Browse Source

Update annex.fr.md

keep-around/9f63c565550048cc059830fc752bd7f53dc3737a
Claude Meny 5 years ago
parent
commit
9f63c56555
  1. 21
      00.brainstorming-pedagogical-teams/45.synthesis-structuring/instructions-for-levels/30.beyond/annex.fr.md

21
00.brainstorming-pedagogical-teams/45.synthesis-structuring/instructions-for-levels/30.beyond/annex.fr.md

@ -172,7 +172,7 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées
! What is the optical system giving the image of the painting?
! </summary>
! <br>
! * The optical system is composed of two spherical refracting surfaces, centered on the same optical axis.
! * The optical system is composed of two spherical refracting surfaces, centered on the same optical axis.<br>
! <br>
! </details>
! <details markdown=1>
@ -187,11 +187,13 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées
!* The first spherical refracting surface
! $`DS1`$ encountered by the light has
! the follwing characteristics :<br>
! $`\overline{S_1C_1}=+|R|=+5\;cm`$ , $`n_{ini}=1`$ and $`n_{fin}=1.5`$
! $`\overline{S_1C_1}=+|R|=+5\;cm`$ ,
! $`n_{ini}=1`$ and $`n_{fin}=1.5`$<br>
! <br>
! * The second spherical refracting surface $DS2$
! encountered by the light has the follwing characteristics :<br>
! $`\overline{S_2C_2}=-|R|=-5\;cm`$ , $`n_{ini}=1.5`$ and $`n_{fin}=1`$
! * The second spherical refracting surface
! $DS2$ encountered by the light has the follwing characteristics :<br>
! $`\overline{S_2C_2}=-|R|=-5\;cm`$ ,
! $`n_{ini}=1.5`$ and $`n_{fin}=1`$
!
! * Algebraic distance between $DS1$ and $DS2$ is : $`\overline{S_1S_2}=+10\;cm`$
!
@ -458,24 +460,23 @@ Sont proposées les catégories suivantes, mais à débattre, toutes les idées
!<summary>
! What is the apparent magnification of the cathedral ?
!</summary>
! <br>
! * "apparent magnification" = "angular magnification" = "magnifying power".
! * apparent magnification = angular magnification = magnifying power.
!
! * As calculated previously, standing 400 metres from the cathedral, the 90 m heigh
! cathedral sustends the apparent angles of $`\alpha=arctan\left(\dfrac{90}{400}\right)=0.221\;rad=12.7°`$
! at your eye.
! at your eye.<br>
! <br>
! * The image of the cathedral is 1.7 cm heigth and is located between the lens
! (from its vertex $`S2`$) and your eyes and at 2.5cm from the lens. If your eye is
! 20cm away from the lens, so the distance eye-image is 17.5 cm (we use no algebraic values).
! Thus the image of the catedral subtends the apparent angle
! $`\alpha'=arctan\left(\dfrac{1.7}{17.5}\right)=0.097\;rad=5.6°`$ at your eye.
! $`\alpha'=arctan\left(\dfrac{1.7}{17.5}\right)=0.097\;rad=5.6°`$ at your eye.<br>
! <br>
! * The apparent magnification $`M_A`$ of the cathedral throught the lensball for my
! eye in that position is<br>
! $`M_A=\dfrac{\alpha'}{\alpha}=\dfrac{0.097}{0.221}=0.44`$.<br><br>
! Taking into account that the image is reversed, the algebraic value of the apparent
! magnification is $`\overline{M_A}=-0.44`$.
! magnification is $`\overline{M_A}=-0.44`$.<br>
! <br>
! * You could obtained directly this algebraic value of $`M_A`$ by considering algebraic
! lengthes and angles values in the calculations :<br><br>

Loading…
Cancel
Save