From aa9d3c43b91c52eff984a44de510d7c385b1f277 Mon Sep 17 00:00:00 2001 From: Claude Meny Date: Thu, 28 Jan 2021 22:31:34 +0100 Subject: [PATCH] Update cheatsheet.fr.md --- .../10.interferences/cheatsheet.fr.md | 15 +++++---------- 1 file changed, 5 insertions(+), 10 deletions(-) diff --git a/12.temporary_ins/70.wave-optics/10.interferences/cheatsheet.fr.md b/12.temporary_ins/70.wave-optics/10.interferences/cheatsheet.fr.md index a6ad5baa2..f7df72785 100644 --- a/12.temporary_ins/70.wave-optics/10.interferences/cheatsheet.fr.md +++ b/12.temporary_ins/70.wave-optics/10.interferences/cheatsheet.fr.md @@ -655,21 +655,16 @@ $`=\phi_{géo}`$ *Calcul de l'amplitude totale* * **Interférences en réflexion** : rappel, on se limite aux *deux premiers faisceaux*.
-
-$`\underline{A}_{\,tot}=A\cdot r_{12} + A \cdot r_{21} \cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,\phi_{géo}}`$
-
-Comme $`r_{21}=-1\cdot r_{12}=e^{\,i\,\pi}\cdot r_{12}`$
-
-$`\underline{A}_{\,tot}=A\cdot r_{12}\cdot`$ +
$`\underline{A}_{\,tot}=A\cdot r_{12} + A \cdot r_{21} \cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,\phi_{géo}}`$
+
Comme $`r_{21}=-1\cdot r_{12}=e^{\,i\,\pi}\cdot r_{12}`$
+
$`\underline{A}_{\,tot}=A\cdot r_{12}\cdot`$ $`\;\left( 1 + e^{\,i\,\pi}\cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,(\phi_{géo}+\phi_{ref})}\right)`$ $`\;=A\cdot r_{12}\cdot \left( 1 + \cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,(\phi_{géo}+\pi)}\right)`$ $`\;=A\cdot r_{12}\cdot \left( 1 + \cdot t_{12} \cdot t_{21} \cdot e^{\displaystyle\,i\,(\phi_{géo}+\phi_{ref})}\right)`$

nous voyons bien qu'*au final* le déphasage des deux ondes est *$`\phi=\phi_{géo}+\phi_{ref}`$*.
-
-Comme $`T=t_{12}\cdot t_{12}\simeq 1`$, nous faisons l'**approximation $`T=t_{12}=t_{12}=1`$**.
-
-**$`\underline{A}_{\,tot}=A\cdot r_{12}\cdot \left( 1 +e^{\displaystyle\,i(\phi_{géo}+\phi_{ref})}\right)`$** +
Comme $`T=t_{12}\cdot t_{12}\simeq 1`$, nous faisons l'**approximation $`T=t_{12}=t_{12}=1`$**.
+
**$`\underline{A}_{\,tot}=A\cdot r_{12}\cdot \left( 1 +e^{\displaystyle\,i(\phi_{géo}+\phi_{ref})}\right)`$** $`=\,A\cdot r_{12}\cdot \left( 1 +e^{\displaystyle\,i \left( \dfrac{\,4\,\pi\,n_2\,e\cdot cos\,\theta_2}{\lambda}+\pi \right)} \right)`$ !!!! *Attention :*