Browse Source

Add the language-selector plugin.

keep-around/a1dcc3b4042657a8b9536338f09d488bf2584c5c
Goutte 7 years ago
parent
commit
a1dcc3b404
  1. 66
      01.courses/01.optics/03.the-nature-of-light/01.textbook/textbook.fr.md
  2. 40
      01.courses/01.optics/04.sources-of-light-physical-ojects/textbook.md

66
01.courses/01.optics/03.the-nature-of-light/01.textbook/textbook.fr.md

@ -18,13 +18,11 @@ Notes:
## Nature ondulatoire de la lumière
<!-- todo -->
! Partie en construction. Contributions bienvenues !
## Nature corpusculaire de la lumière
<!-- todo -->
! Partie en construction. Contributions bienvenues !
@ -99,27 +97,43 @@ Dans son état fondamental, les électrons se répartissent dans les orbitales d
### L'interaction relativiste
Je comprends facilement cette interaction à partir de la célèbre formule d'Einstein $`E=m\cdot^2`$ qui dit qu'un corps immobile et de masse $m$ dans un référentiel donné contient une énergie $`E`$ égale à la masse au repos du corps multipliée par la vitesse de la lumière $`c`$ élevée au carré.
Je comprends facilement cette interaction à partir de la célèbre formule d'Einstein $`E=m \cdot c^2`$ qui dit qu'un corps immobile et de masse $m$ dans un référentiel donné contient une énergie $`E`$ égale à la masse au repos du corps multipliée par la vitesse de la lumière $`c`$ élevée au carré.
La théorie de la relativité prévoit, en parfait accord avec l'expérience, que la masse d'un corps croît avec la vitesse de celui-ci. La masse d'un corps varie donc selon le référentiel dans lequel ce corps est observé. Dans la relation $`E=m\cdot c^2`$, $`m`$ est la masse du corps mesurée dans un référentiel où le corps est immobile, je l'appelle "masse au repos".
A chaque particule de matière de masse au repos $`m`$ correspond son anti-particule qui possède la même masse.
Lorsqu'une particule de matière rencontre son anti-particule, toutes deux sont annihilées, et la somme de leurs masses est entièrement convertie en énergie, sous la forme de photons.
Entre le proton, le neutron et l'électron, l'électron est la particule atomique de plus faible masse $`m_e`$ au repos : $`m_e=9.1\cdot10^{-31}kg`$.
L'annihilation entre un électron et son antiparticule appelée positron libère 2 fois l'énergie :
L'annihilation entre un _électron_ et son antiparticule appelée _positron_ libère 2 fois l'énergie :
```math
m_e\cdot c^2=8.2\cdot10^{-14}J=511 000eV
```
Une énergie de $1 eV$ est l'énergie cinétique acquise par un électron de charge électrique
$q=-1.6\cdot10^{-19}C$ accéléré par une différence de potentiel de $1V$.
En Joule, cela représente une énergie de $1 eV = 1.6\cdot10^{-19}J$.
Cela se traduit par la création de deux photons d'énergie $511 keV$.
Chaque photon posède donc une énergie plus de $250 0000$ fois supérieure à un photon visible.
Cette interaction relativiste ne s'observe que dans le domaine des rayons gamma.
Une carte du ciel centrée sur une énergie photonique de $511 keV$
présente la distribution spatiale de l'annihilation électron-positron.
Ce sont des sources quasiment ponctuelles dans le plan Galactique.
Si l'origine de cette émission à $511 keV$ reste sujet à débat,
elle est liée à des évènements extrêmement énergétiques capables de générer des positrons.
Ces positrons peuvent être produits dans ou au voisinage d'objects stellaires compacts
(étoiles à neutrons, trous noirs), lors d'explosions d'étoiles (novae, supernovae).
Ils peuvent aussi être créés par désintégration d'éléments radioactifs
créés par l'interaction du rayonnement cosmique avec le gaz interstellaire,
ou encore avoir une origine exotique (évènement affectant de la matière noire).
