diff --git a/01.curriculum/01.physics-chemistry-biology/03.niv3/02.geometrical-optics/02.geometrical-optics-foundings/01.concept-ray-of-light/02.concept-ray-of-light-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/03.niv3/02.geometrical-optics/02.geometrical-optics-foundings/01.concept-ray-of-light/02.concept-ray-of-light-overview/cheatsheet.en.md
deleted file mode 100644
index 352a03cd7..000000000
--- a/01.curriculum/01.physics-chemistry-biology/03.niv3/02.geometrical-optics/02.geometrical-optics-foundings/01.concept-ray-of-light/02.concept-ray-of-light-overview/cheatsheet.en.md
+++ /dev/null
@@ -1,73 +0,0 @@
----
-title: 'The concept of light ray '
-media_order: 'rays_forest.jpg,viajar1.jpg,OG_rayons_foret.mp3,OG_rayons_foret.ogg'
----
-
-### Fundamentals of geometric optics
-
-#### Geometric optics:
a simple physical model.
-
-Its *fundamentals* are:
-* The concept of **light ray** : oriented trajectory of light energy
-* The concept of **refractive index** : characterizes the apparent speed of light in a homogeneous medium
-* The **Fermat's principle**
-
-##### Ray of light
-
-
-
-
-
-[AUDIO : _the intuition of the "ray of light" during a walk in the forest_](OG_rayons_foret.mp3)
-
-The **light rays** are *oriented lines* that in each of their points indicate the *direction of propagation of the luminous energy*.
-
-The light rays follow *straight lines in a homogeneous medium*.
-
-Light rays *do not interact with each other*
-
-##### The refraction index
-
-**Refractive Index $`n`$**
-**$`n \; = \; \dfrac{c}{v}`$**
-* **`c`** : *speed of light in vacuum* (absolute limit)
-* **`v`** : *speed of light in the middle* homogeneous
-
-**$`\Longrightarrow \: : \: n`$** : physical dimension **without dimension** and **always > 1**.
-
-Dependency : **$`n \; = \; n (\nu) \; \; \; `$**, or **$` \; \; \; n \; = \; n (\lambda_0) \; \ ; \; `$** *(with $`\lambda_0`$ wavelength in vacuum)*
-
-
-
-!! TO GO FURTHER :
-!!
-!! over the entire electromagnetic spectrum and for any medium:
-!! $`n`$: complex value dependent on the $\nu$ frequency of the electromagnetic wave, strong variations representative of all light / matter interaction mechanisms: $`n (\nu) = \Re[n(\nu )] + \Im[n(\nu)]`$
-!!
-!! In the visible domain (where $`\lambda_0`$ is more used than $`\nu`$) and for transparent medium :
-!! real value, small variations of $`n`$ with $`\lambda_0`$ $`\left(\frac{\Delta n}{n} < 1\%\right)`$
-
-##### Optical path
-
-**optical path** *$`\delta`$* $`=`$
-**euclidean length** *$`s`$* $`\times`$ **refractive index** *$`n`$*
-
-* **$`\Gamma`$** : *path (solid line) between 2 fixed points A and B*
-* **$`\mathrm{d}s_P`$** : *element of infinitesimal length at point P on path $`\Gamma`$*
-* **$` n_P`$** : *refractive index at point P*
-* **$`\mathrm{d}\delta_P`$** : *infinitesimal optical path at point P on path $`\Gamma`$*
-
-Optical path along a path between 2 fixed points A and B :
-**$`\delta\;=\;\displaystyle\int_{P \in \Gamma}\mathrm{d}\delta_P\;`$$`=\;\displaystyle\int_{P \in \Gamma}n_P\cdot\mathrm{d}s_P`$**
-
-* **$`\delta`$** $`=\displaystyle\int_{\Gamma}n\cdot\mathrm{d}s\;=\;\int_{\Gamma}\dfrac{c}{v}\cdot\mathrm{d}s`$ = $`c\;\displaystyle\int_{\Gamma}\dfrac{\mathrm{d}s}{v}`$ = *$`\;c\;\tau`$*
-* **$`\delta`$** is *proportional to the travel time*.
-