|
|
|
@ -418,7 +418,11 @@ $`\displaystyle\quad\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_ |
|
|
|
|
|
|
|
$`\begin{array}{l}\left.\overrightarrow{U}\cdot\overrightarrow{V}=||\overrightarrow{U}||\cdot||\overrightarrow{V}||\cdot |
|
|
|
cos (\widehat{\overrightarrow{U},\overrightarrow{V}})// |
|
|
|
\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + U_3\,V_3\right|end{array}\quad\Longrightarrow`$ |
|
|
|
\overrightarrow{U}\cdot\overrightarrow{V}=U_1\,V_1 + U_2\,V_2 + U_3\,V_3\right|end{array}`$ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
$`\quad\Longrightarrow`$ |
|
|
|
$`\quad cos (\widehat{\overrightarrow{U},\overrightarrow{V}})=\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3}{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}`$ |
|
|
|
$`\quad \widehat{\overrightarrow{U},\overrightarrow{V}}= arcos\left(\dfrac{U_1\,V_1 + U_2\,V_2 + U_3\,V_3} |
|
|
|
{||\overrightarrow{U}||\cdot||\overrightarrow{V}||}\right)`$ |
|
|
|
|