diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md index 045c615da..46a81ef4e 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md @@ -329,12 +329,12 @@ $`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrighta [EN] (auto-trad) Stokes' theorem : for all vectorial field $`\vec{X}`$ :
[FR] (CME), [ES] (...)?, [EN] (...)?
-$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS -= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ +$`\displaystyle\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS += \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ [FR] (CME), [ES] (...)?, [EN] (...)?
-$`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} -= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} +$`\displaystyle\iint_{S} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS} += \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} = fem = \mathcal{C}_E`$ [ES] (auto-trad) : circulación del campo eléctrico = fuerza electromotriz = voltaje inducido :
@@ -344,7 +344,7 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot [FR] (CME), [ES] (...)?, [EN] (...)?
$`fem = \mathcal{C}_E = \mathcal{E} -= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} += \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl} = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right) = - \dfrac{\partial \Phi_B}{\partial t}`$