diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md
index 0dd8733f0..e4f723fbd 100644
--- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md
+++ b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md
@@ -108,7 +108,7 @@ When spherical refracting surfaces are used under the following conditions, name
\- The *angles of incidence and refraction are small*
Then *the spherical refracting surfaces* can be considered *quasi-stigmatic*, and therefore they can be used to build optical images.
-Mathematically, when an angle $`\alpha`$ is small $`alpha < or \approx 10 ^\circ`$, the following approximations can be made :
+Mathematically, when an angle $`\alpha`$ is small $`\alpha < or \approx 10 ^\circ`$, the following approximations can be made :
$`sin(\alpha) \approx tan (\alpha) \approx \alpha`$, and $`cos(\alpha) \approx 1`$.
*Geometrical optics limited to Gaussian conditions* is called *Gaussian optics* or *paraxial optics*.