Browse Source

suite update

keep-around/9b7f0e09644686aa08acbcfc6d40cc8b3cc08b86
Claude Meny 6 years ago
parent
commit
9b7f0e0964
  1. 8
      01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md

8
01.curriculum/01.physics-chemistry-biology/02.Niv2/04.optics/04.use-of-basic-optical-elements/01.plane-refracting-surface/02.plane-refracting-surface-overview/cheatsheet.en.md

@ -64,18 +64,18 @@ refracting interface corresponds to two different plane refracting surfaces :<br
#### Non stigmatism of spherical refracting surfaces
![](dioptre-spherique-snell-law)<br>
![](dioptre-spherique-snell-law.png)<br>
Fig. 3. : In each point of the spherical refracting surface, the Snell-Descartes relation applies.
![](dioptre-spherique-non-stigmatique-1)<br>
![](dioptre-spherique-non-stigmatique-1.png)<br>
Fig. 4. : A spherical refracting surface is not stigmatic: The rays (or their extensions) coming
from an object point generally do not converge towards an image point.
![](dioptre-spherique-non-stigmatique-2)<br>
![](dioptre-spherique-non-stigmatique-2.png)<br>
Fig. 5a. : If we limit the opening of the spherical refracting surface so that only the rays
meeting the surface near the vertex are refracted through the surface.
![](dioptre-spherique-gauss-conditions)<br>
![](dioptre-spherique-gauss-conditions.png)<br>
Fig. 5b. : and if the object points remain close to the optical axis, so that the angles of
incidence and refraction remain small, then for each object point an image point can be almost
defined, and therefore the spherical refracting surface becomes quasi-stigmatic.

Loading…
Cancel
Save