diff --git a/01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md b/01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md index 9dceae55b..3758e4f5e 100644 --- a/01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md +++ b/01.curriculum/01.physics-chemistry-biology/03.Niv3/05.math-tools-for-physics/04.differential-operators/04.curl/textbook.fr.md @@ -251,8 +251,8 @@ La surface élémentaire de ce rectangle ABCD élémentaire étant simplement $` je peux maintenant calculer la composante selon du vecteur rotationnel du champ vectoriel au point M. En reprenant la définition (1), j'obtiens -$`\overrightarrow{rot}\;\overrightarrow{X_M} \cdot \overrightarrow{e_z}= -\lim_{{ABCD \to 0} \: \dfrac{\oint_{ABCD} \overrightarrow{X} \cdot \overrightarrow{dl}}{\iint_{ABCD} dS}`$ +$`\overrightarrow{rot} \; \overrightarrow{X_M} \cdot \overrightarrow{e_z} += \lim_{ABCD \to 0} \: \dfrac{\oint_{ABCD} \overrightarrow{X} \cdot \overrightarrow{dl}}{\iint_{ABCD} dS}`$ $`=\left.\dfrac{\partial Y}{\partial y}\right|_M -\left.\dfrac{\partial X}{\partial y}\right|_M`$