<!-- Je m'arrête ici pour l'instant, n'hésite pas à continuer -->
---
<ul class="exemple">Une énergie de $1 eV$ est l'énergie cinétique acquise par un électron de charge électrique $q=-1.6\cdot10^{-19}C$ accéléré par une différence de potentiel de $1V$. En Joule, cela représente une énergie de $1 eV = 1.6\cdot10^{-19}J$. </ul>
<p>Cela se traduit par la création de deux photons d'énergie $511 keV$. Chaque photon posède donc une énergie plus de $250 0000$ fois supérieur à un photon visible. Cette interaction relativiste ne s'observe que dans le domaine des rayons gamma.</p>
<ul class="exemple">Une carte du ciel centrée sur une énergie photonique de $511 keV$ présente la distribution spatiale de l'annihilation électron-positron. Ce sont des sources quasiment ponctuelles dans le plan Galactique. Si l'origine de cette émission à $511 keV$ reste sujet à débat, elle est liée à des évènements extrêmement énergétiques capables de générer des positrons. Ces positrons peuvent être produits dans ou au voisinage d'objects stellaires compacts (étoiles à neutrons, trous noirs), lors d'explosions d'étoiles (novae, supernovae). Ils peuvent aussi être créés par désintégration d'éléments radioactifs créés par l'interaction du rayonnement cosmique avec le gaz interstellaire, ou encore avoir une origine exotique (évènement affectant de la matière noire).</ul>
<!--Spatial distribution of the 511 keV line emission from positron annihilation in the central region of the Galaxy L'origine de ces positons est encore ignorée. De nombreuses sites peuvent produire ces particules d'antimatière parmi lesquelles les étoiles compactes (étoiles à neutrons, trous noirs),  les explosions d'étoiles (novae, supernovae), les sursauts gamma mais aussi l'interaction des particules du rayonnement cosmique avec le gaz de la galaxie ou les étoiles géantes lorsqu'elles fabriquent des éléments radioactifs qui se désintègrent. Parmi toutes les hypothèses actuellement discutées, deux sont particulièrement retenues: une origine radioactive (désintégration de noyaux avec émission de positons) ou une origine exotique (annihilation d'un certain type de matière noire). -->
@ -128,42 +142,6 @@ m_e\cdot c^2=8.2\cdot10^{-14}J=511 000eV
<h3>Le rayonnement thermique du corps réel</h3>
<h1>Optique géométrique : l'art de comprendre et maîtriser les images</h1>
<h2>Qu'est-ce qu'une image </h2>
<h3>L'objet physique, source de lumière</h3>
<p>Parmi les cinq sens de l'être humain (vue, ouïe, odorat, goût, toucher), <strong>la vue</strong> est le <ins>sens le plus développé</ins>, ce qui signifie que c'est le sens <ins>qui nous donne le plus d'informations</ins> sur notre environnement. Notre vision nous permet de localiser et de reconnaître des objets solides ou des étendues liquides qui peuvent nous être utiles ou représenter un danger, des objets que nous voulons attraper ou bien éviter. La vue nous permet de percevoir la présence et d'identifier ces objets à distance, sans contact physique comme avec notre sens du toucher ou celui du goût. Le <strong>vecteur de l'information visuelle</strong> sur la localisation, la nature et la forme de l'objet est <ins>la lumière émise ou diffusée par l'objet</ins> et qui atteint notre oeil.</p>
<ul class="exemple"><!-- à mettre en /M-->
<li> Deux autres de nos sens, l'ouïe et l'odorat, nous apportent aussi chacun une information à distance et sans contact, complémentaire de celle apportée par la vue. Le vecteur de l'information pour l'ouïe est le son produit par l'objet lui-même ou son déplacement, et pour l'odorat ce vecteur est le déplacement entre l'objet et nous des diverses molécules chimiques émises par l'objet et auxquelles notre odorat est sensible. D'autres espèces animales ont développé d'autres sens. Par exemple :
<ul class="list">
<li>dauphins et chauve-souris ont développé l'écholocalisation. En émettant des ultrasons qui seront réfléchis, et en percevant la direction et le retard temporelle de l'onde réfléchie en retour, ils arrivent à localiser et identifier les objets qui font obstacle à la libre propagation des ultra-sons.</li>
