Browse Source

Update textbook.es.md

keep-around/7815a37a887e988436aab5554ca7e4e6bcd3d382
Claude Meny 5 years ago
parent
commit
7815a37a88
  1. 390
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/20.reference-frames-coordinate-systems/textbook.es.md

390
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/10.mathematical-tools/20.reference-frames-coordinate-systems/textbook.es.md

@ -126,11 +126,334 @@ en sphériques. C'est l'occasion de changer cela pour nous conformer aux normes,
de la simplicité dans l'apprentissage des systèmes de coordonnées.
-------------------------------->
### Coordonnées cartésiennes
#### Définition des coordonnées et domaines de définition
* *CS100*
Système de coordonnées cartésiennes :<br>
\- **1 punto $`\mathbf{O}`$** de l'espace, choisi comme **origine** des coordonnées cartésiennes.<br>
\- **3 axes** appelés **$`\mathbf{Ox , Oy , Oz}`$**, se coupant en $`O`$ et **orthogonaux deux à deux**.<br>
\- **1 unité de longueur**.
---------------------
* *CS110*
Coordonnées cartésiennes : $`( x, y, z)`$
Tout point $`M`$ de l'espace est projeté orthogonalement sur le plan $`xOy`$ conduisant au point $`m_{xy}`$,
et sur l'axe $`Oz`$ conduisant au point $`m_z`$. Le point $`m_{xy}`$ est projeté orthogonalement sur les axes $`Ox`$ et $`Oy`$, conduisant respectivement aux points $`m_x`$ et $`m_y`$ (voir figure ...). <br>
ou, pour un équivalent d'écriture plus simple, mais moins visuel :<br>
Tout point $`M`$ de l'espace est projeté orthogonalement sur chacun des axes $`Ox , Oy , Oz`$ conduisant respectivement aux points $`m_x`$, $`m_y`$ et $`m_z`$.
---------------------
* *CS120*
Les **coordonnées cartésiennes $`\mathbf{x_M , y_M , z_M}`$** du point $`M`$ sont les
distances algébriques $`\overline{Om_x}`$, $`\overline{Om_y}`$ et $`\overline{Om_z}`$ mesurées depuis le point origine $`O`$ jusqu'à chacun des points $`m_x`$, $`m_y`$ et $`m_z`$.
**$`\mathbf{x_M=\overline{Om_x}}`$ , $`\mathbf{y_M=\overline{Om_y}}`$ , $`\mathbf{z_M=\overline{Om_z}}`$**
Les coordonnées $`x , y , z`$ sont des **longueurs** algébriques, dont l'**unité** dans le système international d'unité **S.I.** est le **mètre**, de symbole **$`\mathbf{m}`$**.
**Unidades S.I. / Unités S.I. / S.I. units : $`\mathbf{x(m)\;,\;y(m)\;,\;z(m)}`$**
---------------------
* *CS130*
Chaque point $`M`$ de l'espace est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cartésiennes. On écrit : $`M=M(x_M,y_M,z_M)`$.
Si le point est un point quelconque, on simplifie :
$`M(x,y,z)`$, **$`\mathbf{M(x,y,z)}`$**
----------------------
* *CS140*
**Tout l'espace** est couvert par les coordonnées cartésiennes lorsque chacune varie de façon indépendante des autres dans son propre domaine de variation. Leurs domaines de variation sont :
**$`\mathbf{x\in\mathbb{R}}`$ , $`\mathbf{y\in\mathbb{R}}`$ , $`\mathbf{z\in\mathbb{R}}`$**
#### Base vectorielle et repère de l'espace associés
##### Longueur du parcours associée à une variation de coordonnée
---------------------
* *CS150*
Lorsque seule la coordonnées $`x`$ d'un point $`M(x, y, z)`$ varie de façon
continue entre les valeurs $`y`$ et $`\rho+\Delta \rho`$, le point $`M`$ parcourt un sègment
de droite de longueur $`\Delta l_{\rho}=\Delta \rho`$. Lorsque $`\Delta \rho`$ tend vers $`0`$,
la longueur infinitésimale $`dl_{\rho}`$ parcourue pour le point $`M`$ est :
$`\displaystyle dx=\lim_{\Delta x \rightarrow 0 \\ \Delta x>0} \Delta x`$
$`\quad\Longrightarrow\quad dl_x=dx`$ , **$`\mathbf{dl_x=dx}`$**
de même
$`dl_y=dy`$ , **$`\mathbf{dl_y=dy}`$**<br>
$`dl_z=dz`$ , **$`\mathbf{dl_z=dz}`$**
----------------
* *CS160*
!!!! Attention : Cette propriété que les longueurs élémentaires $`dl_{\alpha}`$ s'identifie à la variation infinitésimale de la coordonnée $`d\alpha`$ correspondante est une propriété des systèmes de coordonnées cartésiennes :
!!!!
