 zy7G%X!D^%urDkDBp#cJNc{sxvt_d7~?Fg`gI7YY!CBZRfZVxeq+&=FmL~X>ifC9CQ18!E&7BBO>I z`o$G2xKftFSAt*#qCy(-5F$3sSx40E`{>85?}-Py@^TlOV&cAf3Ad<76&q7$e9ZQA zu_Mv}W2Qzx)w?LtaAJJQQJg}!K7qDTj|3|l!ICKK2&{4e@{fML5=iWfKndZJE92&R z8@twpkwk9gkwv>tZa5ZLepo;xpK*A>_D@w{%u9N|QN@kDsw&4W@EP(Fp z04y-*(2}+^v+T?xY-vldK#rG%^hs^e7a#7{SX!9wZ322L-Vgr+%w8QJZZo-OE%XHw zr|rZVdQ6R*Q7^(d2Y@cR)VHpujqTPheo0WrMhJf87`e<7Q%nv)M2HA%0G9a10{tSO zU0w9T0G%K|>Fc0gWKf|xdtpOE7>yBHL!uO=Sb$u##*@0tVZT%3H<8y) z+)7BFguDqqK~2+#=#Qy>EXNO+VuZUqEN@FpB+ zF6QzRc4ZsB#ABVZ7qeqGuT*A!6&Sv92~%ecpwv36aApw%SzGsJb!I3k$7lq&TB~(c zo1!V0(i6xNgny=Xvm+X<2QjpAJE)OpT=5!tR)R@kCx;Xlz=SPP@_kxV5mZzN`_oJ| z7EQ|$hV{Zs%=8jEwM57TfzhD^5fBB|MH4xpYbFtJ@S;TN_fs_iHd5mfIPev-b5FFS z5Y`uMDYP;_LqNQs4-%3iB(+fe#b6Kh4gsbQts;Y6M@K4zG8BLWF<=JBr(iV`QZfR4 zG~+Wk)F3F3LqBwg0ToMLp)?RtRNduW+r$4aCw3+8V@N{c=5c=Cl^tQoMDO%n zCb5Rau~hhXOk~q>K2cT017y3jD8$ldMA0X5XFEj`00c0B;BXeS*koOWJO2R|h_ioR z3rmRr&ye#4ZDY4{Pwk!#F&9HurN zJJn1vw;tCKht}0KpH_!nGE8Q|Eb{V18K*^3BTs?&M*OsFw{khKID3f*4iK^r^@V#H z6p6`@Bk&*sSxF%QHgA~-g|SzBD`fu!>5vW{v>_tnd?`{RG!t(VHGK}^iWb(CEjUMU z^c9I>iy#>j;ai@F9aASRiHP?A{0h3%0w{vsYCfjtI?EzP8#&LorAasWD4 zd2mQ;?BXwxPk*om$EozN`nJ95OMx?i&n%e zf2p5S)1dRCPG`uI;MI%KIBHJBEGg+eYFID5HhNz&nZo1}@*|DO@@1Q1fNWD1!P7=4 zpmY{l8ceuhvQ9#)aP}9O>aMykY;J=i#5<iZ;aRPFmI1U-pGx&JZJ#c$E-#mih&JDH@i?X`u#I7{-8ZW)O373^2+wB`N~w>U2A5b)ed=;(%Z)GK%k(BQO#|9+Yj-=Q9rC3mR|* z?Ap1Zni``ZusBdZ!6l6HM=eG=j0m6Ve))yH z;fymTKjM>R52;oQ2^*i9v=qufS@Cj21fVs`SwLz4$$OvK!n3d$S6&9RbahC6dPtg; zS%i8yuekrT{74N>+mwuIoQ_%`zhksuW*3^ebI)ZyPr?Wg;kAl$S3BogDj*dS`Fgj| zrf6nbq?%`LbHRR=g%@FQ`Iooy={y_zO?(Tz$OT^AYcDH#KUi8~Skp}OQmnNGMTUv2 zJ-M;pkxU?gW4{rtFxdfDFi)7fQWaW##JjG;OIX8@0z6`EDWGoSN{S=;P%+ZF63oKG zE0%?E49FL+GxJa|QlmK&GRhZW3(&0&0&Z{Ixw?}iG$6ADYedO9l)YyUV9x_Hk0y_VoV$!DF$9?GBzK3Ox&X$>H9di!B&ivRax~X0YD%udolb(!D`nx zp$7k?bCDR6HNhVs`OQ78^{x^w)??Kz|#}~id;|6=b*NxpUcXmS<|@9f`{jEcqg!qgH+Yw5)m?4#ET4E^%DQM z3L459ku8)gS65h7c~LxT!$@G4&V`sHF}pMY$`d+Au;QW1;Ub%|DZoJ+%tXu9V25X} zq`>)D5Wm^9FAc%Ze1pxr&I{qGaW@sLq*`Wo%XEPop$5*C=S3pxw-JD4J&POG=@$1J zk?1U{9X+0I)0}Xdh40gcONGzOD{Q^`&m~qIoZP+gqub^2VgyGoqufj+ri)TKlH7yD z1q#Yb%)CfCzCL9LQ7{GN%NrAo)bkQj1|4x{KIAe~>kOGC~VZ=>rm3m}*3`mcBcq(gPEV?zI=G;Cvs zd4J^b;7~)|-_bmuw^QiyR(XfjSuMB)H^~XNKQ$TmzRrrbY)}kOVi71Yht4QoXE&yH4m4E$Q;ajj6Dl{544R zhY@;|E}k0SP3A#UnxV^X8n7`Q`Y}4Al{K?q_Q29EJ(sD?74*$f@;d*oC9@%=>tGMo z(?0{Q@h0G}J2ZGxVYaXdS8xU01!DM@YewZSmi8`6wd^@;CC(0%cn($lB0h7Ss{uV8 zA>Owf+a6KS)S>K5LZ{+I(OR)(fIcXxZ{&?is}*KDr}{gS-2((2@tU(4w1h-gI%ah1 z>zq_5e0|)cxi&%)|yu?LGf%ZII)KVTj^dDkCR57(kT-f zyIUcrm4c-AA`$lPMePWi@fcTq9cgIu*LZ=Os!utm-5Sk2b)G{FH2Ab~*5r)}yRE-B z*KBrEZrPVghCCdx$Yt*y4;^__+JjiAt0Ujv|BdMw@%bxoTM9PJP7z&0MbM(R;-%(` zd8OBq^MP*LTBuW=Z7=z6T-^%@2^}3L1_=o#5s4><5eff}hK`K}lm-z~f(8ebgouoX zpooWw5tXK%p{c5ehM*k=9XL1^Apw1Twzs;wyuG@9z`?@9#Kp$P$j82Ye!I;J3L+B< zDGM3{8YvA5+!GTN;NUUf6C&IS+vm~T0`2bYPYVkJ1J23!&C9;;@8D)JNWzulW^P-9 zgXh923}=p819=0kEI{~B0xx_RGv?FBu@{N}C~k!qX+hQ?LjYSqq`xRvsa&}#Wh+Su zT1^5KDdnR_E^+FNz_Vwe6DKy6(sZEcrV|}DnW9w4RH>nrVrqibv{ETVj$n#9gsE!+ zOe|M1YFc!}fe|XwrX7Kxtq&g;;>N92>m#m#(NLwQVBfwtg z1I8@lYFwvlS-9}`F9HjlljA^efH{r>&y6Y-N(rjq>pgoO<`99y0q@{Bh{r+WuW8l9 zeyitbx;SwJfd_TSdQ%ep`}J9+bTq$1DE_R_XNe^-4aHL-g*`Q2BAp2K(^A%1($r8# zA>v;Ig!q?06pJt-2_w~o0wPnM2!`P&DkUNngam38Rw#z}HwXt;&{E5K9Mz`dj>Rmq z5i@;EBmxBmS);*31bMTNKn2Aau?*OOm6` z0@YySWJP#gsUwa)?