<li>requins et raies ont développé au cours de l'évolution un sens qui les rends très sensible aux champs électriques créés par l'activité biologique (principalement les muscles) des autres espèces animales.</li>
<li>La sensibilité au champ magnétique terrestre, qui en chaque endroit pointe dans une direction précise suivant les lignes de champ magnétique, contribue à l'orientation de nombreux oiseaux migrateurs au cours de leur longs voyages saisonniers.</li></ul>
Ce sont les contraintes environnementales locales, les types de ressources nutritives nécessaires et les relations entre proies et prédateurs, qui ont déterminés quels sens ont été les plus aptes pour chaque espèce à assurer sa propre survie. Ainsi les abeilles ont acquis en sens de l'odorat hyper développé pour localiser le nectar des fleurs nécessaire à la survie de la ruche. Les chauve-souris qui se déplacent la nuit et peuplent souvent des grottes ont développé particulièrement l'écholocalisation piur se situer dans leur environnement, là ou le hibou a développé un sens de la vue particulièrement sensible en faible luminosité. Les divers sens agissent de façon complémentaires pour apporter à chaque espèce toute l'information nécessaire à sa survie. La vue est sans conteste, bien que suivie de prêt par l'ouïe, le sens le plus important pour l'être humain. Sa faculté visuelle ... science et vie de juillet...</ul>
<h4>Sources primaires de lumière</h4>
<p>Toute matière émet de la lumière, principalement en fonction de sa température selon la loi du corps noir. Cependant ce type de rayonnement thermique propre à chaque objet n'émet dans le visible que pour des températures de plusieurs centaines de degrés au minimum. Notre oeil est sensible à la lumière émise par ces objets très chauds émettant ce type de rayonnement, ce sont les anciennes ampoules électriques à incandescence, c'est le morceau de métal porté à plus de 800°C qui devient rougissant, et c'est bien sûr et surtout le soleil dont la température de surface est proche de $5800K$. Chaque élément de surface de ces objets très chauds émet une lumière visible dans toutes les directions du demi-espace libre situé devant lui. </p>
<ul class="list"><!-- à mettre en /F ou/et /M-->
<li>Le domaine de sensibilité de la vision humaine correspond aux ondes électromagnétiques de longueurs d'onde $\lambda\in[400nm, 780nm]$, soit une longueur d'onde moyenne de $\lambda_{moy}=500\mu m$. En vertu de la loi de Wien, le soleil dont la température de surface est de 6000 degrés Kelvin ($6000K$), le soleil émet avec un maximum d'intensité à la longueur d'onde de $\lambda=500nm$, longueur d'onde à laquelle l'atmosphère terrestre est également transparente, permettant à cette lumière de parvenir jusqu'au sol. Tout ceci n'est sûrement pas étranger au fait que au cours de l'évolution, l'oeil biologique se soit principalement adapté pour être sensible à cette gamme de longueurs d'onde que l'on nomme le domaine visible. Le domaine visible est défini par rapport au domaine de sensibilité de l'oeil humain, soit $\lambda\in[400nm, 780nm]$. Le domaine de sensibilité des diverses espèces animales peuvent varier légèrement, parfois en s'étendant au tout proche ultraviolet, parfois au tout proche infrarouge. Mais dans la vie en générale, la vision reste centrée sur le domaine $\lambda\in[250nm, 1000nm]$, qui correspond au domaine de maximum d'intensité de la lumière solaire, et à un domaine de transparence de l'atmosphère terrestre.</li>
<li>Si le soleil avait été ce qui est appelé une naine rouge, c'est à dire une étoile dont la température de surface est plus froide, de l'ordre de 3000 degrés Kelvin ($3000K$), selon la loi de Wien le maximum d'émission de l'étoiles se réaliserait à une longueur d'onde moyenne double, soit $\lambda_{moy}=1\mu m$. Notre oeil étant peu sensible à cette longueur d'onde, nous apparaitraient le soleil d'un rouge bien pâle et le jour bien sombre.</li><br>
