diff --git a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md index 6cd2619ab..fa47d2bf6 100644 --- a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md +++ b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md @@ -696,11 +696,11 @@ $`\displaystyle\oiint_S\vec{B}\cdot\vec{dS}=0`$ $`\displaystyle\iiint_{\tau} div\vec{E} \cdot d\tau= \displaystyle\iiint_{\tau} \dfrac{\rho}{\epsilon_0} \cdot d\tau = \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho \cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$ -$`\displaystyle\iiint_{\tau} \overrightarrow{rot}\,\overrightarrow{E}\cdot d\tau = - \displaystyle\iint_{\S \leftrightarrow \tau} \overrightarrow{B}}\cdot dS`$ +$`\displaystyle\iint_S} \overrightarrow{rot}\,\overrightarrow{E}\cdot dS = -\displaystyle\iint_{S \leftrightarrow \tau} \overrightarrow{B}}\cdot dS`$ Mecánica newtoniana : espacio y el tiempo son desacoplados $ \ Longrightarrow` $ orden de integración / derivación entre variables de espacio y tiempo no importa. -$`\displaystyle\iiint_{\tau} \overrightarrow{rot}\,\overrightarrow{E}\cdot d\tau = - \dfrac{\partial}{\partial t} \left( \displaystyle\iiint_{\tau} \dfrac{\partial \vec{B}}{\partial t}\cdot d\tau`$ +$`\displaystyle\iint_S} \overrightarrow{rot}\,\overrightarrow{E}\cdot dS = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot dS`$ Ostrogradsky’s theorem : for all vectorial field $`\vec{X}`$,