(z{yI9ws0hBCdV=O{7t*-D-Ss**$uUzNUiUvG5)ud4kx~HB%AvH*H2)t$LsiKvZOD^m2c1vG>nN+D$0~%-;Vn8UC z>tdB%#;al@Fecq(nrW69sXl}j*Kl(2rD|%d!r2-#6g^7Tk z>zx*W1?Lv0E~#xb=dN_pZEESf+0|PsC$J0x-7J5NWMz7AmJ3|EvgE5_D)fEo)P?tH zh#`gna#~m=43_efBBEdjp?_6TY+WJ)KKcm%Qiq)M2`M*u2+7Ddt!UxATdBlT$eX^B z-=~BwYJe=X@D*^I-3EP6oWJy;fdb!5Lya{PIXR?4<51vDL+Gf}kd^{WIZu_h1dSus z{s2Tlmji)$P&#CmSx!Up9Eqeu3s_{2(B%H?O8|5RMv0#`;rt>@Ho3@(poR8%)yjVs znw=#@aR9`85oTJ|#0d_F-6I@iN(d#7K0Kg^e&bvTyzC~oEZ%tA{VHFv>OE=Yge?xl zRKot+m~_HUCYfW!Zq`|{#QhalU+1j~ZM475CR+$s$RS%^bo2PFAG&otE=D*8cY$BU zl@8zc?otM?yz^RG@A-;qJmZYAls6Lp^46=qnrYlyaHoHJgOZgb8qOyOe*i4d-XOL& zM708c=6l_}Eb*|W%*Pa=npJfa;gpLJg+Trjga#Y&2>TprKllw8SMZspD*6 zibmR&B#m>(Lmu3Cf)(ZVFB>95e!UoptO{7T(1p%ZERl&zJeZ#rbr34>BE{$kfs{>6 z3_F$!5mjJ;A)`pnDrMw~AirWpSBPpxM&STjI8&;&6sIomQxD#_SFlRK?seLUzyUO= zN!v;0EWlz6W5frU-udo#reYTVX1mkaDWdRP{?-T)Q#D)4-vU2_} zLY2#-ex7NS>h$Mh6toxwMS&FSEGR*q6N*j-7ZW$oApvv0*X7%%u&9*0msULu%eQhe47g#32^Zh)h(#){@AhB}OT10Re{y z3gQrhq$3wHl_(^kxeYs=rFW7Nef(IjDw2N1`Fvo!L=k6Il<3;W~NE+G!7_= z;sjJ;cgKT9!a_fZ)KP%{BB4~Eh^b*QMIyzc0%M`2GpfW9T`WKY8sNa2uiz@|(8sx{ z;LdisDoS8=Wfoxd?pSW|3|vO?KGcPz7e0F>oUmj|-r!QG$(UaCdh^Sn35?fTmynEXfaV1K8~#G9i|Xp*5{4%o$3gdNZmL#VCYmE;|(g30k=pf`!Oj zQXX}JDI5qy<{Ttgz;fdADv|?DK(Y#&pcY3C?^UZANr>wz9{K1oeeGl@V*0v?zzPo(GsH;q>Q|?5K>Yiwm7~9>qr%S!aKX#$);R*|M`18AiWdiexgQ z78Std0y1nf{nRB3hD-3_?PXwg5;LIL5!xuZ+7)4ez&m4^PFcgVbYvsTW|5=j=jZ8Y zMu!SU+u(+J;o5WERM#G2b|%v9vTAgqgJ_9AH{zWlBTd%V!mhWleQha^*y&oFvDeiC z0|;$#^erDjtQysNHB12?bRcjgCYP zXRe}IG{N%qg!(M8I8)WA*0PlO%q_Tp=YL+mk}KsE$~|tDRgReSZSwvvUrfw(6_k@G=T%5C7Vg9#9>PJA7df9MYfwS| zPY=Zu29S8THU*sWYd0oMg9KGI5q;lhcl*;aC-x_lz%w@zKerG=o)>PR=QXYZZPHc_ z6vNY*h#-kccoHG%KsdcR}cV632a4FieFwe$oL)bp->E3$F5o3KoV!GkOD1dZs53UviS-zz}95CJOL+^Z6UszWDY9HdrI?rKGJMIGZI&zj>Dyh);BrX?Jq!8Z$Ji->W5jAH<` z^K$&>Wi`hcz!QMQSb)mN7x!f@$w(K=$c*aIfX|2#y99yLh&{N~2QM`LOxT!>ySQ3P zVJlZ>D~lGE1%)Yr$AQE(n#;EnlfYLos1syFk1{qCp0HIBQcrZ`3FAahROkr%xH+6q zN2;bVRDlSB#}o>gYlSc!C%^$pz?{8CGm-)^mmo-5`4aW9o6!efgmgxN0t+tW3!N8o zf+&)1LXz7s0n@f5Q=@KcNHwj;4sR%D_ePWbKmjrJV5~<(-H>hVmYzBlZ}S$2AvuW4 z0FrbaunzC_%~vn)^|U?ZtBVx0$@CNR~k=#L+CRqz}een3l%>N;_vcTgl+oOJn(eWN{!2b7>^ zXE=faesPH77&A!OXsYFCCH9UJL|zl5UDLNRhB8pnMKYM=js|o|9f~*%bdSzdD5zOu zfn=fzmy|@Y9LB+-^JR`Gcc^}HNu1KDYZm_M=_ zjwwI3k!MKfOA=U_$(Wf?YOb_XE1p@G4_PY<<(ewCu=GN({KOLMRgwD>k0LseBa>>f z=v-Klcc*3uIoNkmu?RGVRb*wGhom`V1!EeDPyCxI|fE0_t9U!Agn_?l4aCuuA ztbA2tUv*YaWr|{%g^ZON_tk~sS*iOqhPPCP{0UNEpoVJWo=^mzFZFHmNuZ?KVCrdm zPNI?m;SK&7wtpy~)+4Ln8J@dfhy{c}L8}UHyAte$qMbRGVLG=S+XzEQiBTwtH!)rn zr-QKep;wo3A6OqzIe&LVi-t23;FJoaXhus>f_JL_eH8l=uNkfi^c45EE9RPi9KbH0 z(E_q&g3{uS!Rm{t6rwhycLYyPaVc%t1==f|r~F zqsz5{UWzEi8m2k1f+-hw5Zf|it?nKooXChqy3FBz&?>umHXCI5f~4_0ACG*Y*xHYu5HKIwbFCzR?@ zh?SHQ*%dkh46zl%WsC;7Yr3Y4;CvILB8jvAyl%unt+2A?`;aI!cnst}J?yh0IzZDG zDA81v7uP@Mcs~h%1_D_x5GtC=dP%dR7@f42pPO1b8XBexySb&90yrA1n=0y39`wq9 zMvAY{D4Ev-Ot}kXrV%_ez`JR|yUfuU;j@dJL}Q+5FU*=CRw)%yOgQ1VCli~URY4S9QwQu?g`z6&BM;ML{_VVz*LA zu*9}Niz0oP_**IDh$H4qvCuEbAT?5ph65oG+Qx=8<%U-a5x*3a zO4PwyGB)e>U{7Rw*jB+|J8k?KZ__~kZ`!j z9ztrjteb~}6@A4=oV=$)2(5dQT|!8(?KO)Al_&wtPggO-xH^8w_eK(XK6w(*6Wy?