From 494ab44004c8bf675f4112ac59f9d8f6b467adf9 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 20 Aug 2020 19:21:31 +0200 Subject: [PATCH] Update textbook.fr.md --- .../vector-analysis/textbook.fr.md | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md index b17024811..a5b463cdc 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md @@ -518,20 +518,24 @@ we shouldn't we use (http://www.electropedia.org/iev/iev.nsf/display?openform&ie $`\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ or $`\overrightarrow{U}=\begin{bmatrix}U_1\\U_2\\U_3\end{bmatrix}`$ instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ? -c +* [ES]
[FR] méthode des produits en croix :
+[EN]
$`\forall\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ $`\quad\forall\overrightarrow{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ $`\quad\vec{U}\land\vec{V}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}\land\begin{pmatrix}V_1\\V_2\\V_3\end{pmatrix}`$ -$`\quad=±,\begin{pmatrix}U_2 V_3 - U_3 V_2\\U_3 V_1 - U_1 V_3\\U_1 V_2 - U_2 V_1\end{pmatrix}`$ +$`\begin{pmatrix}U_2 V_3 - U_3 V_2\\U_3 V_1 - U_1 V_3\\U_1 V_2 - U_2 V_1\end{pmatrix}`$ +$`=U_1V_1\,\overrightarrow{e_3}+U_2V_3\,\overrightarrow{e_1}+U_3V_1\,\overrightarrow{e_2}`$ +$`- U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$ + * [ES]
[FR]
[EN] method similar to the sum used to obtain the determinant of a matrix :

$`\vec{U}\land\vec{V}=\begin{vmatrix} \overrightarrow{e_1}&\overrightarrow{e_2}&\overrightarrow{e_3}\\ U_1 & U_2 & U_3\\V_1 & V_2 & V_3\end{vmatrix}`$ -$`=U_1V_1\overrightarrow{e_3}+U_2V_3\overrightarrow{e_1}+U_3V_1\overrightarrow{e_2}`$ -$`- U_1V_3\overrightarrow{e_2}-U_2V_1\overrightarrow{e_3}-U_3V_2\overrightarrow{e_1}`$ +$`=U_1V_1\,\overrightarrow{e_3}+U_2V_3\,\overrightarrow{e_1}+U_3V_1\,\overrightarrow{e_2}`$ +$`- U_1V_3\,\overrightarrow{e_2}-U_2V_1\,\overrightarrow{e_3}-U_3V_2\,\overrightarrow{e_1}`$