diff --git a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/10.vector-analysis/textbook.es.md b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/10.vector-analysis/textbook.es.md index 72026df0a..10cc74b92 100644 --- a/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/10.vector-analysis/textbook.es.md +++ b/00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/10.vector-analysis/textbook.es.md @@ -218,7 +218,7 @@ We reserve the notation $`\vec{e_i}`$ for vectors of normal and orthonormal bas http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-03-28. - + #### Características de una base / Caractéristiques d’une base et d’un repère / Characteristics of a base -##### VA100 Base normal / Base et repère normés / (Normal base ????) +##### VA100 Base y ??? normales / Base et repère normés / Normal base and ???? * [ES] Base normée $`(\vec{a},\vec{b},\vec{c})`$
[FR] Base normée $`(\vec{a},\vec{b},\vec{c})`$ et repère normé $`(O,\vec{a},\vec{b},\vec{c})`$
@@ -320,56 +321,66 @@ de la simplicité dans l'apprentissage des systèmes de coordonnées. * $`||\overrightarrow{a}||=1\; ; \;||\overrightarrow{b}||=1\; ; \;||\overrightarrow{c}||=1`$ . -##### VA110 Base ortogonal / Base et repère orthogonaux / Orthogonal base +##### VA110 Base and ??? ortogonales / Base et repère orthogonaux / Orthogonal base and ??? -* Base $`(\vec{a},\vec{b},\vec{c})`$ et repère $`(O, \vec{a},\vec{b},\vec{c})`$ +* [ES] Base $`(\vec{a},\vec{b},\vec{c})`$ y ??? $`(O, \vec{a},\vec{b},\vec{c})`$
+[FR] Base $`(\vec{a},\vec{b},\vec{c})`$ et repère $`(O, \vec{a},\vec{b},\vec{c})`$
+[EN] Base $`(\vec{a},\vec{b},\vec{c})`$ and ??? $`(O, \vec{a},\vec{b},\vec{c})`$ * [ES] Los vectores de una **base ortongonale** son *vectores perpendiculares dos a dos*.
[FR] Les vecteurs d'une **base** ou d'un **repère orthogonal** sont des *vecteurs orthogonaux 2 à 2*.
-[EN] The vectors of the **orthogonal base** or of the coordinate system are *orthogonal 2 to 2 vectors* +[EN] The vectors of the **orthogonal base** are *orthogonal 2 to 2 vectors* * $`\overrightarrow{a}\perp\overrightarrow{b}\; ; \;\overrightarrow{a}\perp\overrightarrow{c}\; ; \;\overrightarrow{b}\perp\overrightarrow{c}`$. -##### VA120 Base ortonormal / base et repère orthonormés / +##### VA120 Base y ??? ortonormales / base et repère orthonormés / ??? -* Base orthonormée $`(\vec{e_1},\vec{e_2},\vec{e_3})`$ / repère orthonormé $`(O,\vec{e_1},\vec{e_2},\vec{e_3})`$ +[ES] Base orthonormal $`(\vec{e_1},\vec{e_2},\vec{e_3})`$ / ??? $`(O,\vec{e_1},\vec{e_2},\vec{e_3})`$
+[FR] Base orthonormée $`(\vec{e_1},\vec{e_2},\vec{e_3})`$ / repère orthonormé $`(O,\vec{e_1},\vec{e_2},\vec{e_3})`$ +[EN] ??? $`(\vec{e_1},\vec{e_2},\vec{e_3})`$ / ??? $`(O,\vec{e_1},\vec{e_2},\vec{e_3})`$ -* orthonormé = **ortho**+*normé* :
+* [ES]
+[FR] orthonormé = **ortho**+*normé* :
\- ortho : $`\forall (\vec{e_i},\vec{e_j}) \in \{\vec{e_1},\vec{e_2},\vec{e_3}\}^2 \quad \vec{e_i}\perp\vec{e_j}`$.
-\- normé : $`\forall \vec{e_i} \in \{\vec{e_1},\vec{e_2},\vec{e_3}\} \quad ||\vec{e_i}||=1`$. +\- normé : $`\forall \vec{e_i} \in \{\vec{e_1},\vec{e_2},\vec{e_3}\} \quad ||\vec{e_i}||=1`$.
