diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md
index 045c615da..46a81ef4e 100644
--- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md
+++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md
@@ -329,12 +329,12 @@ $`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrighta
[EN] (auto-trad) Stokes' theorem : for all vectorial field $`\vec{X}`$ :
[FR] (CME), [ES] (...)?, [EN] (...)?
-$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS
-= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$
+$`\displaystyle\iint_{S} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS
+= \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$
[FR] (CME), [ES] (...)?, [EN] (...)?
-$`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS}
-= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
+$`\displaystyle\iint_{S} \overrightarrow{rot} \,\overrightarrow{E}\cdot \overrightarrow{dS}
+= \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
= fem = \mathcal{C}_E`$
[ES] (auto-trad) : circulación del campo eléctrico = fuerza electromotriz = voltaje inducido :
@@ -344,7 +344,7 @@ $`\displaystyle\iint_{S\,orient.} \overrightarrow{rot} \,\overrightarrow{E}\cdot
[FR] (CME), [ES] (...)?, [EN] (...)?
$`fem = \mathcal{C}_E = \mathcal{E}
-= \displaystyle \oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
+= \displaystyle \oint_{\Gamma\leftrightarrow S} \overrightarrow{E}\cdot\overrightarrow{dl}
= - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{dS}\right)
= - \dfrac{\partial \Phi_B}{\partial t}`$