|
|
|
@ -764,11 +764,16 @@ for all vectorial field $`\vec{X}`$, |
|
|
|
|
|
|
|
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle \oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ |
|
|
|
|
|
|
|
Stokes' theorem = |
|
|
|
|
|
|
|
for all vectorial field $`\vec{X}`$, |
|
|
|
|
|
|
|
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle \oint_{\Gamma\,orient.\overrightarrow{S}} \overrightarrow{X}\cdot\overrightarrow{dl}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{dl}= |
|
|
|
\underset{S\,orient.}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|