From 59eaf51df2c1483f0854b574b9e7db12e1684674 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Tue, 18 Aug 2020 17:03:39 +0200 Subject: [PATCH] Update textbook.fr.md --- .../05.classical-mechanics/vector-analysis/textbook.fr.md | 6 ++++++ 1 file changed, 6 insertions(+) diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md index de4c4cd64..e74588716 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md @@ -407,6 +407,12 @@ $`\;\Longrightarrow\left|\begin{array}{l}\overrightarrow{U}\cdot\overrightarrow{ ##### Producto escalar de dos vectores ortogonales /Produit scalaire de 2 vecteurs orthogonaux / +"$`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$ est une base de $`\mathcal{E}`$" +$`\quad\Lonrigtharrow`$ +$`\forall \overrightarrow{U}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;U_i\cdot\vec{e_i}`$ +$`\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarrow{U}=\sum_{i=1}^n\;V_i\cdot\vec{e_i}`$ +$`\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + ... + U_n\,V_n = \sum_{i=1}^n\;U_i\,V_i`$ + ##### Caractéristiques des vecteurs de base d’une base orthonormée