<li>Mon propre corps est à la température de 37°C, soit environ 300 degrés Kelvin ($300K$), soit 10 fois moins que la température de surface de l'étoile naine rouge précédente. Comme toue matière (assemblage de particules chargées liées entre elles et en mouvement) je rayonne, mais avec un maximum d'intensité situé à une longueur d'onde 10 fois plus grandes, au voisinage de $\lambda_{moy}=10\mu m$. Les lunettes permettant de me voir la nuit grâce à ma propre émission thermique utilisent soit des amplificateurs de lumières visibles (mais il faut qu'il reste un peu de lumière visible que ma peau et mes vêtements puissent diffuser), soit des capteurs de rayonnement sensibles à la longueur d'onde moyenne de $\lambda_{moy}=10\mu m$.</li><br>
<li>Je descends encore la température de la matière d'un facteur 10, et j'obtiens une température de 30 degrés Kelvin ($30K$). le rayonnement thermique d'un corps à cette température présente un maximum d'intensité à la longueur d'onde de $\lambda_{moy}=100\mu m$. La température de ($30K$) , exprimée en degré celsius, correspond à une température d'environ $-240°C$. Aucune température naturelle aussi basse n'est observée sur la Terre, dont la température moyenne (résultant de l'équilibre entre la lumière visible solaire absorbée par l'atmosphère, la terre et les océans, et la lumière infrarouge rayonnée par la Terre dans l'espace) se situe vers $+18°C$. qu'observerais-je si mes yeux n'étaient sensibles qu'aux longueurs d'onde proches de $\lambda_{moy}=100\mu m$ et si l'atmosphère n'était pas opaque à ces longueurs d'onde? Il existe une composante de matière, répandue dans tout l'espace, entre les étoiles. Appelée poussière interstellaire, cette composante est constitué de grains (mélanges solides de silicates, de matière carbonée et de glaces diverses) de tailles nanométriques (de l'ordre de 20 à 100 $\mu m$). Distribuée entre les étoiles, le ciel ne m'apparaitrait pas obscure, ponctué seulement par les étoiles et les planètes, mais sous la forme de vastes étendues lumineuses, comme des nuages, en directions des zones denses en poussières.</li><br>
<li>De 30 degrés Kelvin ($30K$) à 3 degrés Kelvin ($3K$), la température chute encore d'un facteur 10, en de la matière en équilibre thermique à cette température émet son rayonnement à une longueur d'onde 10 fois plus grande, autour de $\lambda_{moy}=1\,mm$. Qu'observe-t-on de l'univers dans ce domaine de longueur d'onde? L'univers rayonne de façon dans toutes les direction et de façon très homogène comme un corps noir parfait à la température de ... $T=2.728\pm0.004\,K$. Ce rayonnement de corps noir quasi-parfait, appelé rayonnement cosmologique ou fond diffus cosmologique, est l'une des preuves très convaincantes du modèle du Big Bang. </li></ul>
<p>D'autres types de sources de lumière visible émettent un spectre de raies plus ou moins larges. L'énergie de chaque photon émis correspond à la différence d'énergie entre un état de plus haute énergie et un état de plus basse énergie, entre lesquelles l'atome ou la molécule transite. </p>
<h4>Sources secondaires de lumière : objets diffusants</h4>
<h3>L'objet physique, source de lumière</h3>
<h2>Domaine de validité de l'optique géométrique</h2>

40
01.courses/01.optics/04.sources-of-light-physical-ojects/textbook.md

@ -0,0 +1,40 @@
---
title: L'objet physique, source de lumière
slug: source-de-lumiere-objet-physique
---
### L'objet physique, source de lumière
Parmi les cinq sens de l'être humain (vue, ouïe, odorat, goût, toucher),
**la vue** est le _sens le plus développé_,
ce qui signifie que c'est le sens _qui nous donne le plus d'informations_ sur notre environnement.
Notre vision nous permet de localiser et de reconnaître des objets solides ou des étendues liquides
qui peuvent nous être utiles ou représenter un danger, des objets que nous voulons attraper ou bien éviter.