!!!! Coordonnées cartésiennes $`\Longrightarrow \quad dl_{\alpha}=d\alpha`$.
!!!!
!!!! Mais lorsque nous passons aux coordonnées cylindriques et sphériques, et en généralisant aux coordonnées curvilignes, cette identité n'est plus systématiquement vraie.
!!!!
!!!! En général : $`\Longrightarrow \quad dl_{\alpha} \ne d\alpha`$
!!!!
!!!! Il est donc important de *distinguer la distance infinitésimal $`dl_{\alpha}`$* parcourue par un $`M`$ lors d'une variation infinitésimale d'une seule de ses coordonnées $`\alpha`$, *de la variation $`d\alpha`$* de cette même coordonnée.
<!--
* *C60* :
[ES] Característica de los sistemas de coordenadas "cartesianos" : si un punto $`M(x,y,z)`$
hace un desplazamiento infinitesimal hasta el punto $`M'(x+dx,y+dy,z+dz)`$,<br>
el Elemento escalar de línea $`dl`$ se escribe simplement :
[FR] Caractéristique des systèmes de coordonnées "cartésiennes" : si un point $`M(x,y,z)`$
fait un déplacement infinitésimal jusqu'au point $`M'(x+dx,y+dy,z+dz)`$,<br>
l'élément scalaire de longueur $`dl`$ s'écrit simplement :
[EN] Characteristic of "Cartesian" coordinate systems : if a point $`M(x,y,z)`$ makes
an infinitesimal displacement up to point $`M'(x+dx,y+dy,z+dz)`$,<br>
the scalar line element $`dl`$ writes simply :
$`dl=\sqrt{dx^2+dy^2+dz^2}`$ , **$`\mathbf{dl=\sqrt{dx^2+dy^2+dz^2}}`$**
-->
##### Vecteur unitaire associé à chaque coordonnée
* *CS170*
Lorsque seule la coordonnées $`x`$ d'un point $`M(x,y,z)`$ s'accroît de façon
infinitésimale entre les valeurs $`x`$ et $`x+dx`$ ($`dx>0`$), le vecteur déplacement
$`\overrightarrow{MM'}=\partial\overrightarrow{OM}_x`$ du point $`M`$ est le vecteur
tangent à la trajectoire au point $`M`$ qui sc'écrit :
$`\overrightarrow{MM'}=\partial\overrightarrow{OM}_x=\dfrac{\partial \overrightarrow{OM}}{\partial x}\cdot dx`$
Le vecteur unitaire tangent à la trajectoire $`\overrightarrow{e_x}`$ (qui indique la direction et le sens
de déplacement du point M lorsque seule la coordonnée x croît de façon infinitésimale) s'écrit :
$`\overrightarrow{e_x}=\dfrac{\partial\overrightarrow{OM}_x}{||\partial\overrightarrow{OM}_x||}`$
de même :
$`\partial\overrightarrow{OM}_y=\dfrac{\partial \overrightarrow{OM}}{\partial y}\cdot dy`$,
$`\quad\overrightarrow{e_y}=\dfrac{\partial\overrightarrow{OM}_y}{||\partial\overrightarrow{OM}_y||}`$<br>
$`\partial\overrightarrow{OM}_z=\dfrac{\partial \overrightarrow{OM}}{\partial z}\cdot dz`$,
$`\quad\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$
#### Base et repère cartésiens
* *CS180*
Les vecteurs déplacement élémentaire $`\partial\overrightarrow{OM}_x , \partial\overrightarrow{OM}_y , \partial\overrightarrow{OM}_z`$ associés aux trois coordonnées $`x , y, z`$ et définis en un même point $`M`$ de l'espace sont orthogonaux deux à deux <'--, et forment un trièdre direct-->. Il en est donc ainsi de même pour les vecteurs unitaires $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$.
Les vecteurs $`\overrightarrow{e_x}`$, $`\overrightarrow{e_y}`$ y $`\overrightarrow{e_z}`$
forment une **base orthonormée** de l'espace. C'est la base associée aux coordonnées cartésiennes.
