@ -696,11 +696,11 @@ $`\displaystyle\oiint_S\vec{B}\cdot\vec{dS}=0`$
$`\displaystyle\iiint_{\tau} div\vec{E} \cdot d\tau= \displaystyle\iiint_{\tau} \dfrac{\rho}{\epsilon_0} \cdot d\tau = \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho \cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$
$`\displaystyle\iiint_{\tau} div\vec{E} \cdot d\tau= \displaystyle\iiint_{\tau} \dfrac{\rho}{\epsilon_0} \cdot d\tau = \dfrac{1}{\epsilon_0} \cdot \iiint_{\tau} \rho \cdot d\tau = \dfrac{Q_{int}}{\epsilon_0} `$
$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot dS = -\displaystyle\iint_S \leftrightarrow \tau} \overrightarrow{B}} \cdot dS`$
$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrightarrow{ dS} = -\displaystyle\iint_S \leftrightarrow \tau} \overrightarrow{B}\cdot \overrightarrow{ dS} `$
Mecánica newtoniana : espacio y el tiempo son desacoplados $`\Longrightarrow`$ orden de integración / derivación entre variables de espacio y tiempo no importa.
Mecánica newtoniana : espacio y el tiempo son desacoplados $`\Longrightarrow`$ orden de integración / derivación entre variables de espacio y tiempo no importa.
$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot dS = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot dS\right)`$
$`\displaystyle\iint_S \overrightarrow{rot}\,\overrightarrow{E}\cdot \overrightarrow{ dS} = - \dfrac{\partial}{\partial t} \left( \displaystyle\iint_S \overrightarrow{B}\cdot \overrightarrow{ dS} \right)`$
Ostrogradsky’s theorem : for all vectorial field $`\vec{X}`$,
Ostrogradsky’s theorem : for all vectorial field $`\vec{X}`$,