From 79eb227472164fe3ce7cb97883a61d4576826165 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 19 Mar 2020 20:20:01 +0100 Subject: [PATCH] Update textbook.fr.md --- .../02.electromagnetic-waves-vacuum-main/textbook.fr.md | 5 ----- 1 file changed, 5 deletions(-) diff --git a/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md b/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md index bb5658324..7e6ad7823 100644 --- a/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md +++ b/01.curriculum/01.physics-chemistry-biology/04.Niv4/04.electromagnetism/02.electromagnetic-waves-vacuum/02.electromagnetic-waves-vacuum-main/textbook.fr.md @@ -29,10 +29,6 @@ $`\overrightarrow{rot} \;\overrightarrow{B} = \mu_0\;\overrightarrow{j} + $`\rho`$ est la densité volumique de charge totale. $`\overrightarrow{j}`$ est la densité volumique de courant totale. -! Note : -! $`\rho`$ est la densité volumique de charge totale - -de solution ### Rappel de l'équation d'onde d'un champ vectoriel @@ -58,7 +54,6 @@ $`\Delta =\overrightarrow{grad} \left(div\right) - \overrightarrow{rot}\, \left( ### Equation d'onde pour le champ électromagnétique -(Ou "Etude du Laplacien du champ électromagnétique") L'idée est de calculer pour chacun des champs $`\overrightarrow{E}`$ et $`\overrightarrow{E}`$ l'expression de son Laplacien, pour voir si une identification avec l'équation d'onde est