@ -53,7 +53,7 @@ To perform this I *need to know the __algebraic distance__* **$`\overline{SA_{ob
By *definition :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**.
Its *expression for spherical refracting surface :* **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**.
I know $`\overline{SA_{obj}}$, $n_{ini}$ and $n_{fin}$, I have previously calculated $`\overline{SA_{ima}}$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$
I know $`\overline{SA_{obj}}`$, $`n_{ini}$ and $n_{fin}`$, I have previously calculated $`\overline{SA_{ima}}`$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$
! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.<br> Then we get *for a plane refracting surface :*