From 4fb667f35f184ae616d56fc698b509e953eb0249 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 14 Nov 2019 18:34:49 +0100 Subject: [PATCH] Update textbook.en.md --- .../intercambio-curso-electromagnetismo/textbook.en.md | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md index fa47d2bf6..8f59c0f6b 100644 --- a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md +++ b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md @@ -696,11 +696,11 @@ $`\displaystyle\oiint_S\vec{B}\cdot\vec{dS}=0`$ $`\displaystyle\iiint_{\tau} div\vec{E} \cdot d\tau= \displaystyle\iiint_{\tau} \dfrac{\rho}{\epsilon_0} \cdot d\tau = \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho \cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$ -$`\displaystyle\iint_S} \overrightarrow{rot}\,\overrightarrow{E}\cdot dS = -\displaystyle\iint_{S \leftrightarrow \tau} \overrightarrow{B}}\cdot dS`$ +$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot dS = -\displaystyle\iint_{S \leftrightarrow \tau} \overrightarrow{B}}\cdot dS`$ Mecánica newtoniana : espacio y el tiempo son desacoplados $ \ Longrightarrow` $ orden de integración / derivación entre variables de espacio y tiempo no importa. -$`\displaystyle\iint_S} \overrightarrow{rot}\,\overrightarrow{E}\cdot dS = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot dS`$ +$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot dS = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot dS`$ Ostrogradsky’s theorem : for all vectorial field $`\vec{X}`$,