From 31cac1923d73f49be798b76185b81ac04d556a12 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 14 Nov 2019 21:20:35 +0100 Subject: [PATCH] Update textbook.en.md --- .../intercambio-curso-electromagnetismo/textbook.en.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md index 57840afe5..b7696555b 100644 --- a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md +++ b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md @@ -634,7 +634,7 @@ $`\overrightarrow{rot}\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}`$ Electromagnétisme dans le vide : -$`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \mu_0 \cdot \overrightarrow{j_D} = \mu_0 \cdot (\overrightarrow{j}+\overrightarrow{j_D})`$ +$`\overrightarrow{rot}\,\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \mu_0 \cdot \overrightarrow{j_D} = \mu_0 \cdot (\overrightarrow{j}+\overrightarrow{j_D})`$ avec $`\overrightarrow{j_D}`$ courant de déplacement : $`\overrightarrow{j_D}=\epsilon_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$ @@ -678,11 +678,11 @@ $`\epsilon_0 \cdot \mu_0 \cdot c^2 = 1`$ $`div\overrightarrow{E}=\dfrac{\rho}{\epsilon_0}`$ -$`rot\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}`$ +$`\overrightarrow{rot}\overrightarrow{E}=-\dfrac{\partial \overrightarrow{B}}{\partial t}`$ $`div\overrightarrow{B}=0`$ -$`rot\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$ +$`\overrightarrow{rot}\overrightarrow{B}=\mu_0 \cdot \overrightarrow{j}\,+ \, \epsilon_0\mu_0 \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$$`=\mu_0 \cdot \overrightarrow{j}\,+ \, \dfrac{1}{c^2} \cdot \dfrac{\partial \overrightarrow{E}}{\partial t}`$ #### Ecuaciones de Maxwell en forma integral / Equations de maxwell intégrales / ...