#### Définition des coordonnées et domaines de définition
* *C0OSYS-100*
* *COOSYS-100*
Système de coordonnées cartésiennes :<br>
\- **1 punto $`\mathbf{O}`$** de l'espace, choisi comme **origine** des coordonnées cartésiennes.<br>
@ -36,7 +36,7 @@ Système de coordonnées cartésiennes :<br>
---------------------
* *C0OSYS-110*
* *COOSYS-110*
Coordonnées cartésiennes : $`( x, y, z)`$
@ -48,7 +48,7 @@ Tout point $`M`$ de l'espace est projeté orthogonalement sur chacun des axes $`
---------------------
* *C0OSYS-120*
* *COOSYS-120*
Les **coordonnées cartésiennes $`\mathbf{x_M , y_M , z_M}`$** du point $`M`$ sont les
distances algébriques $`\overline{Om_x}`$, $`\overline{Om_y}`$ et $`\overline{Om_z}`$ mesurées depuis le point origine $`O`$ jusqu'à chacun des points $`m_x`$, $`m_y`$ et $`m_z`$.
@ -61,7 +61,7 @@ Les coordonnées $`x , y , z`$ sont des **longueurs** algébriques, dont l'**uni
---------------------
* *C0OSYS-130*
* *COOSYS-130*
Chaque point $`M`$ de l'espace est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cartésiennes. On écrit : $`M=M(x_M,y_M,z_M)`$.
**Tout l'espace** est couvert par les coordonnées cartésiennes lorsque chacune varie de façon indépendante des autres dans son propre domaine de variation. Leurs domaines de variation sont :
!!!! Attention : Cette propriété que les longueurs élémentaires $`dl_{\alpha}`$ s'identifie à la variation infinitésimale de la coordonnée $`d\alpha`$ correspondante est une propriété des systèmes de coordonnées cartésiennes :
!!!! Il est donc important de *distinguer la distance infinitésimal $`dl_{\alpha}`$* parcourue par un $`M`$ lors d'une variation infinitésimale d'une seule de ses coordonnées $`\alpha`$, *de la variation $`d\alpha`$* de cette même coordonnée.
<!--
* *C0OSYS-60* :
* *COOSYS-60* :
[ES] Característica de los sistemas de coordenadas "cartesianos" : si un punto $`M(x,y,z)`$
hace un desplazamiento infinitesimal hasta el punto $`M'(x+dx,y+dy,z+dz)`$,<br>
Les vecteurs déplacement élémentaire $`d\overrightarrow{OM}_x , d\overrightarrow{OM}_y , d\overrightarrow{OM}_z`$ associés aux trois coordonnées $`x , y, z`$ et définis en un même point $`M`$ de l'espace sont orthogonaux deux à deux <'--, et forment un trièdre direct-->. Il en est donc ainsi de même pour les vecteurs unitaires $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$.
@ -175,7 +175,7 @@ base orthogonale indépendante de la position de $`M`$
---------------------
* *C0OSYS-190*
* *COOSYS-190*
[FR] Un repère cartésien, noté $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$,
est l'ensemble formé par un point $`O`$ origine des coordonnées et une base vectorielle cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.
@ -188,7 +188,7 @@ Les composantes d'un vecteur position sont appelées coordonnées, $`x, y, z`$ s
------------------
* *C0OSYS-200*
* *COOSYS-200*
Des grandeurs physiques vectorielles $`G`$ associées à un point $`M`$ autres que sa position $`\overrightarrow{OM}`$ peuvent s'exprimer avec les vecteurs de la base cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$: <br>