diff --git a/12.temporary_ins/05.coordinates-systems/40.spherical-coordinates/10.main/textbook.fr.md b/12.temporary_ins/05.coordinates-systems/40.spherical-coordinates/10.main/textbook.fr.md index 0bf07e049..86774f669 100644 --- a/12.temporary_ins/05.coordinates-systems/40.spherical-coordinates/10.main/textbook.fr.md +++ b/12.temporary_ins/05.coordinates-systems/40.spherical-coordinates/10.main/textbook.fr.md @@ -29,7 +29,7 @@ https://gitlab.m3p2.com/m3p2/courses/blob/master/00.brainstorming-pedagogical-te #### Définition des coordonnées et domaines de définition -* *CS550* +* *C0OSYS-550* Les coordonnées sphériques s'écrivent $`(r, \theta, \varphi)`$, @@ -54,7 +54,7 @@ $`M(r, \theta, \varphi)`$ , **$`\mathbf{M=M(\rho, \theta, \varphi)}`$** #### Variation d'une coordonnée et longueur du parcours associée -* *CS560* +* *C0OSYS-560* [FR] élément scalaire de longueur : @@ -63,7 +63,7 @@ $`dl=\sqrt{dr^2+(r\,d\theta)^2+(r\,sin\theta\,d\varphi)^2}`$ , -------------------------- -* *CS570* +* *C0OSYS-570* Vecteur position d'un point $`M(r,\theta,\varphi)`$ en coordonnées sphériques : @@ -71,7 +71,7 @@ Vecteur position d'un point $`M(r,\theta,\varphi)`$ en coordonnées sphériques ----------------------------- -* *CS580* : **N3 ($`\rightarrow`$ N4)** +* *C0OSYS-580* : **N3 ($`\rightarrow`$ N4)** Élément de volume $`d\large\tau`$ en coordonnées sphériques : @@ -79,7 +79,7 @@ $`d{\large\tau} =\rho^2\;sin\,\theta\;dr\;d\theta\;d\varphi`$ , **$`\mathbf{d{\l --------------------------- -* *CS590* : **N3 ($`\rightarrow`$ N4)** +* *C0OSYS-590* : **N3 ($`\rightarrow`$ N4)** Lorsque seule la coordonnées $`r`$ d'un point $`M(r, \theta, \varphi)`$ varie de façon continue entre les valeurs $`r`$ et $`r+\Delta r`$, le point $`M`$ parcourt un sègment @@ -107,7 +107,7 @@ $`\quad\Longrightarrow\quad dl_{\varphi}=r\;sin\,\theta\;d\varphi`$ , **$`\mathb --------------------------- -* *CS600* : **N3 ($`\rightarrow`$ N4)** +* *C0OSYS-600* : **N3 ($`\rightarrow`$ N4)** Les vecteurs $`\overrightarrow{e_r}`$, $`\overrightarrow{e_{\theta}}`$ et $`\overrightarrow{e_{\varphi}}`$ forment une **base orthonormée** de l'espace. La base $`(\overrightarrow{e_r},\overrightarrow{e_{\theta}},\overrightarrow{e_{\varphi}})`$ @@ -129,7 +129,7 @@ $`\overrightarrow{e_r}=sin\,\theta\;cos\,\varphi\;\overrightarrow{e_x}`$$`\;+\;s --------------------------- -* *CS610* : **N3 ($`\rightarrow`$ N4)**
+* *C0OSYS-610* : **N3 ($`\rightarrow`$ N4)**
Méthode 1 pour le calcul de $`\dfrac{d e_r}{dt}`$ , $`\dfrac{d e_{\theta}}{dt}`$ , $`\dfrac{d e_{\varphi}}{dt}`$ @@ -292,7 +292,7 @@ $`(\overrightarrow{e_{\rho}}, \overrightarrow{e_{\phi}}, \overrightarrow{e_z})`$ --------------------------------- -* *CS620* : **N3 ($`\rightarrow`$ N4)** +* *C0OSYS-620* : **N3 ($`\rightarrow`$ N4)** Méthode 2 pour le calcul de $`\dfrac{d e_r}{dt}`$ , $`\dfrac{d e_{\theta}}{dt}`$ , $`\dfrac{d e_{\varphi}}{dt}`$ @@ -420,7 +420,7 @@ $`=\dfrac{d\theta}{dt}\cdot\overrightarrow{0}\,-\,\dfrac{d\varphi}{dt}\cdot\over ------------------ -* *CS630* +* *C0OSYS-630* $`\overrightarrow{v}(t)=\dfrac{d\overrightarrow{OM}}{dt}=\dfrac{d\overrightarrow{OM}(t)}{dt}=\dfrac{d}{dt}\left[\,r(t)\cdot\overrightarrow{e_r}(t)\,\right]`$$`=\dfrac{dr(t)}{dt}\cdot\overrightarrow{e_r(t)}\;+\;r(t)\cdot\dfrac{d\overrightarrow{e_r}(t)}{dt}`$ $`=\dfrac{dr}{dt}\cdot\overrightarrow{e_r}\;+\;r\cdot\dfrac{d\overrightarrow{e_r}}{dt}`$ \ No newline at end of file