From 2485b5c97a2c1e0f52c9fd0e532bfc7ca0d1ca50 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Fri, 29 Jan 2021 12:20:33 +0100 Subject: [PATCH] Update textbook.en.md --- .../30.cylindrical-coordinates/10.main/textbook.en.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md b/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md index 4f707dd0e..e5d499d19 100644 --- a/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md +++ b/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md @@ -90,7 +90,7 @@ between point $`O`$ and point $`m_{xy}`$.
\- The coordinate $`\varphi_M`$ of the point $`M`$ is the nonalgebraic angle $`\widehat{xOm_{xy}}`$ between the axis $`Ox`$ and the half-line $`Om_ {xy}`$, the direction of rotation being such that the trihedron $`(Ox,Om_{xy},Oz)`$ is a direct trihedron.
-\- The $`z_M`$ coordinate of the point $`M` $ is the algebraic distance $`\overline{Om_z}`$ +\- The $`z_M`$ coordinate of the point $`M`$ is the algebraic distance $`\overline{Om_z}`$ between the point $`O`$ and the point $`m_z`$. A same point $`M`$ located in $`z_M`$ on the axis $`Oz`$ can be represented by any triplet