From 402057c08d83f0d0c74089ca0e6b5b30731191fa Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Tue, 18 Aug 2020 17:36:02 +0200 Subject: [PATCH] Update textbook.fr.md --- .../05.classical-mechanics/vector-analysis/textbook.fr.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md index a4bde682e..bc9ab2279 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md @@ -417,7 +417,7 @@ $`\displaystyle\quad\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_ ##### Calcul de l’angle entre 2 vecteurs dans une base orthonormée de l'espace ($`n=3`$) $`\begin{array}{l}\left.\overrightarrow{U}\cdot\overrightarrow{V}=||\overrightarrow{U}||\cdot||\overrightarrow{V}||\cdot -cos (\widehat{\overrightarrow{U},\overrightarrow{V}})// +cos (\widehat{\overrightarrow{U},\overrightarrow{V}}) \\ \overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + U_3\,V_3\right|\end{array}`$