+[EN] -* orthonormé : $`\forall (\vec{e_i},\vec{e_j}) \in \{\vec{e_1},\vec{e_2},\vec{e_3}\}^2 \quad \overrightarrow{e_i}\cdot\overrightarrow{e_j}=\delta_{i\,j}`$
+* [ES]
+[FR] orthonormé : $`\forall (\vec{e_i},\vec{e_j}) \in \{\vec{e_1},\vec{e_2},\vec{e_3}\}^2 \quad \overrightarrow{e_i}\cdot\overrightarrow{e_j}=\delta_{i\,j}`$
avec le **symbole e Kronecker $`\delta_{i\,j}`$** défini par :
-$`\delta_{i\,j}=1`$ si $`i=j\quad`$ et $`\quad\delta_{i\,j}=0`$ si $`i \ne j`$ - +$`\delta_{i\,j}=1`$ si $`i=j\quad`$ et $`\quad\delta_{i\,j}=0`$ si $`i \ne j`$.
+[EN] #### VA130 Regla de la mano derecha / règle de la main droite / right-hand rule -* Dos vectores $`\vec{a}`$ y $`\vec{b}`$ distintos de cero, unitarios y ortogonales, forman -una base ortonormal $`(\vec{a},\vec{b})`$ de un plano en el espacio. -* Deux vecteurs $`\vec{a}`$ et $`\vec{b}`$ non nuls, unitaires et orthogonaux forment -une base orthonormée $`(\vec{a},\vec{b})`$ d'un plan dans l'espace. +* [ES] Dos vectores $`\vec{a}`$ y $`\vec{b}`$ distintos de cero, unitarios y ortogonales, forman +una base ortonormal $`(\vec{a},\vec{b})`$ de un plano en el espacio.
+[FR] ]Deux vecteurs $`\vec{a}`$ et $`\vec{b}`$ non nuls, unitaires et orthogonaux forment +une base orthonormée $`(\vec{a},\vec{b})`$ d'un plan dans l'espace.
+[FR] * [ES] Esta base $`(\vec{a},\vec{b})`$ se puede completar con un tercer vector $`\ve{c}`$, unitario y perpendicular a $`\vec{a}`$ y a $`\vec{b}`$, para formar una base ortonormal $`(\vec{a},\vec{b},\vec{c})`$ del espacio.
-
[FR] Cette base $`(\vec{a},\vec{b})`$ peut être complétée par un troisième vecteur $`\vec{c}`$, unitaire +[FR] Cette base $`(\vec{a},\vec{b})`$ peut être complétée par un troisième vecteur $`\vec{c}`$, unitaire et perpendiculaire à $`\vec{a}`$ et à $`\vec{b}`$, pour former une base orthonormée -$`(\vec{a},\vec{b},\vec{c})`$ de l'espace. +$`(\vec{a},\vec{b},\vec{c})`$ de l'espace.
+[EN] -* Este tercer vector $`\vec{c}`$ perpendicular a los vectores $`\vec{a}`$ y +* [ES] Este tercer vector $`\vec{c}`$ perpendicular a los vectores $`\vec{a}`$ y $`\vec{b}`$ tiene **una dirección**, la línea recta normal (perpendicular) al plano $`\mathcal{P}`$, pero hay **dos sentidos posibles** para este vector $`\vec{c}`$.
Estos dos posibles sentidos se distinguen por una *regla de orientación del espacío*: la **regla de los 3 dedos de la mano derecha**.
-
Ce troisième vecteur $`\vec{c}`$ perpendiculaire à la fois aux vecteurs $`\vec{a}`$ et +[FR] Ce troisième vecteur $`\vec{c}`$ perpendiculaire à la fois aux vecteurs $`\vec{a}`$ et $`\vec{b}`$ possède **une direction**, la *droite normale (perpendiculaire) au plan $`\mathcal{P}`$, mais il y a **deux sens possibles** pour ce vecteur $`\vec{c}`$.
Ces deux sens possibles sont distingués par une *règle d’orientation de l’espace* : -la **règle des 3 doigts de la main droite**. +la **règle des 3 doigts de la main droite**.
+[EN] Fig "physics-mechanics-space-orientation-right-hand-rule-direction_L1200_horiz_vert.jpg" ready for use.