Browse Source

Update textbook.fr.md

keep-around/909d58f044f5fed96821567b7e541fad6079bbf7
Claude Meny 5 years ago
parent
commit
909d58f044
  1. 4
      00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md

4
00.brainstorming-pedagogical-teams/40.collection-existing-pedagogical-content/50.electromagnetism/40.n4/10.main/textbook.fr.md

@ -353,8 +353,8 @@ $`fem = \mathcal{C}_E = \mathcal{E}
[EN] (auto-trad) Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$ :<br> [EN] (auto-trad) Ostrogradsky’s theorem = divergence theorem : for all vectorial field $`\vec{X}`$ :<br>
[FR] (CME), [ES] (...)?, [EN] (...)? <br> [FR] (CME), [ES] (...)?, [EN] (...)? <br>
$`\displaystyle\iiint_{large\tau\normalsize} div\;\overrightarrow{X} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\large\tau\normalsize } \overrightarrow{X}\cdot\overrightarrow{dS}`$
$`\displaystyle\iiint_{\tau} div\;\overrightarrow{X} \cdot d\tau = \displaystyle
\oiint_{S\leftrightarrow\tau} \overrightarrow{X}\cdot\overrightarrow{dS}`$
Stokes' theorem , for all vectorial field $`\vec{X}`$ : Stokes' theorem , for all vectorial field $`\vec{X}`$ :

Loading…
Cancel
Save