Browse Source

Update textbook.en.md

keep-around/3800c1aeb6e871668268916d8ddfee4fb29f2735
Claude Meny 6 years ago
parent
commit
3800c1aeb6
  1. 5
      10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

5
10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md

@ -764,11 +764,16 @@ for all vectorial field $`\vec{X}`$,
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle \oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ $`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle \oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
Stokes' theorem =
for all vectorial field $`\vec{X}`$,
$`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle \oint_{\Gamma\,orient.\overrightarrow{S}} \overrightarrow{X}\cdot\overrightarrow{dl}`$
$`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{dl}=
\underset{S\,orient.}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$

Loading…
Cancel
Save