From 729b14eef43fd9d578f03bb6835ab06945590cba Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Mon, 11 Nov 2019 18:21:27 +0100 Subject: [PATCH] Update textbook.en.md --- .../textbook.en.md | 19 +++++++++++++++++-- 1 file changed, 17 insertions(+), 2 deletions(-) diff --git a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md index b14fe4bad..45bc89d4e 100644 --- a/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md +++ b/10.brainstorming-innovative-courses/intercambio-curso-electromagnetismo/textbook.en.md @@ -191,11 +191,26 @@ $`\nabla = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_ +\overrightarrow{e_z}\,\dfrac{\partial}{\partial z}`$ , or more $`\overrightarrow{\nabla} = \overrightarrow{e_x}\,\dfrac{\partial}{\partial x}+\overrightarrow{e_y}\,\dfrac{\partial}{\partial y} -+\overrightarrow{e_z}\,\dfrac{\partial}{\partial z} `$ ++\overrightarrow{e_z}\,\dfrac{\partial}{\partial z} `$
ES : operador nabla
FR : opérateur nabla
EN : nabla operator + +$`\Deltaf = div\,\overrightarrow{grad}\f `$, $`\Deltaf = \overrightarrow{\nabla}\cdot\overrightarrow{\nabla}\,f `$ +ES : operador laplaciana escalar, laplaciana escalar, laplaciana de un campo escalar
+FR : opérateur laplacien scalaire, laplacien scalaire, laplacien d'un champ scalaire
+EN : laplacian operator, laplacian of a scalar field +ES : +FR : en coordonnées cartésiennes orthonormées : +EN : in orthonormal Cartesian coordinate : +$ \Delta = \dfrac{\partial^2}{\partial x^2}+\dfrac{\partial^2}{\partial y^2}+\dfrac{\partial^2}{\partial z^2}`$ + +$`\Delta = \overrightarrow{grad} div\,\overrightarrow{U} - \overrightarrow{rot}\,\overrightarrow{rot}\,\overrightarrow{U}`$
+ES : operador laplaciana vectorial, laplaciana vectorial, laplaciana de un campo vectorial
+FR : opérateur laplacien, laplacien, d'un champ scalaire ou d'un champ vecoriel
+EN : laplacian operator, vectorial laplacian, laplacian of a vector field + $`\overrightarrow{grad} f = \nabla f`$, $`\overrightarrow{\nabla}f`$ better, no?
ES : gradiente
FR : gradient
@@ -207,7 +222,7 @@ FR : divergence
EN : divergence
$`div\;\overrightarrow{U}=\lim_{V\leftrightarrow0}\;\dfrac{1}{V}\;\displaystyle\oiint_{S\leftrightarrow V}\overrightarrow{U}\cdot\overrightarrow{dS}`$ -$`rot\times\overrightarrow{U}`$, but $`\overrightarrow{rot}\times\overrightarrow{U}`$ better, no?
+$`rot\,\overrightarrow{U}`$, but $`\overrightarrow{rot}\,\overrightarrow{U}`$ better, no?
in some English texts : $`curl\times\overrightarrow{U}`$
$`\overrightarrow{\nabla}\times\overrightarrow{U}`$ or $`\overrightarrow{\nabla}\land\overrightarrow{U}`$
ES : rotacional de un vector