En coordonnées cartésiennes, les **vecteurs de base** gardent la
**même direction et le même sens quelque-soit la position du point $`M`$**.
$`||\overrightarrow{e_x}||=||\overrightarrow{e_y}||=||\overrightarrow{e_z}||=1`$<br>
$`\overrightarrow{e_x}\perp\overrightarrow{e_y}\quad,\quad\overrightarrow{e_y}\perp\overrightarrow{e_z}\quad,\quad\overrightarrow{e_x}\perp\overrightarrow{e_z}`$
$`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$
base orthogonale indépendante de la position de $`M`$
---------------------
* *CS190*
[FR] Un repère cartésien, noté $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$,
est l'ensemble formé par un point $`O`$ origine des coordonnées et une base vectorielle cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.
En coordonnées cartésiennes, tout point $`M`$ de l'espace peut se repérer :<br>
\- soit par ses coordonnées cartésiennes $`(x, y, z)`$ dans le système d'axes cartésien $`(Ox, Oy, Oz)`$.<br>
\- soit par son vecteur position $`\overrightarrow{OM}`$ d'expression
$`\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}`$ dans le repère cartésien $`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br>
Les composantes d'un vecteur position sont appelées coordonnées, $x, y, z`$ sont les coordonnées cartésiennes du point $`M`$.
------------------
* *CS200*
Des grandeurs physiques vectorielles $`G`$ associées à un point $`M`$ autres que sa position $`\overrightarrow{OM}`$ peuvent s'exprimer avec les vecteurs de la base cartésienne $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$: <br>
$`\overrightarrow{G}=G_x\;\overrightarrow{e_x}+G_y\;\overrightarrow{e_y}+G_z\;\overrightarrow{e_z}`$.<br>
$`G_x, G_y, G_z`$ sont appelées composantes de la grandeur physique $`G`$ dans la base $`(\overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.<br>
Exemples grandeurs physiques vectorielles $`G`$ associée à un point $`M`$ :<br>
\- le vecteur vitesse $`V`$, dont les composantes cartésiennes $`V_x, V_y, V_z`$ s'expriment en $`m\;s^{-1}`$ dans le S.I. <br>
\- le vecteur accélération $`a`$, dont les composantes cartésiennes $`a_x, a_y, a_z`$ s'expriment en $`m\;s^{-2}`$ dans le S.I. <br>
\- la force totale appliquée $`F`$, dont les composantes cartésiennes $`F_x, F_y, F_z`$ s'expriment en $`N`$ (newton) dans le S.I. <br>
\- ...
forment le repère cartésien
$`(O, \overrightarrow{e_x},\overrightarrow{e_y},\overrightarrow{e_z})`$.
Un point $`M`$ de l'espace est repéré par son vecteur position $`\overrightarrow{OM}`$.
Le vecteur $`\overrightarrow{OM}`$ en coordonnées cartésiennes s'écrit en fonctio
#### Déplacement, surface et volume élémentaires
##### Vecteur déplacement élémentaire
* *CS220*
La norme du vecteur $`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}`$
est l'élément de longueur $`dl_x`$, donc le vecteur $`\overrightarrow{e_x}`$ s'écrit :
$`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}=dl_x\;\overrightarrow{e_x}=dx\;\overrightarrow{e_x}`$
de même :
$`\partial\overrightarrow{OM}_y=\overrightarrow{dl_y}=dl_y\;\overrightarrow{e_y}=dy\;\overrightarrow{e_y}`$<br>
$`\partial\overrightarrow{OM}_z=\overrightarrow{dl_z}=dl_z\;\overrightarrow{e_z}=dz\;\overrightarrow{e_z}`$
--------------------------------
* *CS230*
L'**élément vectoriel d'arc** ou vecteur déplacement élémentaire $`\overrightarrow{dOM}=\overrightarrow{dl}`$ en
