|
|
|
@ -66,7 +66,7 @@ I wanted to make this important remark here, but it is not simple: with Doppler |
|
|
|
* **$`\mathrm{d}\delta_P`$** : *infinitesimal optical path at point P on path $`\Gamma`$* |
|
|
|
|
|
|
|
Optical path along a path between 2 fixed points A and B : |
|
|
|
**$`\delta\;=\;\displaystyle\int_{P \in \Gamma}\mathrm{d}\delta_P\;`$$`=\;\int_{P \in \Gamma}n_P\cdot\mathrm{d}s_P`$** |
|
|
|
**$`\delta\;=\;\displaystyle\int_{P \in \Gamma}\mathrm{d}\delta_P\;`$$`=\;\displaystyle\int_{P \in \Gamma}n_P\cdot\mathrm{d}s_P`$** |
|
|
|
|
|
|
|
* **$`\delta`$** $`=\displaystyle\int_{\Gamma}n\cdot\mathrm{d}s\;=\;\int_{\Gamma}\dfrac{c}{v}\cdot\mathrm{d}s`$ = $`c\;\displaystyle\int_{\Gamma}\dfrac{\mathrm{d}s}{v}`$ = *$`\;c\;\tau`$* |
|
|
|
* **$`\delta`$** is *proportional to the travel time*. |
|
|
|
|