Browse Source

Update textbook.en.md

keep-around/2a7752ab893d7a9f117ba47e4c3b385a0ad7b596
Claude Meny 6 years ago
parent
commit
2a7752ab89
  1. 2
      01.curriculum/01.physics-chemistry-biology/03.Niv3/02.Geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.en.md

2
01.curriculum/01.physics-chemistry-biology/03.Niv3/02.Geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.en.md

@ -53,7 +53,7 @@ To perform this I *need to know the __algebraic distance__* **$`\overline{SA_{ob
By *definition :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**.
Its *expression for spherical refracting surface :* **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**.
I know $`\overline{SA_{obj}}$, $n_{ini}$ and $n_{fin}$, I have previously calculated $`\overline{SA_{ima}}$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$
I know $`\overline{SA_{obj}}`$, $`n_{ini}$ and $n_{fin}`$, I have previously calculated $`\overline{SA_{ima}}`$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$
! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :*

Loading…
Cancel
Save