coordonnées cartésiennes est le vecteur déplacement du point $`M(x,y,z)`$ au point
$`M'(x+dx,y+dy,z+dz)`$ quand les coordonnées varient infinitésimalement des quantités
$`dx`$, $`dy`$ y $`dz`$, et il s'écrit :
$`\overrightarrow{MM'}=d\overrightarrow{OM}=\overrightarrow{dr}=\overrightarrow{dl}`$
$`=\partial\overrightarrow{OM}_x+\partial\overrightarrow{OM}_y+\partial\overrightarrow{OM}_z`$
$`=\overrightarrow{dl_x}+\overrightarrow{dl_y}+\overrightarrow{dl_z}`$
$`=dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z}`$
$`=dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z}`$
**$`\mathbf{d\overrightarrow{OM}=\overrightarrow{dl}}`$**
**$`\mathbf{=dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z}}`$**
**$`\mathbf{=dx\;\overrightarrow{e_x}+dy\;\overrightarrow{e_y}+dz\;\overrightarrow{e_z}}`$**
##### Scalaire déplacement élémentaire
* *CS240*
[FR] et sa norme el l'élément de longueur :
$`||\overrightarrow{dl}||=\sqrt{dl_x^2+dl_y^2+dl_z^2}=\sqrt{dx^2+dy^2+dz^2}`$
$`||\overrightarrow{dl}||=\sqrt{\overrightarrow{dl}\cdot\overrightarrow{dl}}`$
$`=\left[(dl_x\;\overrightarrow{e_x}+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\cdot
(dl_x\;\overrightarrow{e_x}\right.`$
$`\left.+dl_y\;\overrightarrow{e_y}+dl_z\;\overrightarrow{e_z})\right]^{1/2}`$
$`=\left[(dl_x)^2\;(\overrightarrow{e_x}\cdot\overrightarrow{e_x})\right.`$
$`+(dl_y)^2\;(\overrightarrow{e_y}\cdot\overrightarrow{e_y})`$
$`+(dl_z)^2\;(\overrightarrow{e_z}\cdot\overrightarrow{e_z})`$
$`+(2\,dl_x\,dl_y)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_y})`$
$`+(2\,dl_x\,dl_z)\,(\overrightarrow{e_x}\cdot\overrightarrow{e_z})`$
$`\left.+(2\,dl_y\,dl_z)\,(\overrightarrow{e_y}\cdot\overrightarrow{e_z})\right]^{1/2}`$
$`=\sqrt{(dl_x)^2+(dl_y)^2+(dl_z)^2}`$
$`=\sqrt{dx^2+dy^2+dz^2}=dl`$
##### Surfaces élémentaires
* *CS250*
Les 3 vecteurs $`\partial\overrightarrow{OM}_x=\overrightarrow{dl_x}\quad`$,
$`\quad\partial\overrightarrow{OM}_y=\overrightarrow{dl_y}\quad`$ et
$`\quad\partial\overrightarrow{OM}_z=\overrightarrow{dl_z}`$ sont orthogonaux 2 à 2.
$`\Longrightarrow`$ :
L'aire d'un élément de surface construit par 2 de ces vecteurs s'exprimera
simplement comme le produit de leurs normes. Et le volume définit par ces 3 vecteurs
sera simplement le produits de leurs normes.
-------------------
* *CS260*
Selon la direction choisie, les **éléments scalaires de surface $`dS`$** en coordonnées cartésiennes sont :
\- dans un plan $`z = cst`$ :<br>
$`\quad dS=dS_{xy}=dS_{yx}=dl_x\;dl_y=dx\;dy\quad`$ , **$`\mathbf{dS=dl_x\;dl_y=dx\;dy}`$**<br>
\- dans un plan $`y = cst`$ :<br>
$`\quad dS=dS_{xz}=dS_{zx}=dl_x\;dl_z=dx\;dz\quad`$ , **$`\mathbf{dS=dl_x\;dl_z=dx\;dz}`$**<br>
\- dans un plan $`x = cst`$ :<br>
$`\quad dS=dS_{yz}=dS_{zy}=dl_y\;dl_z=dy\;dz`$, **$`\mathbf{dS=dl_y\;dl_z=dy\;dz}`$**
--------------------
* *CS270*
et les **éléments vectoriels de surface $`\overrightarrow{dS}`$** correspondants sont :
$`d\overrightarrow{S_{xy}}=\pm\;\partial\overrightarrow{OM}_x\land\partial\overrightarrow{OM}_y`$
$`=\pm\;\overrightarrow{dl_x}\land\overrightarrow{dl_y}`$
$`=\pm\; (dl_x\;\overrightarrow{e_x})\land(dl_y\;\overrightarrow{e_y})`$
$`=\pm\; dl_x\;dl_y\;(\overrightarrow{e_x}\land\overrightarrow{e_y})`$
$`= \pm \; dx\;dy\;\overrightarrow{e_z}`$