- z@Ws1mRo>B@%qbo^%B}+FX3Ky&2#hXn92cOG9KhJe>e8bDqYTfsEtAQGl9Z(U%A~ku zE_~b;z6;2vCA_=(#hRdZthTv~=SEN+mQNLq&3k+-CROlAe>do2c_d>4vLNAG9g_op z5A#3w%e@Ekoa>vijWbcp`7RuggWlndXYtCLq?bXl7&N1oJ<$pN)`LcDFZ3d`Vd@G8 zgFic~kuJ1__yv+VlFZ6HF3b%7Qkn|2oJ!f|oHSqZL@o)F8@$dtB6|&1hv4ue`WX$G ziiRi&wo2kt8n(jQjLaT(3$)5SnRCPS+^8=?WId=L4keq>+r$nFA_l@THO8AQ6A2^2 zV|I5h(26l8^2vB-xas7Ma;LY4lHJjlIB}~m;#e~F;f{%#+=b&3cvKi5T|0wy07{@t zXeqiVttvgY4DX|u=yHw0^BJX6R|r7U!h^>7l??3+Cy{BpONzUBoQ#H9cKr>Eg3K1B zw3)gx71RmUa&SS?$#43(EkU2rA}7Cezx4 z`pKz%C^hAbo+!+F8fLaK3DmGX3?VQlCDB_CdSYH7<-}RD_d?Gz98aEDYO^+r{cMF4 zvdePh#I%{>EiQO_b-WioRTu+bAVklKm@s9DxUQ~f7tT1EaK0Z ziv6;p09!gU-QOxo1Ey;?*aPRx2yL<35dq-Sw~NOKzH@sVJev6!kpVA^F|e^|u+JOm zdc?(3oHC0{xFX*FArykYmsF)y+Jx@ZTuH96V7)N1>__c=fwz8vguvtXViYZFD|qQg z%yb|S^9e@Y+~PV-4A<`6jdA)r1zsT|R}O#qvNOom3ts-^U@qB~1q~G7pFH#pRg^R& z-`bna=51b+DkZAQezxp9=cC8mz!Nkc3O!bt!kTBZUBYkb%*!q)dGxNuO0D4XS)DK zfGrdt8&>lFGk9jlgFd?n4q49f7k%tK$%O5H<#J1{z08WdDOU)V)b@?65;sgv10}@T zn<1eRvzucSon!z^`8bcFi<|I3Ah?0v*lVpe*5#);sx@eW?B0Pqvv19CoVyr5z8EJU zEHU?GBdZA3`bODTFWd1Qe&kM~0Jw0A*qvZ`Td|JwVk4}A__Dk4Va{1&J~cWowtk-G zAa%i=9iQ18t1rI`bPfm<6lQ`7A_|BNh>M036poLAj}u@Mkdl#>3Re<+o}Zq6qNAjx zrlX*#s(q(^At4qx9UTb<3AeZgwz#~sv$VRr!naci#l;E0$q5n65eCl@(#^ZHyvPYB zC(pY72fDi4-_g+I;n3N)&Fa+O9VgD@@Z8Mr=E2X*w&VNd{rk+$rcDE=t`=++%!<7L?%r)_)x zH%nMOiu?rLrEK7|`v;BTJSt z!G8pXk%9*J7YW$Ue?J8U3k;wYDNC8h6iof~H;5o+#88NRjEDdqB=HF%VI`Qz_rwGW zXrPpV2Znc5Q=hyd%PheNvx_jtK)1|v*xd3?EzLCcjE&GpV^E6MWTQ=Kw`C_}cF{0a z&oDujwheaYSR`0r*%?Glazj$7<1RWLru6HP!l@nr4^ z>CRQ#T)F-RL~gs?0GUT`$)?0M(*R=tHt~M;*+rKD(Jn}i`SMPTxV&S_!st+B-HQfA zq#X`8yyD%cpn~Y}$LL+Eo&uJLkf9{+wTDT`hb)pGA_?;M-vR+TTHwb7t`f6<6d1vv zg)T#=KqZ%4@*gD?qO3`Wovea$DT|`w2?_(m(wsF|3QMsu#vC&R!wD7tTMQanCpK_7 z15H%yblQZ2ncHW_EzLVi-UE-BrIpD|!0Py#95X;tDWpJzPje1F1?{NimkC6{HA9X+ z1m$4(Sldo>RYGIy=CIC%07-5Eh0_Hxoi&qCIt{A2pOgJL8M7$il+sFx9>uYFke(5# z?hi1qg96}*+SONKVcPL|9CJ)Ssiw|(QmU%v>#9deFsG5M*N?-OUV|$h7&SYRNzJfp ztN1-R?%0*Cvpu;r84w*PVSxNWdh?i>+Uzy=YU*f{jcCuXMrv$DuGMj%dg}TJyL#g; zZL~`qxT%-DMDjU&`J^)Z3e7iqQ6?d6E?1rNh?z*^5QgN<7}Y}m(?phmHS=}g3fs8? zQ3im5Q9bR31`64u*5jU&2_j_^qK|#>qX?MoY-R$onbUBXDNyW80D?e*ARP3cA>IcO z5-QpyE|fI+P~Zt2`VbSNcBwuHXaG294n)$SwY7N-8DQfe*NP!Pi%n@UIbugJ#3Z9_ z{m&k%$&Rhi#+Zl|Bux0r6>@Y{kS2+P9yHpX{`>(Di_D{vhdU(W(6LD*wUI`V>{fHU z!2u`jV{^c1-{)4@7L|}rQCn#V>PkX`KAEd^Z&KY&gp!idCGR`~N(vMt#Q@#ujsa${ zR1?pFOyYg2QOPq4h+yK93t004Du~mnrU!&>defV0!c36=h(t~+`Gauo$d%)uK?iG8 z2SvbmMiiuRCUz-72~D_X6IL~XCN#kZ{FI&u^Rmcsd@EtU@ZYvjl%ja9hBY4%mu)N< zoN6h-O{6)&JuBl+B}gL*^pfBW#*hG>_#mH6fEP40*bc4*?lN`}2oQSnn~%@{2ZeGC zW|qOPTsZ?E+u9Zb2kH(wG6_m%N~(6~)Q1+3(G*XG+7fd(B2TPmK1Pd=RwJRb3A8K` zSTy2(OfXgo&@4b@M1`f+8cjwi^D0jigwM=?1TavbWkm#QBPJoAl=<+7nz(|fpgAf6 z^ue%(Z3!$e_D(j2?VTvn2HC#mErj%_MaQ{K+qxMUwHXc%7z1dq2m+dTHR!W99glfoz;aD|cEc!eX46cM4VHgWjp*FWQ5>FIjtD8`Y7(V}#igCm@MTTj-98!ccRs{OK!|92h~or;A`8Tvxm7O+|N865jA~ zpuFWZuPP5!s+&o*t$r8)1>{SHV^(4R1CfFP1*F;(t$@P6ohqIVp(^01mPaWDwx%{e z_ZGRd$(wBA9A_kqm%*vYoVPvqJpZMgFpvQcW#CWF%W#G%U~CE}p3AEC>4TyJ^yn{s z%aNU=3mkD{8`g4%)cv?n9)-qQjFC*NxB(ZB%tEJ|i{ERe7lD6weGVRVLr9}6<#}3p zGSxnDu9NYMH>dpMZE6+*YWZD+nJF8$wJbV>+D-Y9_nm*Q*d8asfs6&91$qvTpSLpk z;~`IKS0yx84gJ?ih~TSN6hWhRMh3Db$N>ykz*RD>=}lkS4^I>TSvMd>li`&SMeJhd z{|cW?4A#BxJ>7}w{G!D5;+?AhjcswhHX|45(Js~N<{+1|dZh?OBq4<+iiWl!9O5CYCN;qq0yw|{#Q{%}16jYY7af2MGg3m$ z*D$n27i=I(?Ck{COU};Q5%TkY_)MOCUiYP=`0b z22>`FGi5kPpzv!DQ+35Bzuj0<@+%(pg`b%;UN8V1u`Jyj9v zCpo4xP702`dI}nRA*n*t$f-(t$G--L2_Y@)bJkJ9?J}D^X zC6t2Xeln&#dqaLjQVUZ+2202vCV-n{g$Kzpg#mSyRd|JOVR%AFBq@|WVp*2TM;bi# z7;NePD(&eL2P1FY6cVaZLCb;wMb`u>-~%T>hk#ixN#GL*RG3If3&)U_9U4%N2`3uZ zcj9zD(Qrb%0EHBljE%S;gD?e8;2cPzHg-k>G!S``$BC53sz?e=pI9NushpDVRlO)y zwYW15z$)*?S*^SHK4}*jk%OOI}p>FPn7u?4z`J;8NQI6Xq zCH?