From 6d68b39f06bc6c5a4ff5b78b5763217684a5feca Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 20 Aug 2020 18:50:12 +0200 Subject: [PATCH] Update textbook.fr.md --- .../vector-analysis/textbook.fr.md | 14 +++++--------- 1 file changed, 5 insertions(+), 9 deletions(-) diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md index 7470b91e9..f2df73ece 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/05.classical-mechanics/vector-analysis/textbook.fr.md @@ -515,19 +515,15 @@ $`\displaystyle\quad\forall \overrightarrow{V}\in\mathcal{P}\quad \overrightarro * [FR] For the expression of a vector $`\vec{U}`$ in the base $`(\vec{e_1},\vec{e_2},...,\vec{e_n})`$, we shouldn't we use (http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-04) :
-$`\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3\end{array}\right)`$ -$`\displaystyle\overrightarrow{U}=\left(\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}\right)`$ +$`\overrightarrow{U}=\begin{pmatrix}U_1\\U_2\\U_3\end{pmatrix}`$ or $`\overrightarrow{U}=\begin{bmatrix}U_1\\U_2\\U_3\end{bmatrix}`$ instead of $`\overrightarrow{U}=\left|\begin{array}{l}U_1\\U_2\\U_3\end{array}\right.`$ as we do at INSA ? * [ES]
[FR] méthode des produits en croix :
-$`\forall\overrightarrow{U}=\left(\begin{array}{l}U_1\\U_2\\U_3\end{array}\right)`$ et -$`\forall\overrightarrow{V}=\left(\begin{array}{l}U_1\\U_2\\U_3\end{array}\right)`$ -$`$`\vec{U}\land\vec{V}=`$ - - -$`\overrightarrow{U}=`$ - +$`\forall\overrightarrow{U}=\begin{pmatrix}{l}U_1\\U_2\\U_3\end{pmatrix}`$ et +$`\forall\overrightarrow{V}=\begin{pmatrix}{l}U_1\\U_2\\U_3\end{pmatrix}`$ +$`$`\vec{U}\land\vec{V}=\begin{pmatrix}{l}U_1\\U_2\\U_3\end{pmatrix}\land\begin{pmatrix}{l}V_1\\V_2\\V_3\end{pmatrix}`$ +$`\quad\begin{pmatrix}{l}U_2 V_3 - U3 V2\\U_3 V_1 - U_1 V_3\\U_1 V_2 - U_2 V_1\end{pmatrix}`$ method similar to the sum used to obtain the determinant of a matrix :