diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md
index cbb2c8e6b..2b41edb28 100644
--- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md
+++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md
@@ -452,13 +452,16 @@ colinéaires de l'espace, noté $`\vec{U}\land\vec{V}`$ est un vecteur $`\vec{W}
\- de norme $`||\overrightarrow{W}||=||\overrightarrow{U}|\cdot||\overrightarrow{V}|\cdot sin(\widehat{\overrightarrow{U},\overrightarrow{V}})`$
(l'angle est donné en valeur non algébrique et exprimé en radian : $`\widehat{\overrightarrow{U},\overrightarrow{V}}\in [0, \pi]\;`$ (rad) ).
\- de direction perpendiculaire au plan définit par les deux vecteurs $`\vec{U}`$ et $`\vec{V}`$
-:$`\overrightarrow{W}\perp\overrightarrow{U}`$ et $`\overrightarrow{W}\perp\overrightarrow{V}`$
+: $`\overrightarrow{W}\perp\overrightarrow{U}`$ et $`\overrightarrow{W}\perp\overrightarrow{V}`$
\- de sens donné par la règle de la main droite : si le sens du premier vecteur $`\vec{U}`$
est indiqué par le pouce, le sens du deuxième vecteur $`\vec{V}`$ par l'index, alors le sens du
produit vectoriel $`\vec{W}=\vec{U}\land\vec{V}`$ est donné par le majeur.
[EN] .
-
+* [ES] La norme $`||`\vec{U}\land\vec{V}||`$ du produit vectoriel de deux vecteurs $`\vec{U}`$ et $`\vec{V}`$ a pour valeur numérique
+l'aire du parallélogramme engendré par les deux vecteurs $`\vec{U}`$ et $`\vec{V}`$.
+[FR] .
+[EN] .
##### Produit vectoriel de 2 vecteurs dans une base quelconque