|RJ+)yK<`)h#4)M1~>JXk^Qd#7)N#I6Mvw#COSE2l22TVu?X3!^SfIuU_n0k`` zT@6?|9T)-vas_B~qKyZTP!Nn1_q`r#*2`bcvTFHz+=E0f9PQCvd2`ksI`K z8R*i3(r`TqgAD6O4o$$AWlE{n6`2FIL5<-XrO}VE3yx@1lDKAyR4zT4WEaJ#_xLam(KqA}l&8@-DP$XH zs~TwQEDtp(pEH;Dq8aF!b!P*3fES=ba-LN3D_s(g!?2*yu{Fa5C56}l77zwcX?m>4 zA5(A=bje_>)JiL1P3xsG7RgKCRZ7PuE@X&-9FR>3h^p%aORKuPHuNZ)tNUJnMk-6Hv~2+=+awpy<+L0zuol)2sev6)@Gm&0n>%B%Wl&OU z(qjK~QvPIxXi7bhAr7&ng_@B+Xz8Y6*&K9JXI1Aeol`x3>K4@lI!4$3PbLAldTC`` zK)7}o1?N&d7o{BB;Ha~39ECTz{DhY$krS>{4u3=|o68FjrAr*J0G=rb8)Cgs2oBe} zV~v-p$~%+N|Cq_I)|cO-N8#22}5&fX9e|TBP<(qsR9R(O&h5H!oA$OzeFHok#J_v zJM)FJI!kH6(}HF|JXaA+9BMbngf7|W)u@@VNEH)0V1a-P}&+1fB^6Ev@n&# z7$FU$<)8x!NP85Gvpk$k$OZa35?OgtT&x0sdjU!Sr~;)L_LFW>Dz{hD8K;qmol#?* zn=tQkFB|1P9jh*GF#_mvU4QFO{WPe68>j%)1$rz&Trd(@w$$TdKaiLVEE@rFc$NQD zWq|s(u_Kur76DV>6E`B7+Ci6^Z2|1TRU$xWqgqN?;yt>MjAf=MS<$PmOA2pwX}*aT z0>Z;Nlxd$ZGLN8nQRE1nO{;j70?4WW1s%NmLEB_8Ag_1-Gpw)xxEnL5T+54qYJa7R z%X!;~;H<5{o1Eq}zMIpH(t!cMZ+3PXbigCkd6xfTS0}@N2h$vsWuUhLRL@Y^L#%Y( z6mwx2N4%nSZ;812)t%8n&fpD>^TnKm zloC!i2cV_Rw`;b53|!DhgEy|1X)JLxIhoo4XTX%gDy$4p693krMC~~`acAGfz#L!! zU$>?M(;ETkb(}F?ds~_cNCV#8fvaFx2{$6j1gn0)s|M2AE?lDvUljBbiY^HZcVkMZa;O z&^B?%gmO~YWL^Tt} z_s9jV?Ks1$wS84t z#UY?(%70b662b$wyWFRjf}sLms+|h?MFGM6L@{t53!n%SupYiRs~OS&KGRi`P~EEy z<{;gPHA5CizF5j=3-IaB#&Tznh|HG!Giady(GkS~&fEdx9a=RK1=~h9Qdll*NIfaH&hVntb}^M@ST09gE*Ee>G#^pef*gYv1;{mzoizpDfCG**H-I-V z4l`p9zEcA%Bco{mBR1mNCV25j2RHx`4cadq(4`O@dt{*A9Sa0gU~hgZf&B(v7NDKs zy{2_XD<^;ePsh&6Qo;&Imqw1{p)BU(;krWW&yNOqo$7;%)m>nyf6e@@FZ;s(#ovM=lcCu6 zbpHGg2xL`BgoRa8Cml*7N(Lth5ebqV1~?sPRaInUcqX1E0-$AfNo0j(hFp@7l{gj_ z0eyXb0|R|D4-C4yyuG?-8@vm$#Kp$43%$U;%)1W*etpoi3knnyPZZkPNDiN&pW)&r z4&@Fr6bd4t0`2ba@a*loXU)O8!?wq=w6r_%0O64{=U_uRbrTX!xVCNEgdKLiwG(&l zp08)ortOnuiw3WH&FGyeM2L?6qyz>|s*EJbz?6|?!o>t-0?(#Rn(*L3mBi%92nK>a ziV*3<2?LnUWLnB}X_7%C2~|-wMdeBZ2eKZR!t^H2O{JEaA}Qm<0i#+GjL@o;0|F&7 zo(}37wQeCUs*V}}3N$F+2q)-3wM#haA)^U8BzSbRWrC`Y3rmiw%4$kVkcdW@5)d3f zuuMCo#epMhX&f9-JK~aQa^Xyf4j@3l_5g?57HGgykt?Jsup^qcJ_7F58_$5e`SR!kL_5B3eKhpw&&#LBAXc#e`19)z zV4(^F|CuPIR3?H9QlMP_Pp!ok5LrcV08kI^bpTX@xfT^lP`Cq1XYJS_KvV@b)zp7g z_;7(*YGnn4Xjq+P00IV7Xdy{uRDqRIiLjLj2eQq^!BZiM*cE{QGT=iKDj;B@4?d`% z!jTc&Amx-)RtbWXL<$mB1S161fl-u{reXw294Taxf}EkHT`evm6iX)=@CpZ-Y~sx~ zqL4CHT_~m0rz@}s7Y!}q(HGyLA3d<%M#uQ^5q2}cPM%P0FH!55@nzg)MI{H)zS$##E5N7GlgT*nm1vaM4v4Mwbuzmd3itw zX#yzZQ&QEH5@d>{v=@YF%{63eIN?juAZ8gA)By@|z+hHNB2Wb$t<5zfA$|6>m%FU= z6~V=Z72+-=iapZjwvF+m?#e9NrLCX-q9pUb9fVN^suKYO3MUmOAsfV689>R?{K;dtNh?W@HO-1AtK-Gawlu3$cC(P<2T4 zu*Yb00l@b*Fa9yW(S3d7r;k2)`*((bXA%k3!?mfXI1qb<16MV%h5l|o-z*@*e02mGjkijCp2%A3k0gbwWL|Rr;Qz5>9F_^*ZCvh@B z60Aioah%I5Nw^j&B;k{IIpPtBh(HHOLk6YPPDBQi(PO44v!ArcHcAL$Q-XvOu^cQb zXu0D50e}F62s~^y6uKON3{e=5@nvIvF=7IaW*49g1rm$FV`KDE7?t&LUEcDSzld@I zDBMg{sVYTOvf{2rI&xzlyVziebel?A5&^n_1r6}ykzNSyRnzLlakOTfu?eSstwN72 zf|C*9)M7Yh_)jxp0EIrV&29DbMF3V9KU**Wg>TE7E@HvUSm37*EszBbLJ)v@6sZaW zx|fI$w;-)hGm`H+Gp$RBMk~j76vKVCZ!ve7SjsY_D zsSYp|LOO_zgk%GR6Tp)=q&frN5Ywm7=mSuh0Zp)s4`Y+?mQ`5t(w&s+Q$JKB9_+xA zmGtE-CR>d1=ruokZBd(rh{9ta1G9KpvwOrNr-2k{BNvH=Hfy=w7-bVX(lW(zZG?m) zGQ%QknXxm6k0Wi3|5FTg7u8kE^ARG#xzL58>M?