|
|
@ -353,8 +353,8 @@ $`fem = \mathcal{C}_E = \mathcal{E} |
|
|
[EN] (auto-trad) Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$ :<br> |
|
|
[EN] (auto-trad) Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$ :<br> |
|
|
|
|
|
|
|
|
[FR] (CME), [ES] (...)?, [EN] (...)? <br> |
|
|
[FR] (CME), [ES] (...)?, [EN] (...)? <br> |
|
|
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle |
|
|
|
|
|
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$ |
|
|
|
|
|
|
|
|
$`\displaystyle\iiint_{large\tau\normalsize} div\;\overrightarrow{X} \cdot d\tau = \displaystyle |
|
|
|
|
|
\oiint_{S\leftrightarrow\large\tau\normalsize } \overrightarrow{X}\cdot\overrightarrow{dS}`$ |
|
|
|
|
|
|
|
|
Stokes' theorem , for all vectorial field $`\vec{X}`$ : |
|
|
Stokes' theorem , for all vectorial field $`\vec{X}`$ : |
|
|
|
|
|
|
|
|
|