diff --git a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md index 9af06f084..f20356b4f 100644 --- a/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md +++ b/01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/02.mirror/02.new-course-overview/cheatsheet.en.md @@ -96,7 +96,7 @@ $`sin(\alpha) \approx tan (\alpha) \approx \alpha`$ (rad), et $`cos(\alpha) \ap $`\dfrac{1}{\overline{SA_{ima}}}+\dfrac{1}{\overline{SA_{obj}}}=\dfrac{2}{\overline{SC}}`$  (equ.1) * **Transverse magnification expression** :

-$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$$  (equ.2) +$`\overline{M_T}=-\dfrac{\overline{SA_{ima}}}{\overline{SA_{obj}}}`$  (equ.2) You know $`\overline{SA_{obj}}`$ , calculate $`\overline{SA_{ima}}`$ using (equ. 1) then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. @@ -109,6 +109,18 @@ then $`\overline{M_T}`$ with (equ.2), and deduce $`\overline{A_{ima}B_{ima}}`$. ! $`\overline{M_T}=+1`$. ! *USEFUL 2° :
+! *You can find* the conjunction and the transverse magnification **equations for a plane mirror directly from +! those of the spherical mirror**, with the following assumptions :

+! $`n_{eme}=-n_{inc}`$

+! (to memorize : medium of incidence=medium of emergence, therefor same speed of light, but direction +! of propagation reverses after reflection on the mirror)

+! +! are obtained by rewriting these two equations for a spherical refracting surface in the limit +! when $`|\overline{SC}|\longrightarrow\infty`$. +! Then we get for a plane mirror :
+! $`\overline{SA_{ima}}=\overline{SA_{obj}}`$ and $`\overline{M_T}=+1`$ + +