#V)7P6RA3#F)lIkw>B@`bxl&rOS?k>PA-s~|DM4hBFh@O*a{fxE9P_iH~v z$%;~V({FzHE6lm|6q$XyuM-D%+1DZ zkR-JzNTlq<3RWy!2-6V)6{h2fDTIO}9%W^uX1Rb5)M6mpiFPSFMiK&ae9!~%t^*io zXz(5?7TIayDP#mAMa8(<5oolWT~SlI?2;8LpYvaqL5&5x!U;UARJnWda1yo!r^GCA z0j3;|f@SHD9G3pxOSY(>Zuz|dB=Qos{;GC@R2ID@a{Eo`xZmL~=Li;?_QWGGP# zapNSj(d|$t*~*qDbdu7Wzyw=Wlr0c$bCgF2ZKi5+;_Rf$r>bzaTL7~S5I*|j*ODYF zUrK}l6l6xgL|`@(BJJhmd1315B_*2Si^4V*+;4MiF_F;Nwt^xVRH#|FmPrh}HDfbK zn}AJl^viSO9Z5RYsR}AU=WVk4im2s>BP~d!pW1Lssx=oVJA1AypgWvJ&&d2}1da$v`AsZ(f~Qajp} zXawn0(m`RzBm_j^cS?5XnF_`r2PHz>5C;1QLi^q5$&N5uvEGAB=BLS`0kmW$v#nv; z=ES&p0iXxHEMg84|11j6eaN|fQF-7#fc~gRh3l~b2-Q!3Dpa3V$EG#pfW0=O3YCJO zpfY6eQ4s`zzM2591pS2NzxC9r_EfTF08Dxib5l$zs* zIFTV^k=-q!fe|syo~ihpd30~rakK4O#lmj^llHg$y1Tr|@cM`1_&<}x!<2H8Vgeo=ugaY%?15dWrdEch1; z7hU+$WP&hpCvpKcxF5$fdND^2?mrzl;W9FU^%Fp`YsyF(7Qjr%)B@UQ zg~ybGRCo;b!HrQkN`oQ|y8;ILV`{&m4GQ5aq;?I!vMUGFX!4kX3d8`=&@9QsjmF?{ z?lB7sPzM3AAsey*W}tlXIFGxc5QYXUZ-puB2#=+v4hpaU*tj3x_;Xgsg)~3|%_uZB zAVhIOtm#|rsz-F3( zQA$@`yT}2wI06W@i?z6PR>p~Cq%>A`8;ubEc?z>y7j*(_sA7{SZ}68GO5|pVFbOj? z35~QEhj)056oEnME^Nt`^R^dk`AC_O8I0k1HlN9cPDU)O{hK@ zxtgd)gsj;&`{9dUm|bItZf1Cf4|1Es=v;3EhYAN2f;m%lcu0>14|u=@eHeit$rglo zVz+6CUSa??7Bp@sG&qu$i}59kVV#c%7>zJe4wFw^wmMC)2(?LKkU3;INn)5ZWG8Y^ zvw@QYrDIXR2CX>5$Qkh*nG{m z06~YM8M#X|a2wEhm}jY%Ce;Czw33$OkrrSHk^mVKnr{tCNRL1?+vA=W&;qHLP6`4^ z9HSV?vz>7?lsv*9yQmgPsdpx}i;KxHCiWl?b6thk76(XWKmadF(@tIaE_Vqg0*aSq zDG6xMFEj=TciBjZpl>CWsV7tas><1$MZsH>*cdPA7=i^SmtjbEI6@tAGi3k;ZfI_W z`AGT(tmU?t)Fd0r*j?VJrBwKF%32)bH8x`PUggmoO~f5&P$>+61gP1A%G#~2**CDc znE}8|ApnNjrCqdHo4UzJ?Gzy`(uUAkoh`UAj`2oEA()n+2je0Dy4nueat2&5G95@| z>w1Q6IhTbvFLH?^iGd@z$N|U%sF;)d zxno%|1zcbj2e4fipaP`0cUCq=UZx{V6NpUtItZGew#lw7m=?Q9fx|_XWXh65a~a-} zZ*3ZfcoeKlbOq_ttx_BRKPqaDhQ>eEU}_*VrRWHwFKSiu2x>+O55%G&1jzsj;7X^5 zXa2Z8(~v4AKn6RI4hY$#V*8@&=(STSkqN;o6`7?|8$aXPkv29mzdDl9_-vKbrCpjD zE*Yyy3ow*wZZjnsZlRtz*(5W|I2z+IGnG7T8IumO2uxR?cxRwYl9anhvsTtQ1bR*o z3!qO&VNn@0=2kvm8K+^1JYz=6Q{YRTfxhgyk)#|IgN}#m|poMfT5w7ad?n> z6^GdY-IOz)QJiH!24y*LGXt!8`i741C0|!b7CNWeb#Z|kq?w7LVZ#s8AXc=5HoC9_ z3UGyva+UFzOU(;`Vj&GJir7@z}I-LxiK3ds{&8J*2`oks+TVB#f@=sAi&rpq=PXmL(n z#y#ky774!vrD3POW9@4IWK9k!@O9;ClZFiD2&6X z84?09c^XGUyQY)C0hK#b-2%BCTCXG+oilX>Q0u>P%n$v$q6&aiZ6%{gC6NsAjuddC zOe(ek!2o1{y>3GRlR^v7kXOs1HhwX00lHk0Y;#Fb}Nq_#K(FYEDRBQ45@rr zI>!d~3Jd!GtI#;1s(i+kgc_|}xzU(!N)weSEO2XwPC90%Pm)e5z({YjmWt7cwWS&3 zX}Y|KPSWG)zubDzt+|Ea%1r!Gt_U2`Tf9BaNE!~zb`Ff2i5V2t z?1BmBf&c8LLmM+8sTg#?1$qz$T+ji?IhakGa0T0T@+!}W=)iDEu?hpjFg&q2!Za&l z6cBpS$PBuyd*FiQiz=!rP_%&Uuw5ObdAc_Qk% zAivonJzJe)oJV~!G=YUf4yvb}8@}%1Gy+@d>9S!3eh8Bg&sVrC^ z+6v(ky3t5mxOmM+TeMtoE$v8*(U$R+6-ctorh8Bc)daM-l)H#fY{5Ct%(BgF zMv3~UX&6V%CV`o%opT7wl`C$`>(7)Br>ZKT>z&?^R5GnfsYjG;?L?FDB3t+^Tk*XA zE!Mje^!#YLx`(;lf(-Z1&o;g+%XV%7nUPu07iZ8VYS@^W&{|q@&>;fVkyF4x$Gx)GX-u3$TVUI)wXeo=QL7d__0pn zvLp+$HrUmr_|->jgDs!}a?k`9VAgDI=J2W3HM=@YSDQO#-4O%VW9Xc5w0~{QhSaj48a**x7*E5Sb~O63F!k5DSq1Kh2^- zZoAnePT?6b9H6}oW)K5rpbbl^qnpmhsU4AcOla8Px1(I?T!`XnO6aJ(+r4(i$c~q@ zDqGSlmu^`}9qR*js=0aEtNTY|$Q>_&YRpe5v(SyYGizn2$WLu;n@mU5YY}zD$``gv z_q6#`^#{_Ui0nh^G z8nP^Yo^wjlCJo~ajGN#)uXEj-O{=uB%q=BZf$c(hF%t#h(wn(CVZ&l)wHzb^K2>`F(@pUCI{sellly*CvJN#@?oauAI8nmOKKoB@1_iuAD)W^?xdr+|GB-4c)x6 zlo_>mBE>MAv*+5Tc>J_<3UqOhG@-`2 zl)5zRgNFoy3>4Fi!Q+7g!04gJPyP=@7>SvlnVy_~JcH0-qF-9FT=Jw>M$BEn55S%} zG0}{m-RQZe?~kV5Jst$&dpe=t&c1(BfYR0eZKcCvVA$!