From a47afade54089f70d087bfb525526d1688bfe85c Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Sat, 20 Mar 2021 09:16:04 +0100 Subject: [PATCH] Update cheatsheet.en.md --- .../20.overview/cheatsheet.en.md | 70 +++++++++++++++++++ 1 file changed, 70 insertions(+) diff --git a/12.temporary_ins/65.geometrical-optics/20.fundamentals/20.overview/cheatsheet.en.md b/12.temporary_ins/65.geometrical-optics/20.fundamentals/20.overview/cheatsheet.en.md index 3333114ba..8105a0234 100644 --- a/12.temporary_ins/65.geometrical-optics/20.fundamentals/20.overview/cheatsheet.en.md +++ b/12.temporary_ins/65.geometrical-optics/20.fundamentals/20.overview/cheatsheet.en.md @@ -13,6 +13,76 @@ visible: false ------------- +### Fundamentals of geometric optics + +#### Geometric optics:
a simple physical model. + +Its *fundamentals* are: +* The concept of **light ray** : oriented trajectory of light energy +* The concept of **refractive index** : characterizes the apparent speed of light in a homogeneous medium +* The **Fermat's principle** + +##### Ray of light + +![](rays_forest.jpg) + + + +[AUDIO : _the intuition of the "ray of light" during a walk in the forest_](OG_rayons_foret.mp3) + +The **light rays** are *oriented lines* that in each of their points indicate the *direction of propagation of the luminous energy*. + +The light rays follow *straight lines in a homogeneous medium*. + +Light rays *do not interact with each other* + +##### The refraction index + +**Refractive Index $`n`$**        +**$`n \; = \; \dfrac{c}{v}`$** +* **`c`** : *speed of light in vacuum* (absolute limit) +* **`v`** : *speed of light in the middle* homogeneous + +**$`\Longrightarrow \: : \: n`$** : physical dimension **without dimension** and **always > 1**. + +Dependency : **$`n \; = \; n (\nu) \; \; \; `$**, or **$` \; \; \; n \; = \; n (\lambda_0) \; \ ; \; `$** *(with $`\lambda_0`$ wavelength in vacuum)* + + + +!! TO GO FURTHER : +!! +!! over the entire electromagnetic spectrum and for any medium: +!! $`n`$: complex value dependent on the $\nu$ frequency of the electromagnetic wave, strong variations representative of all light / matter interaction mechanisms: $`n (\nu) = \Re[n(\nu )] + \Im[n(\nu)]`$
+!! +!! In the visible domain (where $`\lambda_0`$ is more used than $`\nu`$) and for transparent medium :
+!! real value, small variations of $`n`$ with $`\lambda_0`$ $`\left(\frac{\Delta n}{n} < 1\%\right)`$ + +##### Optical path + +**optical path** *$`\delta`$*      $`=`$ +**euclidean length** *$`s`$*     $`\times`$    **refractive index** *$`n`$* + +* **$`\Gamma`$** : *path (solid line) between 2 fixed points A and B* +* **$`\mathrm{d}s_P`$** : *element of infinitesimal length at point P on path $`\Gamma`$* +* **$` n_P`$** : *refractive index at point P* +* **$`\mathrm{d}\delta_P`$** : *infinitesimal optical path at point P on path $`\Gamma`$* + +Optical path along a path between 2 fixed points A and B : +**$`\delta\;=\;\displaystyle\int_{P \in \Gamma}\mathrm{d}\delta_P\;`$$`=\;\displaystyle\int_{P \in \Gamma}n_P\cdot\mathrm{d}s_P`$** + +* **$`\delta`$** $`=\displaystyle\int_{\Gamma}n\cdot\mathrm{d}s\;=\;\int_{\Gamma}\dfrac{c}{v}\cdot\mathrm{d}s`$ = $`c\;\displaystyle\int_{\Gamma}\dfrac{\mathrm{d}s}{v}`$ = *$`\;c\;\tau`$* +* **$`\delta`$** is *proportional to the travel time*. + + + #### Optical path **optical path** *$\delta$*      $=$