$`d\overrightarrow{S_{xz}}=\pm\;\partial\overrightarrow{OM}_x\land\partial\overrightarrow{OM}_z`$
$`=\pm\;\overrightarrow{dl_x}\land\overrightarrow{dl_z}`$
$`=\pm\; (dl_x\;\overrightarrow{e_x})\land(dl_z\;\overrightarrow{e_z})`$
$`=\pm\; dl_x\;dl_z\;(\overrightarrow{e_x}\land\overrightarrow{e_z})`$
$`=\mp\; dx\;dy\;\overrightarrow{e_z}`$
$`d\overrightarrow{S_{yz}}=\pm\;\partial\overrightarrow{OM}_y\land\partial\overrightarrow{OM}_z`$
$`=\pm\;\overrightarrow{dl_y}\land\overrightarrow{dl_z}`$
$`=\pm\; (dl_y\;\overrightarrow{e_y})\land(dl_z\;\overrightarrow{e_z})`$
$`=\pm\; dl_y\;dl_z\;(\overrightarrow{e_y}\land\overrightarrow{e_z})`$
$`=\pm\; dy\;dz\;\overrightarrow{e_x}`$
##### Volume élémentaire
* *CS270*
Élément de volume $`d\large\tau`$ en coordonnées cartésiennes :
$`d\large\tau\normalsize=dx\;dy\;dz`$ , **$`d\large\tau\normalsize=dx\;dy\;dz`$**
#### Vecteur position
* *CS280*
Vecteur position d'un point $`M(x,y,z)`$ en coordonnées cartésiennes :<br>
[EN] Position vector of a point $`M(x,y,z)`$ in Cartesian coordinates:<br>
$`\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}`$
**$`\mathbf{\overrightarrow{OM}=x\;\overrightarrow{e_x}+y\;\overrightarrow{e_y}+z\;\overrightarrow{e_z}}`$**
#### Vecteur vitesse
* *CS290*
#### Vecteur accélération
* *CS295*
------------------------------------
### Coordenadas cilíndricas / Coordonnées cylindriques / Cylindrical coordinates N3
#### Définition des coordonnées et domaines de définition
* *135* :
* *CS300* :
Cadre de référence : système cartésien de coordonnées $`(O, x, y, z)`$
@ -138,6 +461,10 @@ Cadre de référence : système cartésien de coordonnées $`(O, x, y, z)`$
\- **3 axes** nommés **$`Ox , Oy , Oz`$**, se coupant en $`O`$, **orthogonaux 2 à 2**.<br>
\- **1 unité de longueur**.<br>
---------------------
* *CS310* :
Coordonnées cylindriques $`(\rho , \varphi , z)`$ :
\- Tout point $`M `$ de l'espace est projeté orthogonalement sur le plan $`xOy`$ conduisant au point $`m_{xy}`$,
@ -150,6 +477,10 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
**$`\rho_M=\overline{Om_{xy}}`$ , $`\varphi_M=\widehat{xOm_y}`$ , $`z_M=Om_z`$**
--------------------
* *CS320*
! *Remarque :* Les deux premières coordonnées cylindriques d'un point $`M`$ sont les coordonnées polaires du point $`m_{xy}`$ dans le plan $`xOy`$ (plan $`z=0`$). Ce sont aussi les coordonnées polaires du point $`M`$ dans le plan $`z=z_M`$.
\- Les coordonnées **$`\rho`$ **et **$`z`$** sont des *longueurs*, dont l'*unité S.I.* est le mètre, de symbole *$`m`$*.<br>
@ -157,6 +488,10 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
**Unités S.I. : $`\rho\;(m)`$ , $`\varphi\;(rad)`$ , $`z\;(m)`$**
--------------------
* *CS330*
\- Tout point $`M`$ de l'espace, excepté le point origine $`O`$, est repéré de façon unique par un et un seul triplet constitué de ses 3 coordonnées cylindriques.<br>
\- Au point origine $`O`$ est attribué les coordonnées cylindriques $`(0 , 0 , 0)`$.
@ -166,10 +501,19 @@ le sens de rotation étant tel que le trièdre *$`(Ox , Om_{xy}, Oz)`$* est un *
$`M(\rho , \varphi , z)`$, **$`\mathbf{M(\rho , \varphi , z)}`$**
------------------
* *CS340*
\- **Tout l'espace** est couvert par les coordonnées cylindriques variant indépendamment dans les domaines $`\rho\in\mathbb{R_+^{*}}=[0 ,+\infty[ `$ , $`\varphi\in[0,2\pi[`$ et $`z\in\mathbb{R}=]-\infty ,+\infty\,[ `$.