|0(GrSq?LZkv}vtgF|Sje zmxwxFI!eGrqad|LAUO*IR0QyA=rIaWf&)?l@-I?9xyll~{D%2LZjVWooKCQbcAPPd z3i+WW>9(4VjAAutBoU#898Y82X|@n(zihLh&$pU_Al$vyw6^@-rcvCh3wpl5`@x*Y z^lAo~Ka3`)A5e&FmB)xZeiFpAMXMxCt%nS^UNYaFeyxJ+U2$~{M`yvFkD(RQ%_pkU0o9Mx&05J)+*GvwEpB>p?pcgdePpD z`ExV6X`!!d8*a+P9kd2F&3LSZv3k9RL%aaX2yfZ?G7_JjL7|w1tkA9{>&dNj@ zuRWG-AwU2l0-EYvN|rp+Qp1>53n9>kLZ7 z=Vo$se=X~G-DVY726_tYr-_rbwO7j7G9*{b2Qum{>`ej*tPC#oFW*{;J1oR8ec6;= z%ZQu#F&pO+@{7%d>zS+#p`l63+LV*?$Hg6rV?}j%v=`6o6YeR=ESY{=AR{C`JH8LB zAD6MV3%{RvP!`d>qGKP?A93IaZgduM2n^CapjYBKxIZr`b$(&F(jm81-Vh&qRStcd zDRj;Ee&Kh!$RpOP+|TOX8F~|U56ukBX;x z9H@^KT`*!+a)FwvHQ|c?GfmZXN!^hH*8ImeDcr+OS0DAiROkVTztZ55*iGM4j$DnNS?`?|m&1nUZ z7u*&({wunJa$=(6nSsHkI-C>F%^reFUt~mepvN-a34liQ-px-Al#A(wNo;7v0n7?| zXx+s0Ok+j8PB1r{acnnB)68cD3T+gg5$Ju^Y?3^IoNWfzqK{rCu>ffVmiKu=cGt`g zPabkWbZEWoQ}!A2OJ-L-6Lb5gwI3xYCspffXmHG^%3wf0GM>BQ(=9@bYs*&Z=Dm$I zIcT*2kk@@;9;%|xK;$i~o+HX_^sp2Vla#Po;tc91ZhGg0c6?cG$acwKSYBVEG=Kb% z8KIXVy2tD39Fj6$OE(t1fJ&{*u2sqr~-JKwtQSe?Cs`kJ05b=4?Em>*s2kXOSp zu~H9XBD_eEDX1A=I1L1#40j3E#T=k*yVVY)h*w9?c>-^+hmvEqLIh6zhMBEr$KqyD zGr_72WJ9w}LCehu{CX#jZlQ1|Y9#``{WS<5OE*7F3sVW5)w}&%y-uZ)xtSKHPF`^( zu|jBR;Wu2_UrEP*$0c?iKQ)gkP0LqFSQClHzUBFxE=;DNugryi;maHGdO-N{RNT@6 z->gxstIInKLm@Puca)2ybj@>{HU~e;nAzZ;hH3wx(R(E7DJuA*4;5~fc*Oa}Uf%|x zkV#wA?uE4V0u+Z1rJH~7QMdooa}KpYo@jI3AS3>UWV6GPL?l{TczL(ry#CX<^0^I1 zB#kS9yktvLf~cATNjvL>cLZIcF(yzBuvC!*67aQ~1vPV?uzbvTthWooICW}s$UIar zs9g}Wza)JIkrg!9^aY9BZDK{!=C*8dm5&r*p1BzP{c$L8BjjEZ(GZ=dS6T9@$SUCv zm`A8U|K(v&Z|Mi4n*%BpFw?KSjImISE(eDIgF2j@Ra>$2Bh;i=V}3mUoB;Qaicfc0 ztCva{g`|usOMOlURyoG4!7mUD-5jk8FJ$U5U%AEB$D0*4zE^$_gH)awQ2u>lix?NJ zQZ8hB{^;6?2R;WP`!6Ar?wnm6NXrWOKE9p&+55%tE?3ge;N0{Uv4Y&pf+kakz&C@h zr|%frt$!5kyzJySqz$p?TM=@c_mf9v4R6EF6(%<%@&7;rknQg@5x`j7uKI?_s)L zMj)YA8|YHbhHq#7?04QD9lyV|2br_I%yoIe2t~@{D(0N`8y1>8yt5iXq`PXoa&>irrW{ScS`s%clcv5q!TQFzX70kh_)brHiKW+2MCs?{k*TOo30DU#e9~V z_N3{n5i{vYgV)jT-}fC7`8hddt1yPUXTB`h7{qn`5A9j!soZ_whhg3D;<3)q>3QA< zC(VXRInjS6SVzw1XjRIAr#X6r9S1jt<;OPfwdIv$;R+YXXVN=Suj=;0>8~pCnUz(v zAG4E(J}_UpzMeVFTY|}4SDi6dWK5GZbINr-HYR+I+V3s32>B~aCqb8| z(HYb$it^`BIpL_58qwrx0-)=T8eOpBAygq2t=Z0`;^C$^iInPwlReE3!^A3OLK=ds z?vAtBQCZElLyl@#ZG|+QlZnQr#_um^f2IN}mM)lOmdjt|Zb{$Rk=IuN28Wo-{|wR` zD+-GYBZ#UaRcXSxz?_K(u~FTCMxbnOtXH}0rR+7Y-0xnwNw$T(fTSSlSa$jXL9P%t zE^)9=t~{{BJ*E8H)o!3{(-}?Tc%=VcBrn@-41n;o3qEe9TmlsIa23<`Agr_EEEdC@ z!>rV_&`AI>#~}78ca3#6)&~nTDY@#iZ_|Tn*_Sbh*VYEX?fP7CXqhREAJ+)Gu%-yTHg~33i3Gx~hQz7ilakw*%@mVeit$%iItkm_%#kBu7)vyN zDd7pPWZ3pCW`SVU)7xpLxVh7`D{_Le?nboekU>ipISXSSPbT{jUHk8DZrd#Oh3_xv&%)5jxr-k@f4mFmYd#jg+v#Pk1i@;I=d%1y61g&S=e)VY6E53!1MrG zCnRWY1Y5ryOAm`oc)07HHLfNiZ^}UQ<6_yv zc%v{p`xP4`8gz}>f<;lC9b!rv7-e3MkYCJm8>)>C)=csY#W;8YP0!BrD;HVBEeZu> z5yHTq{jMHu&$PHrOEwz#{odGhKz zpv^0wPTaW6-S9N(eic-Wo%2`2_BFZfo13GZpMdCcw}cU?bx$1p|#t@+R&_Mf+Y*tmP{Edq}SPpPpk z?af&j0f6>%c-S61XmB2sWU^{B|9+;{-c;Q`#@EM7>}P|m+FGfyA^ACA{30ZN=e*V} zbG2`lKQ!PE;-Cuqa!%iqT=I|#&VUD!$sFluHsYSUZ8=@r5f-I@_ zEWVxKb0L*ZPl`0?Ow9;+fGlmIUcmekje7v$SE=>L`g1|QC1uiJUt>P5NmBp!FmL+; z>t9eyaC|*XBU+8r-~KbCouEGm!!L#U5z*{Jb>bneVQYQuJ7E=?7?!JfS)Upm7ewwO zyK-lWV=BhPpeOe~hf98QLVP`J{cn>9Xc77}+hZZB#=sF5UH%Aft#&Y$hz~7=OCi6v zcxvo{E>|AOpa7_NYiC;15BZv=W~#flyawgNaxuxj&n~`pJIU) zjdrScySgn8kZz}a)On?R^Z|))jq7fJ&BI~la}`caFun~FKSlq!g%NARz2eN7s10;2 zONkxuayd%P>}zZWHfAJNHF-Jt9Z7HIHdariX0rE`xcfMjbH>;Czyl(p(wm-wd4Pbv z-eGdJj?