|
|
|
@ -162,4 +162,30 @@ You know $`\overline{SA_{obj}}`$, $`n_{inc}`$ and $`n_{eme}`$, you have previous |
|
|
|
! Copy this result into (equ.2) leads to $`\overline{M_T}=+1`$. |
|
|
|
|
|
|
|
|
|
|
|
#### Graphical study |
|
|
|
#### Graphical study |
|
|
|
|
|
|
|
##### 1 - Determining object and image focal points |
|
|
|
|
|
|
|
Positions of object focal point F and image focal point F’ are easily obtained from the conjunction equation (equ. 1). |
|
|
|
|
|
|
|
* Image focal length $`\overline{OF'}`$ : $`\left(|\overline{OA_{obj}}|\rightarrow\infty\Rightarrow A_{ima}=F'\right)`$<br> |
|
|
|
(equ.1)$`\Longrightarrow\dfrac{n_{eme}}{\overline{SF'}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}\Longrightarrow\overline{SF'}=\dfrac{n_{eme}\cdot\overline{SC}}{n_{eme}-n_{inc}}`$ |
|
|
|
|
|
|
|
* Object focal length $`\overline{OF}`$ : $`\left(|\overline{OA_{ima}}|\rightarrow\infty\Rightarrow A_{obj}=F\right)`$<br> |
|
|
|
(equ.1) $`\Longrightarrow-\dfrac{n_{inc}}{\overline{SF}}=\dfrac{n_{eme}-n_{inc}}{\overline{SC}}\Longrightarrow\overline{SF}=-\dfrac{n_{inc}\cdot\overline{SC}}{n_{eme}-n_{inc}} |
|
|
|
`$ |
|
|
|
|
|
|
|
##### 2 - Thin spherical refracting surface representation |
|
|
|
|
|
|
|
* **Optical axis = revolution axis** of the refracting surface, positively **oriented** in the direction of |
|
|
|
propagation of the light (from the object towards the refracting surface) |
|
|
|
|
|
|
|
* Thin spherical refracting surface representation :<br><br> |
|
|
|
\- **line segment**, perpendicular to the optical axis, centered on the axis with symbolic |
|
|
|
**indication of the direction of curvature** of the surface at its extremities.<br><br> |
|
|
|
\- **vertex S**, that locates the refracting surface on the optical axis.<br><br> |
|
|
|
\- **nodal point C = center of curvature**.<br><br> |
|
|
|
\- **object focal point F and image focal point F’**. |
|
|
|
|
|
|
|
|
|
|
|
|