La vue nous permet de percevoir la présence et d'identifier ces objets à distance,
sans contact physique comme avec notre sens du toucher ou celui du goût.
Le **vecteur de l'information visuelle** sur la localisation, la nature et la forme de l'objet est
_la lumière émise ou diffusée par l'objet_ et qui atteint notre oeil.
<!-- à mettre en /M-->
- Deux autres de nos sens, l'ouïe et l'odorat, nous apportent aussi chacun une information à distance et sans contact, complémentaire de celle apportée par la vue. Le vecteur de l'information pour l'ouïe est le son produit par l'objet lui-même ou son déplacement, et pour l'odorat ce vecteur est le déplacement entre l'objet et nous des diverses molécules chimiques émises par l'objet et auxquelles notre odorat est sensible. D'autres espèces animales ont développé d'autres sens. Par exemple :
- dauphins et chauve-souris ont développé l'écholocalisation. En émettant des ultrasons qui seront réfléchis, et en percevant la direction et le retard temporelle de l'onde réfléchie en retour, ils arrivent à localiser et identifier les objets qui font obstacle à la libre propagation des ultra-sons.
- requins et raies ont développé au cours de l'évolution un sens qui les rends très sensible aux champs électriques créés par l'activité biologique (principalement les muscles) des autres espèces animales.
- La sensibilité au champ magnétique terrestre, qui en chaque endroit pointe dans une direction précise suivant les lignes de champ magnétique, contribue à l'orientation de nombreux oiseaux migrateurs au cours de leur longs voyages saisonniers.
Ce sont les contraintes environnementales locales, les types de ressources nutritives nécessaires et les relations entre proies et prédateurs, qui ont déterminés quels sens ont été les plus aptes pour chaque espèce à assurer sa propre survie. Ainsi les abeilles ont acquis en sens de l'odorat hyper développé pour localiser le nectar des fleurs nécessaire à la survie de la ruche. Les chauve-souris qui se déplacent la nuit et peuplent souvent des grottes ont développé particulièrement l'écholocalisation piur se situer dans leur environnement, là ou le hibou a développé un sens de la vue particulièrement sensible en faible luminosité. Les divers sens agissent de façon complémentaires pour apporter à chaque espèce toute l'information nécessaire à sa survie. La vue est sans conteste, bien que suivie de prêt par l'ouïe, le sens le plus important pour l'être humain. Sa faculté visuelle ... science et vie de juillet...</ul>
#### Sources primaires de lumière
Toute matière émet de la lumière, principalement en fonction de sa température selon la loi du corps noir. Cependant ce type de rayonnement thermique propre à chaque objet n'émet dans le visible que pour des températures de plusieurs centaines de degrés au minimum. Notre oeil est sensible à la lumière émise par ces objets très chauds émettant ce type de rayonnement, ce sont les anciennes ampoules électriques à incandescence, c'est le morceau de métal porté à plus de 800°C qui devient rougissant, et c'est bien sûr et surtout le soleil dont la température de surface est proche de $5800K$. Chaque élément de surface de ces objets très chauds émet une lumière visible dans toutes les directions du demi-espace libre situé devant lui.
<!-- à mettre en /F ou/et /M-->
- Le domaine de sensibilité de la vision humaine correspond aux ondes électromagnétiques de longueurs d'onde $\lambda\in[400nm, 780nm]$, soit une longueur d'onde moyenne de $\lambda_{moy}=500\mu m$. En vertu de la loi de Wien, le soleil dont la température de surface est de 6000 degrés Kelvin ($6000K$), le soleil émet avec un maximum d'intensité à la longueur d'onde de $\lambda=500nm$, longueur d'onde à laquelle l'atmosphère terrestre est également transparente, permettant à cette lumière de parvenir jusqu'au sol. Tout ceci n'est sûrement pas étranger au fait que au cours de l'évolution, l'oeil biologique se soit principalement adapté pour être sensible à cette gamme de longueurs d'onde que l'on nomme le domaine visible. Le domaine visible est défini par rapport au domaine de sensibilité de l'oeil humain, soit $\lambda\in[400nm, 780nm]$. Le domaine de sensibilité des diverses espèces animales peuvent varier légèrement, parfois en s'étendant au tout proche ultraviolet, parfois au tout proche infrarouge. Mais dans la vie en générale, la vision reste centrée sur le domaine $\lambda\in[250nm, 1000nm]$, qui correspond au domaine de maximum d'intensité de la lumière solaire, et à un domaine de transparence de l'atmosphère terrestre.
