Browse Source

Add an example of <details> block usage.

Note the markdown=1 attribute.
keep-around/5ae618a5ff278f527733284418a3801a96875e29
Goutte 7 years ago
parent
commit
5ae618a5ff
  1. 26
      test/default.md

26
test/default.md

@ -32,7 +32,25 @@ circle constant $\tau$
Parsley shallot courgette tatsoi pea sprouts fava bean collard greens
dandelion okra wakame tomato. Dandelion cucumber earthnut pea peanut soko zucchini.
<!-- Expandable sections -->
<details markdown=1>
<summary>
VOIR LA SOLUTION
</summary>
```math
f\colon\left\{\begin{aligned}\mathbb{R}_4[X]&\longrightarrow\mathbb{R}_4[X] \\
P&\longmapsto P’\end{aligned}\right.
\qquad
g\colon\left\{\begin{aligned}\mathbb{R}_2[X]&\longrightarrow\mathbb{R}_2[X] \\
P&\longmapsto XP’+P\end{aligned}\right.
```
</details>
<!-- Trailing # are ignored and are sometimes good for readability -->
### Flowchart ########################################################
@ -54,10 +72,12 @@ graph LR
Pipeline --> |updates| Website
```
#### Imagine 💾🐘🐘🐘🐘🐢
### LateX 💾🐘🐘🐘🐘🐢
```math
e^{i\tau}=1
f\colon\left\{\begin{aligned}\mathbb{R}_4[X]&\longrightarrow\mathbb{R}_4[X] \\P&\longmapsto P’\end{aligned}\right. \qquad g\colon\left\{\begin{aligned}\mathbb{R}_2[X]&\longrightarrow\mathbb{R}_2[X] \\ P&\longmapsto XP’+P\end{aligned}\right.
```
> The complex exponential of the circle constant is unity.

Loading…
Cancel
Save