From 7ca69c714dfbeafdbc07a5c0346f34ca4f4e3498 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Fri, 29 Jan 2021 12:18:31 +0100 Subject: [PATCH] Update textbook.en.md --- .../30.cylindrical-coordinates/10.main/textbook.en.md | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md b/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md index faa60a7ed..39686e2e5 100644 --- a/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md +++ b/12.temporary_ins/05.coordinates-systems/30.cylindrical-coordinates/10.main/textbook.en.md @@ -47,7 +47,7 @@ $`\def\PSclosed{\mathscr{S}_{\displaystyle\tiny\bigcirc}}`$ * * CS300 *: -Reference frame: Cartesian coordinate system $ `(O, x, y, z)` $ +Reference frame: Cartesian coordinate system $`(O, x, y, z)`$ \ - **1 point $`O`$ origin** of the space.
\ - **3 axes** named **$`Ox,Oy,Oz`$**, intersecting at $`O`$, **orthogonal 2 to 2**.
\ - **1 unit of length**.
@@ -55,7 +55,7 @@ Reference frame: Cartesian coordinate system $ `(O, x, y, z)` $ ! can give : The cylindrical coordinates are defined from a Cartesian coordinate system, i.e. -\- 1 point $`O` origin of space.
+\- 1 point $`O`$ origin of space.
\- 3 axes named $`Ox, Oy, Oz`$, intersecting at $`O`$, orthogonal 2 to 2.
\- 1 unit of length.
@@ -77,7 +77,7 @@ a *direct trihedron*.
\- The **coordinate $`z_M`$** of the point $`M`$ is the *algebraic distance $`\overline {Om_z}`$* between the point $`O`$ and the point $`m_z`$. -**$`\rho_M=\overline{Om_ {xy}}`$, $`\varphi_M = \widehat{xOm_y}`, $`z_M =Om_z`$** +**$`\rho_M=\overline{Om_ {xy}}`$, $`\varphi_M = \widehat{xOm_y}`$, $`z_M =Om_z`$** ! can give : @@ -85,7 +85,7 @@ The cylindrical coordinates are ordered and noted $`(\rho,\varphi,z)`$. For any point $`M`$ in space: -\- The $`\ rho_M`$ coordinate of the point $`M`$ is the nonalgebraic distance $`Om_{xy}`$ +\- The $`\rho_M`$ coordinate of the point $`M`$ is the nonalgebraic distance $`Om_{xy}`$ between point $`O`$ and point $ m_{xy}`$.
\- The coordinate $`\varphi_M`$ of the point $`M`$ is the nonalgebraic angle $`\widehat{xOm_{xy}}`$ between the axis $`Ox`$ and the half-line $`Om_ {xy}`$,