diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md index 9c46d7656..045c615da 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md @@ -361,12 +361,12 @@ Stokes' theorem = for all vectorial field $`\vec{X}`$, $`\displaystyle\iint_{S\,orient.} \;\overrightarrow{rot}\;\overrightarrow{X} \cdot dS = \displaystyle -\oint_{\Gamma\,orient.\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ +\oint_{\Gamma\leftrightarrow S} \overrightarrow{X}\cdot\overrightarrow{dl}`$ $`\displaystyle\oint_{\Gamma\,orient.}\overrightarrow{H} \cdot \overrightarrow{dl}= -\underset{S\,orient.}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$ +\underset{S\leftrightarrow\Gamma}{\iint{\overrightarrow{j}\cdot\overrightarrow{dS}}}`$ $`\displaystyle\left. \dfrac{dQ}{dt}\right|_S =\oint_S \vec{j} \cdot \vec{dS}`$