**$`\mathbf{ \rho\in\mathbb{R_+^{&ast;}}=[0 ,+\infty[} `$ , $`\mathbf{ \varphi\in[0,2\pi[ }`$ , $`\mathbf{ z\in\mathbb{R}=]-\infty ,+\infty[ } `$**
--------------
* *CS350*
! <details markdown=1>
! <summary>
! Notations sur les ensembles de nombres réels
@ -230,11 +574,11 @@ Si el punto es cualquier punto, simplificamos / Si le point est un point quelcon
$`M(\rho, \varphi, z)`$ , **$`\mathbf{M(\rho, \varphi, z)}`$** -->
##### Base vectorielle et repère de l'espace associés
#### Base vectorielle et repère de l'espace associés
<br>__*Variation d'une coordonnée et longueur du parcours associée*__
##### Variation d'une coordonnée et longueur du parcours associée
* *145* :
* *CS360*
[ES] Cuando solo la coordenada $`\rho`$ de un punto $`M(\rho, \varphi, z)`$ varía
continuamente entre los valores $`\rho`$ y $`\rho+\Delta \rho`$, el punto $`M`$ recorre un segmento
@ -277,8 +621,9 @@ towards $`0`$, the infinitesimal length $`dl_{\varphi}`$ covered by the point $`
$`\displaystyle d\varphi=\lim_{\Delta \varphi\rightarrow 0 \\ \Delta \varphi>0} \Delta\varphi`$
$`\quad\Longrightarrow\quad dl_{\phi}=\rho\,d\varphi`$ , , **$`\mathbf{dl_{\varphi}=\rho\,d\varphi}`$**.
------------
* *140* :
* *CS370* :
[ES] elemento escalar de línea :<br>
[FR] élément scalaire de longueur :<br>
@ -286,9 +631,9 @@ $`\quad\Longrightarrow\quad dl_{\phi}=\rho\,d\varphi`$ , , **$`\mathbf{dl_{\varp
<br>$`dl=\sqrt{d\rho^2+ (\rho\,d\varphi)^2+dz^2}`$ , **$`\mathbf{dl=\sqrt{d\rho^2+ (\rho\,d\varphi)^2+dz^2}}`$**
##### Base vectorielle et repère de l'espace associés
#### Base vectorielle et repère de l'espace associés
* *150* :
* *CS380*
[ES] Cuando solo la coordenada $`\rho`$ de un punto $`M(\rho, \varphi, z)`$ aumenta
infinitesimalmente entre los valores $`\rho`$ y $`\rho+d\rho`$ ($`d\rho>0`$)
@ -330,7 +675,7 @@ $`\partial\overrightarrow{OM}_z=\dfrac{\partial \overrightarrow{OM}}{\partial z}
$`\quad\overrightarrow{e_z}=\dfrac{\partial\overrightarrow{OM}_z}{||\partial\overrightarrow{OM}_z||}`$
* *155* :
* *CS390*
[ES] La norma del vector $`\partial\overrightarrow{OM}_{\rho}=\overrightarrow{dl_{\rho}}`$
es el elemento escalar de linea $`dl_{\rho}`$, entonces el vector $`\partial\overrightarrow{OM}_{\rho}=\overrightarrow{dl_{\rho}}`$
@ -365,7 +710,7 @@ $`\partial\overrightarrow{OM}_{\varphi}=\overrightarrow{dl_{\varphi}}=dl_{\varph
**$`\mathbf{\overrightarrow{dl_{\varphi}}=\rho\,d\varphi\;\overrightarrow{e_{\varphi}}}`$**
* *160* :
* *CS400*
[ES] El **elemento vectorial de línea** o ?? $`\overrightarrow{dOM}=\overrightarrow{dl}`$ en coordenadas cilíndricas es
el vector de desplazamiento del punto $`M(\rho, \varphi, z)`$ al punto $`M'(\rho+ d\rho, \varphi + d\varphi, z+ dz)`$ cuando
@ -412,7 +757,7 @@ $`=\sqrt{(dl_x)^2+(dl_y)^2+(dl_z)^2}`$
$`=\sqrt{dx^2+dy^2+dz^2}=dl`$
* *165* :
* *CS410*
[ES] Los vectores $`\overrightarrow{e_{\rho}}`$, $`\overrightarrow{e_{\varphi}}`$ y $`\overrightarrow{e_z}`$
forman una **base ortonormal** del espacio. La base
@ -442,15 +787,17 @@ de la position de $`M`$ / orthogonal basis dependent of the position of $`M`$.
