diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/01.plane-refracting-surface-main/textbook.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/01.plane-refracting-surface-main/textbook.en.md deleted file mode 100644 index 9db0b7194..000000000 --- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/01.plane-refracting-surface-main/textbook.en.md +++ /dev/null @@ -1,71 +0,0 @@ ---- -title: 'Refracting surface ' -published: false -visible: false ---- - -### Spherical refracting surface in paraxial approximation. - -#### Refracting surface. - -A **refracting surface** is a *polished surface between two media with different refractive indexes*. - -!!!! *BE CAREFUL* :
-!!!! In the same way as we use in English the single word "mirror" to qualify a "reflecting surface", in French is use the single word "dioptre" to qualify a "refracting surface". -!!!! The term "dioptre" in English is a unit of mesure of the vergence of an optical system. In French, the same unit of mesaure is named "dioptrie". -!!!! So keep in mind the following scheme : -!!!! -!!!! refracting surface : *EN : refracting surface* , *ES : superficie refractiva* , *FR : dioptre*.
-!!!! _A crystal ball forms a spherical refracting surface : un "dioptre sphérique" in French._ -!!!! -!!!! unit of measure : *EN : dioptre* , *ES : dioptría* , *FR : dioptrie*.
-!!!! _My corrective lens for both eyes are 4 dioptres : "4 dioptries" in French._ - - -#### Spherical refracting surface. - - - -#### Analytical study of the position and shape of an image. - -A **spherical refracting surface** in analytical paraxial optics is defined by *three quantities* : -* **$`n_{ini}`$** : *refractive index of the initial medium* (the medium on the side on the incident light). -* **$`n_{fin}`$** : *refractive index of the final medium* (the medium on the side on the emerging light, after crossing the refracting surface). -* **$`\overline{SC}`$** : the *algebraic distance between the __vertex S__* (sometimes called "pole", is the centre of the aperture) *and the __center of curvature C__* of the refracting surface. - -! *USEFUL* : The whole analytic study below also applies to a plane refracting surface. We just need to remark that a plane surface is a spherical surface whose radius of curvature tends towards infinity. - - - -Consider a *point object* **$`B_{obj}`$** whose orthogonal projection on the optical axis gives the *point object* **$`A_{obj}`$**. If the point object is located on the optical axis, then $`B_{obj}=A_{obj}`$ and we will use to named it point object $`A_{obj}`$. The point object $`B_{obj}`$ can be **real** *as well as* **virtual**. - -The **calculation of the position** of the *point image* **$`B_{ima}`$**, *conjugated point of the point object $`B_{obj}`$* by the refracting surface, is carried out in **two steps** : - -1. I use the **spherical refracting surface equation** (known too as the **"conjuction equation" for a spherical refracting surface**) to calculate the *position of the point* **$`A_{ima}`$**, $`A_{ima}`$ being the *orthogonal projection on the optical axis of the point image* $`B_{ima}`$. - -**$`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=\dfrac{n_{fin}-n_{ini}}{\overline{SC}}`$** - -To perform this I *need to know the __algebraic distance__* **$`\overline{SA_{obj}}`$**, and the *calculation of the __algebraic distance__* **$`\overline{SA_{ima}}`$** along the optical axis *gives me the position of $`A_{ima}`$*. - - -2. I use the **"transverse magnification equation" for a spherical refracting surface**, to calculate the *__algebraic value__ of the transverse magnification* **$`\overline{M_T}`$**, then to derive the *__algebraic length__* **$`\overline{A_{ima}B_{ima}}`$** of the segment $`[A_{ima}B_{ima}]`$, that is the algebraic distance of the point image $`B_{ima}`$ from its orthogonal projection $`A_{ima}`$ on the optical axis. - -By *definition :* **$`\overline{M_T}=\dfrac{\overline{A_{ima}B_{ima}}}{\overline{A_{obj}B_{obj}}}`$**. -Its *expression for spherical refracting surface :* **$`\overline{M_T}=\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$**. - -I know $`\overline{SA_{obj}}$, $n_{ini}$ and $n_{fin}$, I have previously calculated $`\overline{SA_{ima}}$, so I can calculate $`\overline{M_T}`$ and deduced $`\overline{A_{ima}B_{ima}}`$ - - -! *USEFUL* : The conjuction equation and the transverse magnification equation for a plane refracting surface are obtained by rewriting these equations for a spherical refracting surface in the limit when $`|\overline{SC}|\longrightarrow\infty`$.
Then we get *for a plane refracting surface :* -! -! * *conjuction equation :*   $`\dfrac{n_{fin}}{\overline{SA_{ima}}}-\dfrac{n_{ini}}{\overline{SA_{obj}}}=0`$. -! -! * *transverse magnification equation :*   $`\dfrac{n_{ini}\cdot\overline{SA_{ima}}}{n_{fin}\cdot\overline{SA_{obj}}}`$    (unchanged). -! -! This generalizes and completes the knowledge you get about plane refracting surfaces seen in your pedagogical paths in plain and hills. - - -#### Graphical study of the position and shape of an image. - - -