@_d5w<#dnwDP+{R#_ zc{Ip7|Ei6pR$k3n!fU^cWF@F2%<_Hv0#lr3`I^3?O@Em7RX*W|1Us{S{=K<#7nXKk zxxJ*y0lviZVxmlr<>N1%oE93SL3^jGES{lVU*5}Ind@?|XOno;C8&=#aR<^sy=D!% zW3+o5_>0rSQqq!SKHz(ssN>#8j4|&J1#dY6d~IBhQU(2b-DbJ#bjEeWWUoK!0oe+* z2{G}k3c3NUs%p%u7n%MYPm)AgHve>dQ$lL~*7&R8DR@Q=1hX2;b}?v7^8pp!EY{67 zIT-s$5EtvTscsk=OwaB#>9WgcLm6h|k!SVN1seCT3?Gb#Cs=s)GHNM`H*~gS1H~(PtRzPo;dgHum)18p~ z%t&gU_!@PS%@Ifx8@>V8>N5)Y(&xHS2Q+*PR*4o~ZeH0bSM6deR7U(x(zsQ~_GX{w z99a2rLOJao6IlS^NL6daX>fgz`%+|}HK=~oKpj!@ia>ArxmGYsIp(9ev59szqpF?N z%Q2hZ)~&I&P75-Wf)pR6o}BQW+xL2SUL)}0CH$>#s2+<4m5X;GeIBUy^tbnZeE<6T zCPJ7JcmHs><67zeC|I@p)#7pOk^9b>aT8I=(=bo{u|D!e*>Y5?ma$o?z^5YhOCfLZ9 zI_1G9^A*{s!MAbv7_~C`7<{kt*D|ug!c)D&w|GP(LE|vtr5jWc`IFM$ZZ zE=ZA{2g(l?%=%67ijHa_7A$6PFSuV1(r2OzpHzO`_^c5$iP%b*8sn30&{44|3rT4i zx!Ql?jrQx2>Kxzw^(LC+eT5l(TFEKinc5$?C~)fytI>GoyG7%exrDI2nRo=ljji)h z!M#1TFRNR@Lf5~wu(NzRm-x`Z%Gy;YbpjVN>({i!{HVCD}VMy&gYz4u$%AQJgfcYb$I5U3FH3Ezl+1Z z4@?pdZY^ei-*@gJAv!{<&vfRGdvY%qyE?=qgMyKB#c2JU#}MbXA+xu>&!~UW_`-=X zx2MC5jvjBY-}P5<`Hg-S{;7ZO?!g)Elly_itGJiGdCwo>rl=0PFeH5EV)o10D*cm2 z56;qDo2B^Qol4HGUy>am|DONYx&y-!Xv;!>G{iZ!98-QQpq>DfCBf_J5OPi=%Q|*! zs@BI8zhk(onG#LVoH-nM`B6CS(E6`}VkA?cub)Vby5(QIu5Ti*!Dtnyr_iUBUxQ5g zy?X7+yF)^ERDrGv+xKB+>Em67jQEWwN9H5t$MTPkQU4v+UOOpv=|(?!@C-4zo-H&! zoP9zSX>TMpg)E$f8XYKyu*Mf2eF+U!H=8e(zuzWj^7R(Kz&TyI=XDSi1wkc{=#o=X z(^8Vs>9DCeX*mVhB4`PgP%Z;yt12NtYpSZt@76bz*Qr%u*f5xq5;_7_p&%QDMF~BI zJ%MqEQGH!lQ11t8TN%K6aB`^ zwQzpj?&hUfV29mB$+b)SGN?7>w9FI{`fr<=7}lUdx-9v{#u z{?|QAIf@hV98RFXeHgTh-%fZs$LlQQF^_2n+t3Q#hJ*J~S{7(W??Ke?s7%fv6%m-o_J{KLug!~t*lGSDt6gV zSrt~eu=d&Wy>S43ClfRb zOYxd)FZ?+BoeMN%0o9`U&T#6KK)3a$N?C!2*CFwX$P(jYZ=lzW^h3AZ8t3|RFOJfJ zZMWu!nPoq;4O)eMq?8kfq4|_Yr$IV30u=%|;|w=C|0V+4b@hzoj6W0BUiW>_7g%}e zq}eOx5Hn*Ob>wDNG?^IY;_zfa`wx>k_=l;mdAcCKrzRQc&RiFhRA3I~<>(fs{!}o2 zeaOsVx@4-P_x_zuq>tLNNoi;c3mmKqSQ)#)cpn=Htk%!maqNMX3bv1`9NpLMDD0iQ zUDZe57X{P&B*h1pOB38duB{Vla7F6`^Zaam!7^0pKVsT_!Oe$t8*f|N_CdD{iI4ZP zb$!O5Qq#Ujy9GQ8ON02(j>13vXC!{M{ze6%pc>x7cY?Yja3z0b`dcOEv?7Pf_v`2| zpMkH$9`RRi0}c%qN#iXv!4f#=0S(m2_C|OxNG4&M-hJAc;{%yi*btvc{HjflT9$^M zj5fkv72J1+=(K1@gl0gtc@QwmO7HwVA*Y6BH@oArL&L4VRV8&W()z)Iny38 z-2pm~>t5wA2dX7R+`(KHV_b!AYZxru^;m*7N^BnSE3^$a=9HvN(B>>DFkWtpHHy`! z5Nyt2kQ@fm_rC%Y;u4GkTTEJSRhkM)4rrim#GjM6X_dV5VU%rH-svmT9J7M#KQu+U z>p&Ky3rNAwiOz%s3k{dQ%ZTPzb?3as?fxPan?vlII$dLIwFL6GO(`BB6-9BZ9b#;e=PWhU373-?j*x%^&v-4=cCVadB8M72U&7x`raWwdJOKvYPRwuAW>R_C5fR_l?NeQG_L^;P+VpPw<22E>1 zo)hcYC7)6ujdt7q>O}GRpsXNWhD&y*BR{9?TbqjM~+*uIZv1^Q(`r z0;H@UY`jcTv7wLTl4x_X=*pUq@1A-}rmiS^H~+Ztna63b#1QPJ}q`dk!r= z%D!uK>ws{oy?V=mMC%fAQy3R7_Abys?Vk6VhgJUbz|8a*pz5Um=?-G^>#W?nvNhaZ zB3@HP)=)T2SZq;~^$L>EX}sN}FIV=WSw*`C$4D&K^)b^-?F*Y7N(MR3?rcp6>&T&L z)5crabyIe(jm1)J11J!x-807Vr&K0u%ovT|dD9KC-?qF^5ro4!0X0fJK#wG(SXX*g z>^pg~d5-gb$t;X|kkW3qL`^A2jovxU6Xmi^;gcUnJ-ndtg02B=4ntiYUc9l_fX##( z>wa9E_H&bPSRW_HfX*K~em<1kNSfR+ut@qnh+hbmX{go3IQ>f0#DFDh7~Pu(U-mWn z>AX>swRF42LhQ;SDwDll5WWuN;0)?7DREll6t_uhA2mC}DwWQ>yqhtj{(8@7$;RjB zWJo{a&CBKEm|gCN5wg2D|BEE3Qi0}28#_GMCql}}`{H=WnIn}$6%#`|eTw_ai4bw+{@X)3 z9te8+tfVbNkjB(Gl(U*k8zDA!tx(y~4bDE(WY>W+Oz162;ro5_2IB2JpIB$ApqMLt zfIk;E{TQqA)bc||#oLwjbJkCGGTSpkCa)*=DpanebN~iFka+1v3r`pmjRxh*6iKe7A+c5&FDquw zg8CZO{6EANzhVR(^yf1fhu(QB4Z;+mq5Aua*n%5Y57%y9qOYil*RJ_zSFQ809jt$O zmPWaxE1AvsTHKOxqZH98hoCOTat=Yfl3yJ-KSr7Y&AMJQX}0+8T&r>+=D zD$?