##### Vecteur déplacement élémentaire
* *170* :
* *CS420*
$`\overrightarrow{OM}=\overrightarrow{OM}(t)\quad\Longrightarrow\quad\left\{ \begin{array}{l}
\overrightarrow{e_{\rho}} = \overrightarrow{e_{\rho}}(t) \\
\overrightarrow{e_{\varphi}} = \overrightarrow{e_{\varphi}}(t) \\
\overrightarrow{e_z} = \overrightarrow{cst} \\
\end{array} \right.`$<br>
\end{array} \right.`$
-----------------------
* *175* :
* *CS430*
Método 1 para el cálculo de / Méthode 1 pour le calcul de / Method 1 for the calculation of :<br>
$`\dfrac{d e_r}{dt}`$ , $`\dfrac{d e_{\varphi}}{dt}`$.
@ -536,8 +883,9 @@ $`\quad\dfrac{d\overrightarrow{e_{\varphi}}}{dt}=-\,\dfrac{d\varphi}{dt}\cdot\ov
**$`\mathbf{\dfrac{d\overrightarrow{e_{\varphi}}}{dt}=-\,\dfrac{d\varphi}{dt}}\cdot\overrightarrow{e_{\rho}}`$**<br>
--------------------
* *180* :
* *CS440*
Método 2 para el cálculo de / Méthode 2 pour le calcul de / Method 2 for the calculation of :<br>
$`\dfrac{d e_{\rho}}{dt}`$ , $`\dfrac{d e_{\varphi}}{dt}`$
@ -609,8 +957,9 @@ $`\dfrac{d\overrightarrow{e_{\varphi}}}{dt}=-\,\dfrac{d\varphi}{dt} \cdot
$`\dfrac{d\overrightarrow{e_z}}{dt}=\overrightarrow{0}`$
---------------------
* *182* :
* *CS450*
[ES] En la mecánica clásica, las interacciones entre cuerpos materiales se traducen en términos de fuerza $`\vec{F}`$ y conducen a una aceleración $`\vec{a}`$ de cada cuerpo en interacción proporcional a la inversa de su masa de inercia $`m_I`$ : $`\vec{a}=\dfrac{\vec{F}}{m_I}`$ (o $`\vec{F}=m_I\;\vec{a}`$ , ver capítulo mecánico). Como el vector de aceleración es la segunda derivada temporal del vector de posición, es posible que necesitemos conocer la segunda derivada temporal de los vectores base para el estudio del movimiento.
@ -650,9 +999,9 @@ $`\dfrac{d^2\,\overrightarrow{e_z}}{dt^2} \quad = \dfrac{d}{dt} \left( \dfrac{d\
**$`\mathbf{\dfrac{d^2\,\overrightarrow{e_z}}{dt^2}=\overrightarrow{0}}`$**
---------------------
* *185* :
* *CS460*
[ES] La norma del vector $`\partial\overrightarrow{OM}_{\rho}=\overrightarrow{dl_{\rho}}`$
es el elemento escalar de linea $`dl_{\rho}`$, entonces el vector $`\overrightarrow{e_{\rho}}`$
@ -684,8 +1033,9 @@ is the scalar line element $`dl_{\varphi}`$, so the vector $`\overrightarrow{e_{
$`\partial\overrightarrow{OM}_{\varphi}=\overrightarrow{dl_{\varphi}}=dl_{\varphi}\;\overrightarrow{e_{\varphi}}
=\rho\,d\varphi\;\overrightarrow{e_{\varphi}}`$
------------------
* *190* :
* *CS470*
[ES] Los 3 vectores $`\partial\overrightarrow{OM}_{\rho}=\overrightarrow{dl_{\rho}}\quad`$,
$`\quad\partial\overrightarrow{OM}_{\varphi}=\overrightarrow{dl_{\varphi}}\quad`$ y
@ -713,9 +1063,9 @@ n'est le produit de leurs normes.
the product of their norms. And the volume defined by these 3 vectors is not the product
of their norms.
--------------------------
* *195* :
* *CS480*
http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=102-05-06.

Loading…
Cancel
Save