diff --git a/12.temporary_ins/65.geometrical-optics/20.fundamentals/20.overview/cheatsheet.en.md b/12.temporary_ins/65.geometrical-optics/20.fundamentals/20.overview/cheatsheet.en.md
index 3333114ba..8105a0234 100644
--- a/12.temporary_ins/65.geometrical-optics/20.fundamentals/20.overview/cheatsheet.en.md
+++ b/12.temporary_ins/65.geometrical-optics/20.fundamentals/20.overview/cheatsheet.en.md
@@ -13,6 +13,76 @@ visible: false
-------------
+### Fundamentals of geometric optics
+
+#### Geometric optics:
a simple physical model.
+
+Its *fundamentals* are:
+* The concept of **light ray** : oriented trajectory of light energy
+* The concept of **refractive index** : characterizes the apparent speed of light in a homogeneous medium
+* The **Fermat's principle**
+
+##### Ray of light
+
+
+
+
+
+[AUDIO : _the intuition of the "ray of light" during a walk in the forest_](OG_rayons_foret.mp3)
+
+The **light rays** are *oriented lines* that in each of their points indicate the *direction of propagation of the luminous energy*.
+
+The light rays follow *straight lines in a homogeneous medium*.
+
+Light rays *do not interact with each other*
+
+##### The refraction index
+
+**Refractive Index $`n`$**
+**$`n \; = \; \dfrac{c}{v}`$**
+* **`c`** : *speed of light in vacuum* (absolute limit)
+* **`v`** : *speed of light in the middle* homogeneous
+
+**$`\Longrightarrow \: : \: n`$** : physical dimension **without dimension** and **always > 1**.
+
+Dependency : **$`n \; = \; n (\nu) \; \; \; `$**, or **$` \; \; \; n \; = \; n (\lambda_0) \; \ ; \; `$** *(with $`\lambda_0`$ wavelength in vacuum)*
+
+
+
+!! TO GO FURTHER :
+!!
+!! over the entire electromagnetic spectrum and for any medium:
+!! $`n`$: complex value dependent on the $\nu$ frequency of the electromagnetic wave, strong variations representative of all light / matter interaction mechanisms: $`n (\nu) = \Re[n(\nu )] + \Im[n(\nu)]`$
+!!
+!! In the visible domain (where $`\lambda_0`$ is more used than $`\nu`$) and for transparent medium :
+!! real value, small variations of $`n`$ with $`\lambda_0`$ $`\left(\frac{\Delta n}{n} < 1\%\right)`$
+
+##### Optical path
+
+**optical path** *$`\delta`$* $`=`$
+**euclidean length** *$`s`$* $`\times`$ **refractive index** *$`n`$*
+
+* **$`\Gamma`$** : *path (solid line) between 2 fixed points A and B*
+* **$`\mathrm{d}s_P`$** : *element of infinitesimal length at point P on path $`\Gamma`$*
+* **$` n_P`$** : *refractive index at point P*
+* **$`\mathrm{d}\delta_P`$** : *infinitesimal optical path at point P on path $`\Gamma`$*
+
+Optical path along a path between 2 fixed points A and B :
+**$`\delta\;=\;\displaystyle\int_{P \in \Gamma}\mathrm{d}\delta_P\;`$$`=\;\displaystyle\int_{P \in \Gamma}n_P\cdot\mathrm{d}s_P`$**
+
+* **$`\delta`$** $`=\displaystyle\int_{\Gamma}n\cdot\mathrm{d}s\;=\;\int_{\Gamma}\dfrac{c}{v}\cdot\mathrm{d}s`$ = $`c\;\displaystyle\int_{\Gamma}\dfrac{\mathrm{d}s}{v}`$ = *$`\;c\;\tau`$*
+* **$`\delta`$** is *proportional to the travel time*.
+
+
+
#### Optical path
**optical path** *$\delta$* $=$