En faisant tendre $`d h~\to 0`$, comme le champ magnétique est une fonction bornée, la dernière intégrale (sur la surface latérale du cylindre) tend aussi vers 0.
En faisant tendre $`d h~\to 0`$, comme le champ magnétique est une fonction bornée, la dernière intégrale (sur la surface latérale du cylindre) tend aussi vers 0.
@ -47,7 +47,7 @@ La **composante normale de $`\vec{B}`$ est continue** à la traversée de l'inte
!
!
! Le *vide* étant lui même un *milieu L*inéaire, *H*omogène et *I*sotrope, je retrouve bien la relation de continuité de la composante normale du champ d'induction magnétique $`\vec{B}`$ à la *traversée d'une nappe de courant dans le vide*, démontrée précédemment :
! Le *vide* étant lui même un *milieu L*inéaire, *H*omogène et *I*sotrope, je retrouve bien la relation de continuité de la composante normale du champ d'induction magnétique $`\vec{B}`$ à la *traversée d'une nappe de courant dans le vide*, démontrée précédemment :
En faisant tendre $`d h~\to 0`$, comme l'induction électrique est une fonction bornée, la dernière intégrale (sur la surface latérale du cylindre) tend aussi vers 0. \\
En faisant tendre $`d h~\to 0`$, comme l'induction électrique est une fonction bornée, la dernière intégrale (sur la surface latérale du cylindre) tend aussi vers 0. \\
De plus, en écrivant $`d \vec{S}_1=-d S~\vec{n}_{1 \to 2}`$ et $`d \vec{S}_2=d S~\vec{n}_{1 \to 2}`$, il vient:
De plus, en écrivant $`d \vec{S}_1=-d S~\vec{n}_{1 \to 2}`$ et $`d \vec{S}_2=d S~\vec{n}_{1 \to 2}`$, il vient: