From 6b9ffe8941064064bb22b9db9793a2d772e8955c Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Wed, 9 Oct 2019 23:02:36 +0200 Subject: [PATCH] Update cheatsheet.en.md --- .../02.new-course-overview/cheatsheet.en.md | 31 +++++++++++++++++++ 1 file changed, 31 insertions(+) diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md index 4d340162c..9af06f084 100644 --- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md +++ b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md @@ -88,6 +88,37 @@ $`sin(\alpha) \approx tan (\alpha) \approx \alpha`$ (rad), et $`cos(\alpha) \ap #### The thin spherical mirror (paraxial optics) +* We call **thin spherical mirror** a *spherical mirror used in the Gauss conditions*. + +##### Analytical study (in paraxial optics) + +* **Spherical mirror equation** = **conjuction equation** for a spherical mirror :

+$`\dfrac{1}{\overline{SA_{ima}}}+\dfrac{1}{\overline{SA_{obj}}}=\dfrac{2}{\overline{SC}}`$  (equ.1) + +* **Transverse magnification expression** :

+$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$$  (equ.2) + +You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1) +then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. + +! *USEFUL 1° :
+! The conjunction equation and the transverse magnification equation for a plane mirror +! are obtained by rewriting these two equations for a spherical mirror in the limit when +! $`|\overline{SC}|\longrightarrow\infty`$. +! Then we get for a plane mirror :$`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and +! $`\overline{M_T}=+1`$. + +! *USEFUL 2° :
+ + + + + + + + + +