- Si le soleil avait été ce qui est appelé une naine rouge, c'est à dire une étoile dont la température de surface est plus froide, de l'ordre de 3000 degrés Kelvin ($3000K$), selon la loi de Wien le maximum d'émission de l'étoiles se réaliserait à une longueur d'onde moyenne double, soit $\lambda_{moy}=1\mu m$. Notre oeil étant peu sensible à cette longueur d'onde, nous apparaitraient le soleil d'un rouge bien pâle et le jour bien sombre.</li><br>
- Mon propre corps est à la température de 37°C, soit environ 300 degrés Kelvin ($300K$), soit 10 fois moins que la température de surface de l'étoile naine rouge précédente. Comme toue matière (assemblage de particules chargées liées entre elles et en mouvement) je rayonne, mais avec un maximum d'intensité situé à une longueur d'onde 10 fois plus grandes, au voisinage de $\lambda_{moy}=10\mu m$. Les lunettes permettant de me voir la nuit grâce à ma propre émission thermique utilisent soit des amplificateurs de lumières visibles (mais il faut qu'il reste un peu de lumière visible que ma peau et mes vêtements puissent diffuser), soit des capteurs de rayonnement sensibles à la longueur d'onde moyenne de $\lambda_{moy}=10\mu m$.
- Je descends encore la température de la matière d'un facteur 10, et j'obtiens une température de 30 degrés Kelvin ($30K$). le rayonnement thermique d'un corps à cette température présente un maximum d'intensité à la longueur d'onde de $\lambda_{moy}=100\mu m$. La température de ($30K$) , exprimée en degré celsius, correspond à une température d'environ $-240°C$. Aucune température naturelle aussi basse n'est observée sur la Terre, dont la température moyenne (résultant de l'équilibre entre la lumière visible solaire absorbée par l'atmosphère, la terre et les océans, et la lumière infrarouge rayonnée par la Terre dans l'espace) se situe vers $+18°C$. qu'observerais-je si mes yeux n'étaient sensibles qu'aux longueurs d'onde proches de $\lambda_{moy}=100\mu m$ et si l'atmosphère n'était pas opaque à ces longueurs d'onde? Il existe une composante de matière, répandue dans tout l'espace, entre les étoiles. Appelée poussière interstellaire, cette composante est constitué de grains (mélanges solides de silicates, de matière carbonée et de glaces diverses) de tailles nanométriques (de l'ordre de 20 à 100 $\mu m$). Distribuée entre les étoiles, le ciel ne m'apparaitrait pas obscure, ponctué seulement par les étoiles et les planètes, mais sous la forme de vastes étendues lumineuses, comme des nuages, en directions des zones denses en poussières.
- De 30 degrés Kelvin ($30K$) à 3 degrés Kelvin ($3K$), la température chute encore d'un facteur 10, en de la matière en équilibre thermique à cette température émet son rayonnement à une longueur d'onde 10 fois plus grande, autour de $\lambda_{moy}=1\,mm$. Qu'observe-t-on de l'univers dans ce domaine de longueur d'onde? L'univers rayonne de façon dans toutes les direction et de façon très homogène comme un corps noir parfait à la température de ... $T=2.728\pm0.004\,K$. Ce rayonnement de corps noir quasi-parfait, appelé rayonnement cosmologique ou fond diffus cosmologique, est l'une des preuves très convaincantes du modèle du Big Bang.
D'autres types de sources de lumière visible émettent un spectre de raies plus ou moins larges. L'énergie de chaque photon émis correspond à la différence d'énergie entre un état de plus haute énergie et un état de plus basse énergie, entre lesquelles l'atome ou la molécule transite.
#### Sources secondaires de lumière : objets diffusants
! TODO
Loading…
Cancel
Save