From 4f252ee1cddc08d05f43fc455f57893e9cbec8c9 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 31 Oct 2019 15:40:08 +0100 Subject: [PATCH] Update textbook.en.md --- .../01.spherical-refracting-surface-main/textbook.en.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/01.curriculum/01.physics-chemistry-biology/03.Niv3/02.Geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.en.md b/01.curriculum/01.physics-chemistry-biology/03.Niv3/02.Geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.en.md index d22ac1016..5e4cb3d78 100644 --- a/01.curriculum/01.physics-chemistry-biology/03.Niv3/02.Geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.en.md +++ b/01.curriculum/01.physics-chemistry-biology/03.Niv3/02.Geometrical-optics/05.paraxial-optics/02.paraxial-optics-simple-elements/02.spherical-refracting-surface/01.spherical-refracting-surface-main/textbook.en.md @@ -53,7 +53,7 @@ To perform this I *need to know the __algebraic distance__* **$`\overline{SA_{ob By *definition :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**. Its *expression for spherical refracting surface :* **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**. -I know $`\overline{SA_{obj}}`$, $`n_{ini}$ and $n_{fin}`$, I have previously calculated $`\overline{SA_{ima}}`$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$ +I know $`\overline{SA_{obj}}`$, $`n_{ini}`$ and $`n_{fin}`$, I have previously calculated $`\overline{SA_{ima}}`$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$ ! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.
Then we get *for a plane refracting surface :*