|*W|TdU{zS$?6R^Z?diU*H_ETEwjZh1Wws{?_8-Qtd(S0AHwu_ub{C7Yia?{3?_vxJgILs^ z?RZ826_$GRxJY6T(D}h%E2#5Uxc*IdcmA zG|4}Cm|&IH9Er>%Mx-niriAcg{AQ_#E229b4xc{xGUFhbhyki0e=(_1o1I|3q%X zI_tDSUukcUFBTh^-$AH9-R(uzL?UZJo2R4JOd{t}sCXOYD-tvroK(-Oc+t!&mIeaY zlrE_=2eGp>O(?0Fie#?Y)qS;#^zw<50w5NIFenx*&_`j!{w|$zwAq~@8X>n~eHNfn z4n#xYa#WbzpMV@C-%{#**c8-s4wdWpyc?6 z19vK8Q5!p}NV?=j5ykFUL=!d+cj`KD*D`9tGp(oHO~+ciDnd;AfQ<@c?+DK> zK8f=}THZC~>_%S;+rIv{@Jgq5TC{VF(_o(fSw-a=`} zS>|Y(=g`~rLSLT2hRrK}kV}Gyh=gr7lZF-p8JT3xJk)?8FN*?FJ7hSv#ZVhMYa^FK zL3|DYK0i(~J*LVJGXxZ|2jS?{H>{&VN=O?N)r}fV0If9%%yj#l785{p!~?+#Amf%u zV-9;GA|U1fdFB)m-2`yLf$F;zOX5UY>+Gr_23-~rtVw33EdU*&esg^UbqOUfsF;fp zs{e-SbgLK2RsKDN^@OL=P(bXrO+#0$BitO3$|_`Kn`Z&Hv(;l~*VO)XbwB=*=TEJU zrOL|pIXe4_);V2Q>y2)v`tQYY`uvXmxr_K#epB!0^wpB-e4OU+XN#HBX8_L8&&sUhL z_?LsBCm*w(hiQ+Sr(~p5HId0kp z%@3~5Coj^mI4y-713dcyf=7zi^?_cgMQxfWghO(FB8z0Yt(2%RXB(i}998Hta-*O5 zerN=%^BtyYX7%4foXB%f&#aelL;EW)CRcWV`TB$CdQZj@S?yCp#gK=tCvHQzmknNx zrAop>|BfBtj1DDV)FZFwNy49cmT7DHeeX)=^5Z->>xqnw@|w)k+wZlBT2$bJ%6Im@ z|Gr8aBr$RFTx_2%-2gBqtH&77-)An&0Z}(X0ho^gNVhE$pJh_3WQ4;q<39yjn_Ap5 zOj_F`nRE8%dNydQ@kL}+-aKAQ_uy)EbpHua=E!O@u8c*)Hr*l^8ey{PiGM|Q} zBW}CB>ttN4OFg&^HcCOLwSglUZhL+A#U&6vsh1dE0-+Z`pV#ROIk>YbU2=xdMns2V z^NWobSfBc=LH67rYEi#>PqFL(6%HL~5Farr+a%2~Uj_Q~6+RO(0OE-o$sYhh1_n+9 z6#l+4-;J(XP-^_O+K^&?YsKOGQawR6Jjrz@g&6j z>6&{Lhl%QUuD2fkFKamNJ?4l!=^13_Y&g8~s2yQ9H6YaL)HmmJT=|YHhfVM$J<|qr ztI5W`i_JUk`gqNHs(p4)!FT3?|9=O&eNBS`L{_s zn+#?HoI}DVAQ7RVp`Kok|GqOTSWHUj9kY!q^#XF6J8^jmg9n7oHEKWmQf!(&<+yau=e+_dViq$ zMsI>gQB&gnKR3s!Bb&^@cVTW0^zI{fCFuBHiF}|Fc1jVXOo9Nk_@lZD_~WYo$K?l8 zxp(#_yDrTahQ2bc-iiE7jRh#wAw!)YL+w&h7Ft)pGXZ#k`t&}tPg#%o2!u%oNlR_u z>3O{03G~ZX4Dfl}t`(xlc{WK4W6*W<&;j$R8y1Ya>bqbL{vM6m=kmi?9Z7(bON^Q(}Fa7Wwj#~WpU~eQk?yZ+`=bIZ}Tw(R@umh6v z+guP79>)t$NKC$9*RrrkgR-+3FEKNlFvE-E7!cs-n3!nl1;)0fsn7eehkGx#}uGgx+yw3g;^-wGw1}Au!Mc_VivNAg1p*<%swC6CG0Ol z+1SRgA9lwGtH+(Y<$waPR*61c_9Qh@ z!N!?(6J58waIoz?M0K)?w&Tn{#`=mZA|gblUS63FzkEVmn*{s&9+?X zel*JA(w+lj2RBNO`U35H9IPJHsL*iFw)cy~F2RxT_-Btb^P@U~7_N~cC`rd}Lq0)Qyr7Y#uwpu=r8rd}~>leGZ zk@9mgzp17T0Y%o}kfqVmEYkamCItae$Rg|(dEOUN(r>0G(#+o|A5{2r*MJw#pRX{2 zBWVI;=#OdmRdUtScyt&N3#_kG*AG*2bO`V2jEPQ3Rt||Z!u1uQWwW7a3|32*eNUF? z-HDl!ak?=xE3q+xfI92)LJ@D@TWmDP?8ebu&7JJ7s=C<0Z61_#2@w85Xn9HfD8z8epb{Q?@U$Cy#qV$63U3VDZde3P4Ksu*)$4 zhgg_mMaWcNaCh61anT4D-qG8<<5%$%UBl`iK@+hyO2f8yny{%>JbH&(SvFmn*1xrk z$Qad?<{-{FxEdBJy>;bK?(ohhfx=Gpp5?9HmD{sxXy1)j`g&3O>0mYG=p;FhdiPhz@RTp=pv6O zrG1^QE54Y!D+%pxes@3KawqMP0}^y`Rmju3+W|N;Ew2Sy7)M0J9!lyyp;oYO1S;r= z&`w0V9Hv^*88~;ToIP+`QLFX&bo)v0f~F7+e~gxdVr|^|rzRb{9(7Eo-;JldU&I-) z3r-9&9$hclWWAdyV{9Ma57TbZa!)BtvIVtS2On$SH?7`M65lcbfI``$@gJPpy&O|9 z$1qw+in9te2NvD|&LGC2J&-ixF2ew+8x#;xbRil-E0x>*z)f2(cGlyJ1}adaNl!=+ z@MuU${pbWKy=M@4Iai9-3nwyy-ZVYWu#$OEnPOgPzbPIBly!D`?lau4lR3|py?J2} zL;>vAe^~I}D4mqq*ctv+;>IN4d{0)t#Zv2!bMLDS@$3La$ZGpBa} zTwINH(1~}VYn4pE))g=8*qsCB3WvwQo}2#?qyH*Y!8`gnSG4qO1MWFG2zm;51nR)R zFPI(96dL+qjC3-9rr^+6KJ5N@q?BY3}wbPHalC! z7!tFd_MYUt@k|P0VU%AfK1t+z`O!P~zDpsnp_)gyOBa0nGyO%vsgs=R zR3paeW8mWkSko)WbiDqF`B>qbwj{6@uc2d6>aU6dBrkxd@9dS(nsDra7o$Fpqn)6} z#7&sqZ!#ts>q`1hdcd zUg*iKnH!Uadwumwb}==2RV^WETi7w32O?7^HCBeceN@NiZ6xBCmLp_TuRNrW;!38Z z10NMT!rDHD{$P$1y^n_h>c%ux6%Xo)jJQf> z-5r#$@TOF(hY9@^6&|E@28e0;IrN1zm_L{|I0atmcHK}$@p;K)5-f2zsoT2g=S<8> zJ*TuCA49A6%GKA?>G>xkVk