Browse Source

Update cheatsheet.fr.md

keep-around/66b8a62f66f1752284b19bd835c37cd643640168
Claude Meny 5 years ago
parent
commit
66b8a62f66
  1. 10
      12.temporary_ins/70.wave-optics/20.diffraction/cheatsheet.fr.md

10
12.temporary_ins/70.wave-optics/20.diffraction/cheatsheet.fr.md

@ -212,8 +212,10 @@ $`\displaystyle=\int_{-x_0/2}^{+x_0/2} e^{\dfrac{i\,2\,\pi\,u_x\,x}{\lambda}}\;
$`\displaystyle \underline{A}=\dfrac{\lambda}{i\,2\,\pi\,u_x}\left(e^{\dfrac{i\,\pi\,u_x\,x_0}{\lambda}}-\;e^{\dfrac{-i\,\pi\,u_x\,x_0}{\lambda}}\right)`$ $`\displaystyle \underline{A}=\dfrac{\lambda}{i\,2\,\pi\,u_x}\left(e^{\dfrac{i\,\pi\,u_x\,x_0}{\lambda}}-\;e^{\dfrac{-i\,\pi\,u_x\,x_0}{\lambda}}\right)`$
$`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{i\,2\,\pi\,u_x}\left[ \left(cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}`$
$`\;+i\;sin\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right.`$$`\left.-\left( cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}-i\;sin\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right]`$
$`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{i\,2\,\pi\,u_x}`$
$`\left[ \left(cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right.`$
$`\left.\;+i\;sin\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right.`$
$`\left.-\left( cos\;\dfrac{\pi\,u_x\,x_0}{\lambda}-i\;sin\;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)\right]`$
$`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{2\pi,u_x} \left( 2\,sin \;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)`$ $`\displaystyle \underline{A}=-i\; \dfrac{\lambda}{2\pi,u_x} \left( 2\,sin \;\dfrac{\pi\,u_x\,x_0}{\lambda}\right)`$
@ -253,7 +255,9 @@ $`=\;sin\,\theta\cdot\overrightarrow{e_x}\;+\;cos\,\theta\cdot\overrightarrow{e_
ainsi l'intensité diffractée à l'infini se réécrit ainsi l'intensité diffractée à l'infini se réécrit
$`I(\theta)=x_0^2\cdot \dfrac{sin^2\,\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)}{\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)^2}`$$`\quad=x_0^2\cdot sinc^2\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)`$
$`I(\theta)=x_0^2\cdot \dfrac{sin^2\,\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)}`$
$`\;{\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)^2}`$
$`\quad=x_0^2\cdot sinc^2\left( \dfrac{\pi\,x_0\,sin\,\theta}{\lambda} \right)`$

Loading…
Cancel
Save